Landslide Susceptibility Analysis: A Logistic Regression Model Case Study in Coonoor, India
Abstract
:1. Introduction
2. Methodology
2.1. Study Area: Coonoor Taluk, Tamil Nadu
2.2. Data Sources
2.3. Landslide Characterization
2.4. Spatial Database of Causative Factors
2.5. Landslide Susceptibility Assessment
2.5.1. Multicollinearity Analysis
2.5.2. Landslide Susceptibility Map and Validation
3. Results and Discussion
3.1. Logistic Regression Model for Mapping Landslide Susceptibility
3.2. Spatial Variation of Landslide Susceptibility
3.3. Effect of Local Geo-Environment on Landslides
3.4. Effect of Anthropogenic Activities of Landslides
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Varnes, D.J. Commission on the Landslides of the IAEG, UNESCO. Landslide Hazard Zonation: A Review of Principles and Practice; UN: New York, NY, USA, 1984; Volume 3, p. 61. [Google Scholar]
- Froude, M.J.; Petley, D.N. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Pradhan, B. Probabilistic landslide hazards and risk mapping on Penang Island, Malaysia. J. Earth Syst. Sci. 2006, 115, 661–672. [Google Scholar] [CrossRef]
- Winter, M.G.; Barbara, S.; Derek, P.; David, P.; Clare, H.; Jonathan, S. The economic impact of landslides and floods on road networks. Proc. Eng. 2016, 143, 1425–1434. [Google Scholar] [CrossRef] [Green Version]
- Schuster, R.; Highland, L.M. Socioeconomic and Environmental Impacts of Landslides in Western Hemisphere; U.S. Geological Survey: Denver, CO, USA, 2001. [Google Scholar]
- Perera, E.N.C.; Jayawardana, D.T.; Jayasinghe, P.; Bandara, R.M.S.; Alahakoon, N. Direct impact of landslides on socioeconomic systems: A case study from Aranayake, Sri Lanka. Geoenviron. Disas. 2018, 5. [Google Scholar] [CrossRef]
- Hervás, J.; Bobrowsky, P. Mapping: Inventories, Susceptibility, Hazard and Risk. In Landslides—Disaster Risk Reduction; Springer International Publishing: Berlin, Germany, 2008; pp. 321–349. [Google Scholar]
- Jaiswal, P.; van Westen, C.J. Estimating temporal probability for landslide initiation along transportation routes based on rainfall thresholds. Geomorphology 2009, 112, 96–105. [Google Scholar] [CrossRef]
- Sujatha, E.R.; Rajamanickam, G.V. Landslide Hazard and Risk Mapping Using the Weighted Linear Combination Model Applied to the Tevankarai Stream Watershed, Kodaikkanal, India. Hum. Ecol. Risk Assess. Int. J. 2014, 21, 1445–1461. [Google Scholar] [CrossRef]
- Jaiswal, P.; Van Westen, C.J.; Jetten, V. Quantitative assessment of landslide hazard along transportation lines using historical records. Landslides 2011, 8, 279–291. [Google Scholar] [CrossRef]
- Cloutier, C.; Locat, J.; Jakob, M.; Schornbus, M. Slope Safety Preparedness for Effects of Climate Change. In Proceedings of the Joint Technical Committee JTC-1TR3 Forum, Naples, Italy, 17–18 November 2015. [Google Scholar]
- Gariano, S.L.; Guzzetti, F. Landslides in chaning climate. Earth Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Hong, S.-M.; Jung, H.-S. A Support Vector Machine for Landslide Susceptibility Mapping in Gangwon Province, Korea. Sustainability 2017, 9, 48. [Google Scholar] [CrossRef] [Green Version]
- Sangelantoni, L.; Gioia, E.; Marincioni, F. Impact of climate change on landslides frequency: The Esino river basin case study (Central Italy). Nat. Hazards 2018, 93, 849–884. [Google Scholar] [CrossRef]
- Haque, U.; da Silva, A.P.F.; Devoli, G.; Pilz, J.; Zhao, B.; Khaloua, A.; Wilopo, W.; Andersen, P.; Lu, P.; Lee, J.; et al. The human cost of global warming: Deadly landslides and their triggers (1995–2014). Sci. Total Environ. 2019, 682, 673–684. [Google Scholar] [CrossRef]
