Using Environmental Tracers to Characterize Groundwater Flow Mechanisms in the Fractured Crystalline and Karst Aquifers in Upper Crocodile River Basin, Johannesburg, South Africa
Abstract
:1. Introduction
2. Description of the Study Area
3. Materials and Methods
4. Results and Discussions
4.1. Recharge Assessment and Subsurface Flow Mechanisms in the Basement Complex and the Witwatersrand Supergroup Quartzites
4.1.1. Recharge Assessment
4.1.2. Assessing the Traces of Rainfall Amount Effect in Spring Discharge
4.1.3. Assessing the Air Temperature Conditions at the Time of Recharge
- (1)
- The Dansgaard [42] equation is only applicable in the northern-hemisphere stations (where temperatures are cooler) where the equation was established and may not be applicable in the Johannesburg climate setting.
- (2)
- If the Dansgaard [42] is applicable in the Johannesburg climate setting, then the variation could indicate that at the time of recharge, the climate was characterized by annual temperatures that are colder than the present.
4.1.4. Interflow Assessment in the Stream Underlain by the Basement Complex
4.2. Hydrogeological Characterization of the Karst Aquifers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scanlon, B.R.; Keese, K.E.; Flint, A.L.; Flint, L.E.; Gaye, C.B.; Edmunds, W.M.; Simmers, I. Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol. Process. 2006, 20, 3335–3370. [Google Scholar] [CrossRef]
- Abiye, T.A. Synthesis on groundwater recharge in Southern Africa: A supporting tool for groundwater users. Groundw. Sustain. Dev. 2016, 2–3, 182–189. [Google Scholar] [CrossRef]
- Julander, R.P.; Clayton, J.A. Determining the proportion of streamflow that is generated by cold season processes versus summer rainfall in Utah, USA. J. Hydrol. Reg. Stud. 2018, 17, 36–46. [Google Scholar] [CrossRef]
- Jenicek, M.; Ledvinka, O. Importance of snowmelt contribution to seasonal runoff and summer low flows in Czechia. Hydrol. Earth Syst. Sci. 2020, 24, 3475–3491. [Google Scholar] [CrossRef]
- Miller, M.P.; Buto, S.G.; Susong, D.D.; Rumsey, C. The importance of base flow in sustaining surface water flow in the Upper Colorado River Basin. Water Resour. Res. 2016, 52, 3547–3562. [Google Scholar] [CrossRef]
- Shaw, E.M. Hydrology in Practice; Routledge: Oxford, UK, 2005; p. 569. [Google Scholar]
- Lerner, D.N.; Issar, A.S.; Simmers, I. Groundwater Recharge: A Guide to Understanding and Estimating Natural Recharge; Heise: Hannover, Germany, 1990. [Google Scholar]
- Gee, G.W.; Hillel, D. Groundwater recharge in arid regions: Review and critique of estimation methods. Hydrol. Process. 1988, 2, 255–266. [Google Scholar] [CrossRef]
- Xu, Y.; Beekman, H. Groundwater Recharge Estimation in Southern Africa; UNESCO: Paris, France, 2003; p. 207. [Google Scholar]
- Healy, R.W. Estimating Groundwater Recharge; Cambridge University Press: Cambridge, UK, 2010; p. 245. [Google Scholar]
- Horton, E.R. The Rôle of infiltration in the hydrologic cycle. Eos Trans. Am. Geophys. Union 1933, 14, 446–460. [Google Scholar] [CrossRef]
- Freeze, R.A.; Cherry, A.J. Groundwater; Prentice-Hall: Englewood Cliffs, NJ, USA; London, UK, 1979. [Google Scholar]
- Shongwe, M.E.; van Oldenborgh, G.J.; van den Hurk, B.J.J.M.; de Boer, B.; Coelho, C.A.S.; van Aalst, M.K. Projected Changes in Mean and Extreme Precipitation in Africa under Global Warming. Part I: Southern Africa. J. Clim. 2009, 22, 3819–3837. [Google Scholar] [CrossRef]
