Decision Support for the (Inter-)Basin Management of Water Resources Using Integrated Hydro-Economic Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. GIS and DSS Integration
2.2. The Hydro-Economic Model
2.3. Algebraic Formulation of the Optimization Model
2.3.1. Supply Nodes
2.3.2. Demand Nodes
2.3.3. Point Expansion Method
2.3.4. Links
2.3.5. Objective Function
3. Results
3.1. Case Study Description
3.2. Hydro-Economic Model Results for the Case Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Additional Model Parameters, Variables, Equations and Restrictions
- o
- Technical restrictions (dam, powerhouse, spillway etc.) [39]
- o
- Flood protection (Restriction)
SV [%] | Sobradinho TR = 17 Anos | Itaparica TR = 20 Anos |
---|---|---|
Jan | 76.91 | 60.74 |
Feb | 76.91 | 60.74 |
Mar | 80.43 | 62.10 |
Apr | 80.73 | 81.39 |
May | 100.00 | 100.00 |
Jun | 100.00 | 100.00 |
Jul | 100.00 | 100.00 |
Aug | 100.00 | 100.00 |
Sep | 100.00 | 100.00 |
Oct | 100.00 | 100.00 |
Nov | 79.50 | 73.93 |
Dec | 77.51 | 60.74 |
- o
- Lower bound Sobradinho and Xingo reservoir (environmental demand)
Appendix B. INNOVATE Project Framework
Appendix C. PISF Inter-Basin Water Transfer
Municipality | Net Benefit /m³ |
---|---|
Petrolina | 0.95 R$/m³ |
Cabrobó | 0.83 R$/m³ |
Santa Maria | 0.83 R$/m³ |
Oroço | 0.69 R$/m³ |
References
- Moraes, A.M.; da Silva, G.S. O Papel da Economia na Gestão Sustentável de Bacias Hidrográficas. In Gestão Sustentável de Bacias Hidrográficas; SEAERJ: Recife, Brazil, 2017. [Google Scholar]
- Kim, J.Y. The World Bank Annual Report 2019: Ending Poverty. In Investing in Opportunity; World Bank Annual Report; The World Bank: Washington, DC, USA, 2019. [Google Scholar]
- Maass, A. Design of Water Resource Systems; Harvard University Press: Cambridge, MA, USA, 1962. [Google Scholar]
- Loucks, D.P.; Stedinger, J.R.; Haith, D.A. Water Resources Systems Planning and Analysis; Prentice-Hall: Englewood Cliffs, NJ, USA, 1981. [Google Scholar]
- Braat, L.C.; Lierop, W.F.J. Integrated Economic-Ecological Modeling; North Holland Publishing Co.: Amsterdam, The Netherlands, 1987. [Google Scholar]
- Mckinney, C.D.; Cai, X.; Rosegrant, M.; Ringler, C.; Scott, C.A. Integrated Basin-Scale Water Resources Management Modeling: Review and Future Directions, SWIM Research Record No. 6 Int; Water Management Institute: Colombo, Sri Lanka, 1999. [Google Scholar]
- Cai, X.; McKinney, D.C.; Lasdon, L.S. Solving nonlinear water management models using a combined genetic algorithm and linear programming approach. Adv. Water Resour. 2001, 24, 667–676. [Google Scholar] [CrossRef]
- Cai, X.M. Implementation of holistic water resources–economic optimization models for river basin man-agement–Reflective experiences. Environ. Model. Softw. 2008, 23, 2–18. [Google Scholar] [CrossRef]
- Mayer, A.; Hernandez, M.A. Integrated Water Resources Optimization Models: An Assessment of a Multidisciplinary Tool for Sustainable Water Resources Management Strategies. Geogr. Compass 2009, 1176–1195. [Google Scholar] [CrossRef]
- Harou, J.J.; Velazquez, M.P.; Rosenberg, D.E.; Azuara, J.M.; Lund, J.R.; Howitt, R.E. Hydro-economic models: Concepts, design, applications, and future prospects. J. Hydrol. 2009, 627–643. [Google Scholar] [CrossRef] [Green Version]
- Bo, M.M.; Expósito, A.; Berbel, J. A Simplified Hydro-Economic Model of Guadalquivir River Basin for Analysis of Water-Pricing Scenarios. Water 2020, 12, 1879. [Google Scholar]
- Maneta, M.; Torres, M.O.; Wallender, W.W.; Vosti, S.; Howitt, R.; Rodrigues, L.; Bassoi, L.H.; Panday, S. A spatially distributed hydro-economic model to assess the effects of drought on land use, farm profits, and agricultural employment. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef] [Green Version]
- Salla, M.R.; Javier, P.A.; Abel, S.; Alvarez, J.A.; Pereira, C.E.; Alamy, F.J.E.; De Oliveira, A.L. Integrated modeling of water quantity and quality in the Araguari River basin, Brazil. Latin Am. J. Aquat. Res. 2014, 42, 224–244. [Google Scholar] [CrossRef]
- Chakroun, H.; Chabaane, Z.L.; Benabdallah, S. Concept and prototype of a spatial decision support system for integrated water management applied to Ichkeul Basin, Tunisia. Water Environ. J. 2015, 29, 169–179. [Google Scholar] [CrossRef]