- Ayalew, L.; Yamagishi, H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 2005, 65, 15–31. [Google Scholar] [CrossRef]
- Hasekioğulları, G.D.; Ercanoglu, M. A new approach to use AHP in landslide susceptibility mapping: A case study at Yenice (Karabuk, NW Turkey). Nat. Hazards 2012, 63, 1157–1179. [Google Scholar] [CrossRef]
- Zare, M.; Pourghasemi, H.R.; Vafakhah, M.; Pradhan, B. Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: A comparison between multilayer perceptron (MLP) and radial basic function (RBF) algo-rithms. Arab. J. Geosci. 2013, 6, 2873–2888. [Google Scholar] [CrossRef]
- Eker, R.; Aydın, A. Assessment of Forest Road Conditions in Terms of Landslide Susceptibility: A Case Study in Yĭgılca Forest Directorate (Turkey). Turk. J. Agric. For. 2014, 38, 281–290. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Moradi, H.R.; Aghda, S.M.F.; Gokceoglu, C.; Pradhan, B. GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (North of Tehran, Iran). Arab. J. Geosci. 2013, 7, 1857–1878. [Google Scholar] [CrossRef] [Green Version]
- Trigila, A.; Iadanza, C.; Esposito, C.; Mugnozza, G.S. Comparison of Logistic Regression and Random Forests techniques for shallow landslide susceptibility assessment in Giampilieria (NE Sicily, Italy). Geomorphology 2015, 249, 119–136. [Google Scholar] [CrossRef]
- Hong, H.; Naghibi, S.A.; Pourghasemi, H.R.; Pradhan, B. GIS-based landslide spatial modeling in Ganzhou City, China. Arab. J. Geosci. 2016, 9, 1–26. [Google Scholar] [CrossRef]
- Pham, B.T.; Pradhan, B.; Bui, D.T.; Prakash, I.; Dholakia, M. A comparative study of different machine learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India). Environ. Model. Softw. 2016, 84, 240–250. [Google Scholar] [CrossRef]
- Roodposhti MJShahabi, H.; Safarrad, T. Fuzzy Shannon entropy: Ahybrid GIS-based landslide susceptibility mapping method. Entropy 2016, 18, 343. [Google Scholar]
- Sehgal, V.; Lakhanpal, A.; Maheswaran, R.; Khosa, R.; Sridhar, V. Application of multi-scale wavelet entropy and multi-resolution Volterra models for climatic downscaling. J. Hydrol. 2018, 556, 1078–1095. [Google Scholar] [CrossRef]
- Bijukchhen, S.M.; Kayastha, P.; Dhital, M.R. A Comparative Evaluation of Heuristic and Bivariate Statistical Modeling for Landslide Susceptibility Mappings in Ghurmi-DhadKhola, East Nepal. Arab. J. Geosci. 2013, 6, 2727–2743. [Google Scholar] [CrossRef]
- Kayastha, P.; Dhital, M.R.; Smedt, F.D. Evaluation and Comparison of GIS Based Landslide Susceptibility Mapping Procedures in Kulekhani Watershed, Nepal. J. Geol. Soc. India 2013, 81, 219–231. [Google Scholar] [CrossRef]
- Nandi, A.; Shakoor, A. A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Eng. Geol. 2010, 110, 11–20. [Google Scholar] [CrossRef]
- Pradhan, B.; Mansor, S.; Pirasteh, S.; Buchroithner, M.F. Landslide hazard and risk analyses at a landslide prone catchment area using statistical based geospatial model. Int. J. Remote Sens. 2011, 32, 4075–4087. [Google Scholar] [CrossRef]
- Pradhan, B.; Lee, S. Landslide susceptibility assessment and factor effect analysis: Back propagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ. Model. Softw. 2010, 25, 747–759. [Google Scholar] [CrossRef]
- Sujatha, E.R.; Kumaravel, P.; Rajamanickam, V. GIS based Landslide Susceptibility Mapping of Tevankarai Ar Sub-watershed, Kodaikkanal, India using Binary Logistic Regression Analysis. J. Mt. Sci. 2011, 8, 505–517. [Google Scholar]