- New, M.; Hewitson, B.; Stephenson, D.B.; Tsiga, A.; Kruger, A.; Manhique, A.; Gomez, B.; Coelho, C.A.S.; Masisi, D.N.; Kululanga, E.; et al. Evidence of trends in daily climate extremes over southern and west Africa. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Owor, M.; Taylor, R.G.; Tindimugaya, C.; Mwesigwa, D. Rainfall intensity and groundwater recharge: Empirical evidence from the Upper Nile Basin. Environ. Res. Lett. 2009, 4, 035009. [Google Scholar] [CrossRef]
- Kotchoni, D.O.V.; Vouillamoz, J.-M.; Lawson, F.M.A.; Adjomayi, P.; Boukari, M.; Taylor, R.G. Relationships between rainfall and groundwater recharge in seasonally humid Benin: A comparative analysis of long-term hydrographs in sedimentary and crystalline aquifers. Hydrogeol. J. 2019, 27, 447–457. [Google Scholar] [CrossRef] [Green Version]
- Taylor, R.G.; Todd, M.C.; Kongola, L.; Maurice, L.; Nahozya, E.; Sanga, H.; MacDonald, A.M. Evidence of the dependence of groundwater resources on extreme rainfall in East Africa. Nat. Clim. Chang. 2013, 3, 374. [Google Scholar] [CrossRef] [Green Version]
- Clark, I.D.; Fritz, P. Environmental Isotopes in Hydrogeology; Lewis Publishers: Boca Raton, FL, USA, 1997; p. 352. [Google Scholar]
- IAEA. Environmental Isotopes in the Hydrological Cycle; International Atomica Energy Agency: Paris, France; Vienna, Austria, 2000; p. 185. [Google Scholar]
- Guan, H.; Zhang, X.; Skrzypek, G.; Sun, Z.; Xu, X. Deuterium excess variations of rainfall events in a coastal area of South Australia and its relationship with synoptic weather systems and atmospheric moisture sources. J. Geophys. Res. Atmos. 2013, 118, 1123–1138. [Google Scholar] [CrossRef]
- Department of Water Affairs and Forestry. Crocodile River (West) and Marico Water Management Area: Internal Strategic Perspective of the Crocodile River (West) Catchment; Department of Water Affairs and Forestry: Pretoria, South Africa, 2004.
- Tyson, P.D.; Tyson, P.D.; Preston-Whyte, R.A. The Weather and Climate of Southern Africa; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- White, W.B.; Peterson, R.G. An Antarctic circumpolar wave in surface pressure, wind, temperature and sea-ice extent. Nature 1996, 380, 699–702. [Google Scholar] [CrossRef]
- Renwick, J.A. Southern Hemisphere Circulation and Relations with Sea Ice and Sea Surface Temperature. J. Clim. 2002, 15, 3058. [Google Scholar] [CrossRef]
- van Wyk, E.; van Tonder, G.J.; Vermeulen, D. Characteristics of local groundwater recharge cycles in South African semi-arid hard rock terrains: Rainfall–groundwater interaction. Water SA 2012, 38, 747–754. [Google Scholar] [CrossRef] [Green Version]
- Barnard, H.C. An Explanation of the 1:500,000 General Hydrogeological Map; Department of Water Affairs and Forestry: Pretoria, South Africa, 2000; p. 84.
- Pretorius, D.A. The Nature of the Witwatersrand Gold-Uranium Deposits, ch 2; Elsevier: Amsterdam, The Netherlands, 1976. [Google Scholar]
- Judson, S.; Deffeyes, K.S.; Hargraves, R.B. Physical Geology; Prentice-Hall: Englewood Cliffs, NJ, USA; London, UK, 1976. [Google Scholar]
- Poujol, M.; Anhaeusser, C.R. The Johannesburg Dome, South Africa: New single zircon U–Pb isotopic evidence for early Archaean granite–greenstone development within the central Kaapvaal Craton. Precambrian Res. 2001, 108, 139–157. [Google Scholar] [CrossRef]
- Hobbs, P.J. Situation Assessment of the Surface Water and Groundwater Resource Environments in the Cradle for Human Kind World Heritage Site. Report Prepared for the Management Authority; Department of Economic Development: Johannesburg, South Africa, 2011.