- Ghosh, S.; Ibarrarán, M.E.; Willett, K.D.; Esqueda, G.S.T. Water Allocation and Management along the Santa Cruz Border Region. Water Resources and Economics; Elsevier BV: Amsterdam, The Netherlands, 2017; Volume 19, pp. 1–17. [Google Scholar]
- Giri, S.; Arbab, N.N.; Lathrop, R.G. Water security assessment of current and future scenarios through an integrated modeling framework in the Neshanic River Watershed. J. Hydrol. 2018, 563, 1025–1041. [Google Scholar] [CrossRef]
- Gunawardena, A.; White, B.; Hailu, A.; Wijeratne, E.M.S.; Pandit, R. Policy choice and riverine water qual-ity in developing countries: An integrated hydro-economic modelling approach. J. Environ. Manag. 2018, 227, 44–54. [Google Scholar] [CrossRef]
- Kahil, M.T.; Dinar, A.; Albiac, J. Modeling water scarcity and droughts for policy adaptation to climate change in arid and semiarid regions. J. Hydrol. 2015, 522, 95–109. [Google Scholar] [CrossRef] [Green Version]
- Ahmadaali, J.; Barani, G.A.; Qaderi, K.; Hessari, B. Analysis of the effects of water management strategies and climate change on the environmental and agricultural sustainability of Urmia Lake Basin, Iran. Water 2018, 10, 160. [Google Scholar] [CrossRef] [Green Version]
- Garbe, J.; Beevers, L. Modelling the impacts of a water trading scheme on freshwater habitats. Ecol. Eng. 2017, 105, 284–295. [Google Scholar] [CrossRef]
- Bekchanov, M.; Sood, A.; Pinto, A.; Jeuland, M. Systematic Review of Water-Economy Modeling Applications. J. Water Resour. Plan. Manag. 2017, 143, 7037. [Google Scholar] [CrossRef]
- Brouwer, R.; Hofkes, M. Integrated hydro-economic modelling: Approaches, key issues and future research directions. Ecol. Econ. 2008, 66, 16–22. [Google Scholar] [CrossRef]
- Manzardo, A.; Loss, A.; Fialkiewicz, W.; Rauch, W.; Scipioni, A. Methodological proposal to assess the water footprint accounting of direct water use at an urban level: A case study of the Municipality of Vicenza. Ecol. Indic. 2016, 69, 165–175. [Google Scholar] [CrossRef]
- Castillo, R.M.; Feng, K.; Sun, L.; Guilhoto, J.; Pfister, S.; Wilhelm, F.M.; Hubacek, K. The land-water nexus of biofuel production in Brazil: Analysis of synergies and trade-offs using a multiregional input-output model. J. Clean. Prod. 2019, 214, 52–61. [Google Scholar] [CrossRef]
- Sun, Y.; Mao, X.; Gao, T.; Liu, H.; Zhao, Y. Potential water withdrawal reduction to mitigate riverine eco-system degradation under hydropower development: A computable general equilibrium model analysis. River Res. Appl. 2020, 1–8. [Google Scholar] [CrossRef]
- Candido, L.A.; Coêlho, G.A.G.; Moraes, M.M.G.A.; Florêncio, L. Review of Decision Support Systems and allocation models for Integrated Water Resources Management focusing on joint water quality-quantity. J. Water Resour. Plan. Manag. 2021. (abstract accepted, full text under revision). [Google Scholar]
- GWP. Catalyzing Change: A Handbook for Developing Integrated Water Resources Management (IWRM) and Water Efficiency Strategies; Global Water Partnership (GWP) Technical Committee with support from Norway’s Ministry of Foreign Affairs: Stockholm, Sweden, 2004. [Google Scholar]
- Braun, J. Policy Nook: ‘Expanding Water Modeling to Serve Real Policy Needs. Water Econ. Policy 2016, 2, 1–9. [Google Scholar] [CrossRef]
- Momblanch, A.; Connor, J.D.; Crossman, N.D.; Arquiola, P.J.; Andreu, J. Using ecosystem services to represent the environment in hydro-economic models. J. Hydrol. 2016, 538, 293–303. [Google Scholar] [CrossRef]
- McKinney, D.C.; Cai, X. Linking GIS and water resources management models: An object-oriented method. Environ. Model. Softw. 2001, 413–425. [Google Scholar] [CrossRef]
- Crosbie, P. Object-oriented design of GIS: A new approach to environmental modeling. In GIS and Environmental Modeling: Progress and Research Issues; John Wiley & Sons: Amsterdam, The Netherlands, 1996; pp. 383–386. [Google Scholar]
- McKinney, D.C.; Tsai, H.L. Multigrid method grid-cell-based modeling environment. J. Comput. Civil. Eng. 1996, 10, 80–86. [Google Scholar] [CrossRef]
- Rosenthal, R.E. GAMS User’s Guide; GAMS Development Corporation: Washington, DC, USA, 2012. [Google Scholar]
- ESRI. ArcGIS API for JavaScript 3.23. Available online: https://developers.arcgis.com/javascript/3 (accessed on 24 August 2017).