- Akgun, A. A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: A case study at İzmir, Turkey. Landslides 2011, 9, 93–106. [Google Scholar] [CrossRef]
- Kleinbaum, D.G.; Klein, M. Logistic Regression: A Self-Learning Text, 3rd ed.; Springer: New York, NY, USA, 2010; p. 701. [Google Scholar]
- Talaei, R. Landslide susceptibility zonation mapping using logistic regression and its validation in Hashtchin Region, northwest of Iran. J. Geol. Soc. India 2014, 84, 68–86. [Google Scholar] [CrossRef]
- Sujatha, E.R.; Suribabu, C.R. Rainfall Analyses of Coonoor Hill Station of Nilgiris District for Landslide Studies. IOP Conf. Ser. Earth Environ. Sci. 2017, 80, 012066. [Google Scholar] [CrossRef] [Green Version]
- Seshagiri, D.N.; Badrinarayanan, S.; Upendran, R.; Lakshmikantham, C.B.; Srinivasan, V. The Nilgiris Landslide—Miscellaneous Publication No. 57; Geological Survey of India: Kolkata, India, 1982. [Google Scholar]
- Chandrasekaran, S.S.; Sayed Owaise, R.; Ashwin, S.; Jain Rayansh, M.; Prasanth, S.; Venugopalan, R.B. Investigation on in-frastructural damages by rainfall-induced landslides during November 2009 in Nilgiris India. Nat. Hazards 2013, 65, 1535–1557. [Google Scholar] [CrossRef]
- Ganapathy, G.P.; Rajawat, A.S. Use of hazard and vulnerability maps for landslide planning scenarios: A case study of the Nilgiris, India. Nat. Hazards 2015, 77, 305–316. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Rahmati, O. Prediction of the landslide susceptibility: Which algorithm, which precision? Catena 2018, 162, 177–192. [Google Scholar] [CrossRef]
- Sujatha, E.R.; Rajamanickam, V. Landslide susceptibility mapping of Tevankarai Ar sub-watershed, Kodaikkanal taluk, India, using weighted similar choice fuzzy model. Nat. Hazards 2011, 59, 401–425. [Google Scholar] [CrossRef]
- Basu, T.; Pal, S. Identification of landslide susceptibility zones in Gish River basin, West Bengal, India. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2017, 12, 14–28. [Google Scholar] [CrossRef]
- Youssef, A.M. Landslide susceptibility delineation in the Ar-Rayth area, Jizan, Kingdom of Saudi Arabia, using analytical hierarchy process, frequency ratio, and logistic regression models. Environ. Earth Sci. 2015, 73, 8499–8518. [Google Scholar] [CrossRef]
- Van Den Eeckhaut, M.; Vanwalleghem, T.; Poesen, J.; Govers, G.; Verstraeten, G.; Vandekerckhove, L. Prediction of landslide susceptibility using rare events logistic regression: A case study in the Flemish Ardennes (Belgium). Geomorphology 2006, 76, 392–410. [Google Scholar] [CrossRef]
- Bai, S.-B.; Wang, J.; Lü, G.-N.; Zhou, P.-G.; Hou, S.-S.; Xu, S.-N. GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China. Geomorphology 2010, 115, 23–31. [Google Scholar] [CrossRef]
- Domínguez-Cuesta, M.J.; Jiménez-Sánchez, M.; Berrezueta, E. Landslides in the Central Coalfield (Cantabrian Mountains, NW Spain): Geomorphological features, conditioning factors and methodological implications in susceptibility assessment. Geomorphology 2007, 89, 358–369. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemeshow, S. Applied Regression Analysis; John Wiley and Sons: New York, NY, USA, 1989; ISBN 978-0-470-58247-3. [Google Scholar]
- Allison, P.D. Logistic Regression Using the SAS System: Theory and Application; Wiley Interscience: New York, NY, USA, 2001; p. 288. [Google Scholar]
- Cornell, R.G.; Clark, W.A.V.; Hosking, P.L.; Ebdon, D.; Shaw, G.; Wheeler, D.; Wilson, A.G.; Bennett, R.J. Statistical Methods for Geographers. J. Am. Stat. Assoc. 1988, 83, 575. [Google Scholar] [CrossRef]