- ESRI. ArcMap Geomteric Networks. Available online: http://desktop.arcgis.com/en/arcmap/10.3/manage-data/geometric-networks/what-are-geometric-networks-.htm (accessed on 24 August 2017).
- Moraes, M.M.G.A.; Cirilo, J.A.; Sampaio, Y. Joint Water Quantity-Quality Management in a Biofuel Production Area—Integrated Economic-Hydrologic Modeling Analysis. Water Resour. Plng. Manag. 2010, 136, 502–511. [Google Scholar] [CrossRef]
- Moraes, M.M.G.A.; Cirilo, J.A.; Sampaio, Y. Integração dos Componentes Econômico e Hidrológico na Modelagem de Alocação Ótima de Água para Apoio a Gestão de Recursos: Uma Aplicação na bacia do Pira-pama. Rev. Econ. 2006, vol. 7, 331–364. [Google Scholar]
- FINEP. Technical Report. Convenio FINEP 01.04.0761.00; FINEP: Recife, Brazil, 2007.
- National Electric System Operator–ONS. HydroData; ONS: Brasil, 2014. [Google Scholar]
- Koch, H.; Schultze, S.M. Introduction to Applying Scenarios: A Basis for Innovate’s Scenario Approach; FINEP: Recife, Brazil, 2014.
- Campen, L.H.; Muller, C.; Bondeau, A.; Rost, S.; Popp, A.; Lucht, W. Global food demand, productivity growth, and the scarcity of land and water re-sources: A spatially explicit mathematical programming approach. Agric. Econ. 2008, 325–338. [Google Scholar] [CrossRef]
- Biewald, A.; Campen, L.H.; Schmitz, C.; Kölling, K.; Beck, F. The impact of future climate and socioeconomic changes on landuse in the catchment area of the Rio São Francisco. In Proceedings of the INNOVATE Status Conference, Recife, Brazil, 14 October 2014. [Google Scholar]
- Krysanova, V.; Wechsung, F.; Arnold, J.; Srinivasan, R.; Williams, J. SWIM (Soil and Water Integrated Model) User Manual; Potsdam Institute for Climate Impact Research: Potsdam, Germany, 2000. [Google Scholar]
- Krysanova, V.; Wohlfeil, M.D.I.; Becker, A. Development and test of a spatially distributed hydrolog-ical/water quality model for mesoscale watersheds. Ecol. Model. 1998, 106, 261–289. [Google Scholar] [CrossRef]
- Schultze, S.M.; Azevedo, J.R.; Hartje, V.; Koch, H.; Köppel, J.; Alcoforado de Moraes, M.M.G.; Siewert, S. Is the future what it used to be? Scenarios and their impacts on people and ecosystem services in the São Francisco watershed. Round Table 1: Modeling, socioeconomic analysis, and governance for sustainable resource use. In Proceedings of the Innovate Status Conference, Recife, Brazil, 14–15 October 2014. [Google Scholar]
- Schultze, S.M.; Köppel, J.; Sobral, M.C. Balancing ecosystem services and societal demands in a highly managed watershed: Setup and progress of a comprehensive research project. Rev. Bras. Ciências Ambient. 2015, 36, 3–18. [Google Scholar] [CrossRef]
- Nakicenovic, N.; Swart, R. Special Report on Emissions Scenarios (SRES); Cambridge University Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Hempel, S.; Frieler, K.; Warzawski, L.; Schewe, J.; Piontek, F.A. Trend-Preserving Bias Correction-The ISI-MIP Approach. Earth Syst. Dyn. 2013, 4, 219–236. [Google Scholar] [CrossRef] [Green Version]
- Madec, G.; Imbard, M. A global ocean mesh to overcome the north pole singularity. Clim. Dyn. 1996, 12, 381–388. [Google Scholar] [CrossRef]
- Watanabe, S.; Hajima, T.; Sudo, K.; Nagashima, T.; Takemura, T.; Okajima, H.; Nozawa, T.; Kawase, H.; Abe, M.; Yokohata, T.; et al. MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 2011, 845–872. [Google Scholar] [CrossRef] [Green Version]
- Koch, H.; Biewald, A.; Liersch, S.; de Azevedo, J.R.G.; Silva, G.N.S.; Kolling, K.; Fischer, P.; Koch, R.; Hattermann, F.F. Scenarios of climate and land-use change, water demand and water availability for the São Francisco River Basin. Rev. Bras. Ciências Ambient. 2015, 36, 96–114. [Google Scholar] [CrossRef]
- ANA. ArcGIS REST Services Directory. Available online: http://www.snirh.gov.br/arcgis/rest/services/SRE/OUTORGAS_CNARH40/MapServer (accessed on 21 January 2018).
- Silva, G.S.; Figueiredo, L.E.; de Moraes, M.M.G.A. Demand Curves for Water Ressources of the main water users in sub-middle São Francisco basin. RBCIAMB 2015, 45–59. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013; Cambridge University Press: Cambridge, MA, USA, 2013. [Google Scholar]
- van Vuuren, D.P.; Edmonds, J.A.; Kainuma, M.; Riahi, K.; Weyant, J. A special issue on the RCPs. Clim. Chang. 2011, 109, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Moraes, M.M.G.A.; Biewald, A.; Carneiro, A.C.G.; Silva, G.N.S.; Popp, A.; Campen, H.L. The impact of global changes on economic values of water for Public Irri-gation Schemes at the São Francisco River Basin in Brazil. Reg. Environ. Chang. 2018, 18, 1943–1955. [Google Scholar] [CrossRef]
- da Silva, G.S. Apoio à Gestão Sustentável de Recursos Hídricos Através de um Modelo Hidro-Econômico de-Senvolvido em Diferentes Cenários de Uso do Solo e Clima: O Caso do Sub-Médio do São Francisco; UFPE: Recife, Brazil, 2017. [Google Scholar]
- Griffin, R.C. Water Resource Economics: The Analysis of Scarcity, Policies, and Projects; MIT Press: Cambridge, UK, 2006. [Google Scholar]
- ANA. Resolução 411-Outorga PISF de 22 de Setembro de 2005; ANA: Brasilia, Brazil, 2005.
- ANA. Technical Note Conjunta n° 1/2016/COSER/SRE/SAS; ANA: Brasilia, Brazil, 2016.
- Carrera, B.L.; Warren, A.; van Beek, E.; Jonoski, A.; Giardino, A. Collaborative modelling or participa-tory modelling? A framework for water resources management. Environ. Model. Softw. 2017, 91, 95–110. [Google Scholar] [CrossRef]
- ANA. Nota Técnica n° 042 /2008/SAG-ANA; ANA: Brasilia, Brazil, 2008.
- Kelman, J.; Ramos, M. Custo, valor e preço da água utilizada na agricultura. REGA 2005, 2, 39–48. [Google Scholar]
- Vera, L.H.A. Atuação da Cobrança pelo Uso da Água de Domínio da União como Instrumento de Gestão de Recursos Hídricos na Bacia Hidrográfica do Rio São Francisco; UFPE: Recife, Brazil, 2014. [Google Scholar]
- Beier, A.; Berbel, F.; Expósito, J. Economic Modelling for Water-Policy Assessment under Climate Change at a River Basin Scale: A Review. Water 2020, 12, 1559. [Google Scholar]
- United Nations. The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Forni, L.G.; Medellín-Azuara, J.; Tansey, M.; Young, C.; Purkey, D.; Howitt, R. Integrating complex economic and hydrologic planning models: An application for drought under climate change analysis. Water Resour. Econ. 2016, 16, 15–27. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza da Silva, G.N.; Alcoforado de Moraes, M.M.G. Decision Support for the (Inter-)Basin Management of Water Resources Using Integrated Hydro-Economic Modeling. Hydrology 2021, 8, 42. https://doi.org/10.3390/hydrology8010042
Souza da Silva GN, Alcoforado de Moraes MMG. Decision Support for the (Inter-)Basin Management of Water Resources Using Integrated Hydro-Economic Modeling. Hydrology. 2021; 8(1):42. https://doi.org/10.3390/hydrology8010042
Chicago/Turabian StyleSouza da Silva, Gerald Norbert, and Márcia Maria Guedes Alcoforado de Moraes. 2021. "Decision Support for the (Inter-)Basin Management of Water Resources Using Integrated Hydro-Economic Modeling" Hydrology 8, no. 1: 42. https://doi.org/10.3390/hydrology8010042
APA StyleSouza da Silva, G. N., & Alcoforado de Moraes, M. M. G. (2021). Decision Support for the (Inter-)Basin Management of Water Resources Using Integrated Hydro-Economic Modeling. Hydrology, 8(1), 42. https://doi.org/10.3390/hydrology8010042