- Xiao, T.; Segoni, S.; Chen, L.; Yin, K.; Casagli, N. A step beyond landslide susceptibility maps: A simple method to investigate and explain the different outcomes obtained by different approaches. Landslides 2020, 17, 627–640. [Google Scholar] [CrossRef] [Green Version]
- Bisht, D.S.; Chatterjee, C.; Raghuwanshi, N.S.; Sridhar, V. Spatio-temporal trends of rainfall across Indian river basins. Theor. Appl. Clim. 2018, 132, 419–436. [Google Scholar] [CrossRef]
- Yalcin, A. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ar-desen (Turkey): Comparisons of results and confirmations. Catena 2008, 72, 1–12. [Google Scholar] [CrossRef]
- Parker, R.N.; Hales, T.C.; Mudd, S.M.; Grieve, S.W.D.; Constantine, J.A. Colluvium supply in humid regions limits the frequency of storm-triggered landslides. Sci. Rep. 2016, 6, 34438. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Han, H.; Huang, B.; Huang, Q.; Fu, X. A data-driven approach for landslide susceptibility mapping: A case study of Shennongjia Forestry District, China. Geomat. Nat. Hazards Risk 2018, 9, 720–736. [Google Scholar] [CrossRef]
- He, Q.; Shahabi, H.; Shirzadi, A.; Li, S.; Chen, W.; Wang, N.; Chai, H.; Bian, H.; Ma, J.; Chen, Y.; et al. Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF Network machine learning algorithms. Sci. Total Environ. 2019, 663, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, R.; Zinko, U.; Seibert, J. On the calculation of the topographic wetness index: Evaluation of different methods based on field observations. Hydrol. Earth Syst. Sci. 2006, 10, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Sehgal, V.; Sridhar, V.; Tyagi, A. Stratified drought analysis using a stochastic ensemble of simulated and In-Situ soil moisture observations. J. Hydrol. 2017, 545, 226–250. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.; Sridhar, V. Assessment of Future Drought Conditions in the Chesapeake Bay Watershed. JAWRA J. Am. Water Resour. Assoc. 2018, 54, 160–183. [Google Scholar] [CrossRef]
- Raduła, M.W.; Szymura, T.H.; Szymura, M. Topographic wetness index explains soil moisture better than bioindication with Ellenberg’s indicator values. Ecol. Indic. 2018, 85, 172–179. [Google Scholar] [CrossRef]
- Moeslund, J.E.; Arge, L.; Bøcher, P.K.; Dalgaard, T.; Ejrnaes, R.; Odgaard, M.V.; Svenning, J.-C. Topographically controlled soil moisture drives plant diversity patterns within grasslands. Biodivers. Conserv. 2013, 22, 2151–2166. [Google Scholar] [CrossRef]
- Sridhar, V.; Wedin, D.A. Hydrological behaviour of grasslands of the Sandhills of Nebraska: Water and energy-balance assessment from measurements, treatments, and modelling. Ecohydrology 2009, 2, 195–212. [Google Scholar] [CrossRef]
- Sridhar, V. Tracking the Influence of Irrigation on Land Surface Fluxes and Boundary Layer Climatology. J. Contemp. Water Res. Educ. 2013, 152, 79–93. [Google Scholar] [CrossRef]
Factor | Reference |
---|---|
Aspect | Sujatha and Rajamanickam (2011) [40]; Akgun (2012) [32]; Eker and Aydin (2014) [19]; Talaei (2014) [34]; Lee et al. (2017) [13]; Pourghasemi and Rahmati (2018) [39] |
Slope | Sujatha and Rajamanickam (2011) [40]; Akgun (2012) [32]; Eker and Aydin (2014) [19]; Talaei (2014) [34]; Lee et al. (2017) [13]; Basu and Pal (2018) [41]; Youssef (2015) [42]; Pourghasemi and Rahmati 2018 [39] |
Relief | Sujatha and Rajamanickam (2011) [40]; Eker and Aydin (2014) [19]; Talaei (2014) [34]; Youssef (2015) [42]; Pourghasemi and Rahmati 2018 [39] |
Relative Relief | Qui et al., 2018 |
Curvature | Sujatha and Rajamanickam (2011) [40]; Eker and Aydin (2014) [19]; Talaei (2014) [34]; Youssef (2015) [42]; Lee et al. (2017) [13]; Pourghasemi and Rahmati 2018 [39] |
Soil | Sujatha and Rajamanickam (2011) [40]; Lee et al. (2017) [13] |
Geology | Eker and Aydin (2014) [19]; Talaei (2014) [34]; Youssef (2015) [42]; Lee et al. (2017) [13]; Pourghasemi and Rahmati 2018 [39] |
Distance from Fault/Lineament | Sujatha and Rajamanickam (2011) [40]; Akgun (2012) [32]; Talaei (2014) [34]; Youssef (2015) [42]; Lee et al. (2017) [13] |
Distance from Streams | Akgun (2012) [32]; Talaei (2014) [34]; Youssef (2015) [42]; Pourghasemi and Rahmati 2018 [39] |
Drainage Density | Pourghasemi and Rahmati 2018 [39] |
Topographic Wetness Index (TWI) | Sujatha and Rajamanickam (2011) [40]; Lee et al. (2017) [13] |
Stream Power Index (SPI) | Lee et al. (2017) [13] |
Land use | Sujatha and Rajamanickam (2011) [40]; Eker and Aydin (2014) [19]; Talaei (2014) [34]; Lee et al. (2017) [13]; Pourghasemi and Rahmati 2018 [39]; Haque et al. (2019) [15] |
NDVI | Youssef (2015) [42] |
Distance from Roads | Sujatha and Rajamanickam (2011) [40]; Akgun (2012) [32]; Talaei (2014) [34]; Youssef (2015) [42]; Pourghasemi and Rahmati 2018 [39] |
Peak Ground Acceleration | Talaei (2014) [34] |
Rainfall | Talaei (2014) [34]; Yousef (2015); Haque et al. (2019) [15] |
Predictor Variable | Aspect | Slope | Relative Relief | TWI | Soil Type | Land Use | Average Annual Rainfall |
---|---|---|---|---|---|---|---|
Tolerance | 0.852 | 0.899 | 0.951 | 0.569 | 0.815 | 0.624 | 0.617 |
VIF | 1.173 | 1.112 | 1.052 | 1.758 | 1.228 | 1.603 | 1.409 |
Variables | βi | SE | Wald | df | Sig. | Exp(βi) |
---|---|---|---|---|---|---|
Aspect | −2.542 | 0.762 | 11.119 | 1 | 0.001 | 0.079 |
Slope | 1.204 | 0.954 | 1.593 | 1 | 0.207 | 3.334 |
Relative Relief | −6.288 | 1.298 | 23.453 | 1 | 0.000 | 0.002 |
TWI | −3.044 | 1.198 | 6.458 | 1 | 0.011 | 0.048 |
Soil | 0.995 | 0.153 | 42.556 | 1 | 0.000 | 2.705 |
Land use | 1.885 | 0.534 | 12.078 | 1 | 0.001 | 6.391 |
Average Annual Rainfall | 2.081 | 0.170 | 150.038 | 1 | 0.000 | 8.014 |
Constant | 2.765 | 2.317 | 1.425 | 1 | 0.233 | 15.886 |
Observed | Predicted | Percentage Correct | ||
---|---|---|---|---|
Landslides | ||||
Non-Occurrence | Occurrence | |||
Landslides | Non-Occurrence | 605 | 30 | 95.3 |
Occurrence | 26 | 239 | 90.2 | |
Overall Percentage | 93.4 |
Susceptibility Class | Area Pixels | Landslide Pixels | Area Ratio | Landslide Ratio | Landslide Density Function |
---|---|---|---|---|---|
Very Low | 45,240 | 0 | 0.000 | 0.177 | 0.00 |
Low | 61,739 | 14 | 0.040 | 0.241 | 0.17 |
Moderate | 56,364 | 48 | 0.138 | 0.220 | 0.63 |
High | 47,406 | 117 | 0.336 | 0.185 | 1.81 |
Very High | 44,951 | 169 | 0.486 | 0.176 | 2.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sujatha, E.R.; Sridhar, V. Landslide Susceptibility Analysis: A Logistic Regression Model Case Study in Coonoor, India. Hydrology 2021, 8, 41. https://doi.org/10.3390/hydrology8010041
Sujatha ER, Sridhar V. Landslide Susceptibility Analysis: A Logistic Regression Model Case Study in Coonoor, India. Hydrology. 2021; 8(1):41. https://doi.org/10.3390/hydrology8010041
Chicago/Turabian StyleSujatha, Evangelin Ramani, and Venkataramana Sridhar. 2021. "Landslide Susceptibility Analysis: A Logistic Regression Model Case Study in Coonoor, India" Hydrology 8, no. 1: 41. https://doi.org/10.3390/hydrology8010041
APA StyleSujatha, E. R., & Sridhar, V. (2021). Landslide Susceptibility Analysis: A Logistic Regression Model Case Study in Coonoor, India. Hydrology, 8(1), 41. https://doi.org/10.3390/hydrology8010041