- Subramanya, K. Engineering Hydrology, 3rd ed.; Tata McGraw-Hill: New Delhi, India, 2008. [Google Scholar]
- Leketa, K.; Abiye, T.; Butler, M. Characterisation of groundwater recharge conditions and flow mechanisms in bedrock aquifers of the Johannesburg area, South Africa. Environ. Earth Sci. 2018, 77, 727. [Google Scholar] [CrossRef]
- Leketa, K.; Abiye, T. Investigating stable isotope effects and moisture trajectories for rainfall events in Johannesburg, South Africa. Water SA 2020, 46, 429–437. [Google Scholar]
- Parkhurst, D.; Appelo, T. User’s Guide to PHREEQC Version 3—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations; United States Geological Survey: Reston, VA, USA, 1999; Volume 99. [Google Scholar]
- Appelo, C.A.; Postma, D. Geochemistry, Groundwater and Pollution, 2nd ed.; Balkema: Leiden, The Netherlands; New York, NY, USA, 2005. [Google Scholar]
- Eby, G.N. Principles of Environmental Geochemistry; Thomson-Brooks/Cole: Pacific Grove, CA, USA, 2004. [Google Scholar]
- Garrels, R.M.; Mackenzie, F.T. Origin of the Chemical Compositions of Some Springs and Lakes. In Equilibrium Concepts in Natural Water Systems; American Chemical Society: Washington, DC, USA, 1967; Volume 67, pp. 222–242. [Google Scholar]
- Aghazadeh, N.; Chitsazan, M.; Golestan, Y. Hydrochemistry and quality assessment of groundwater in the Ardabil area, Iran. Appl. Water Sci. 2017, 7, 3599–3616. [Google Scholar] [CrossRef] [Green Version]
- Craig, H. Isotopic Variations in Meteoric Waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef] [PubMed]
- Fritz, P.; Drimmie, R.J.; Frape, S.K.; O’shea, K. The Isotope Composition of Precipitation and Groundwater in Canada. In Proceedings of the Symposium, Vienna, Austria, 30 March–3 April 1987; IAEA and UNESCO: Vienna, Austria, 1987; pp. 539–549. [Google Scholar]
- IAEA. Isotopic Composition of Precipitation in the Mediterranean Basin in Relation to Air Circulation Patterns and Climate; International Atomic Energy Agency: Vienna, Austria, 2005. [Google Scholar]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Sami, K. Recharge mechanisms and geochemical processes in a semi-arid sedimentary basin, Eastern Cape, South Africa. J. Hydrol. 1992, 139, 27–48. [Google Scholar] [CrossRef]
- Hiscock, K.M. (Ed.) Hydrogeology: Principles and Practice; Blackwell: Malden, MA, USA; Oxford, UK, 2005. [Google Scholar]
- Krešić, N. Hydrogeology and Groundwater Modeling, 2nd ed.; CRC Press: London, UK; Taylor & Francis: Boca Raton, FL, USA, 2007. [Google Scholar]
ID | Latitude (DD) | Longitude (DD) | δ2H (‰) | 2H StDev | δ18O (‰) | 18O StDev | d-Excess (‰) |
---|---|---|---|---|---|---|---|
June 2016 | −26.1616 | 27.9703 | −19.3 | 0.2 | −5.27 | 0.1 | +16.0 |
July 2016 | −26.1616 | 27.9703 | −21.6 | 0.3 | −6.01 | 0.1 | +18.7 |
August 2016 | −26.1616 | 27.9703 | −19.1 | 0.1 | −4.30 | 0.1 | +9.7 |
September 2016 | −26.1616 | 27.9703 | −14.5 | 0.0 | −2.86 | 0.0 | +4.7 |
October 2016 | −26.1616 | 27.9703 | −13.7 | 1.3 | −3.79 | 0.1 | +11.7 |
November 2016 | −26.1616 | 27.9703 | −16.0 | 0.3 | −3.78 | 0.1 | +9.4 |
December 2016 | −26.1616 | 27.9703 | −14.3 | 0.0 | −3.57 | 0.1 | +9.6 |
January 2017 | −26.1616 | 27.9703 | −12.5 | 0.5 | −3.09 | 0.0 | +8.3 |
February 2017 | −26.1616 | 27.9703 | −15.0 | 0.8 | −3.43 | 0.0 | +8.0 |
March 2017 | −26.1616 | 27.9703 | −16.4 | 0.6 | −3.67 | 0.1 | +8.2 |
April 2017 | −26.1616 | 27.9703 | −15.2 | 0.7 | −4.13 | 0.2 | +12.4 |
May 2017 | −26.1616 | 27.9703 | −12.3 | 0.5 | −3.11 | 0.1 | +8.6 |
June 2017 | −26.1616 | 27.9703 | −14.9 | 0.4 | −3.46 | 0.0 | +8.3 |
July 2017 | −26.1616 | 27.9703 | −16.3 | 1.2 | −3.92 | 0.2 | +9.9 |
August 2017 | −26.1616 | 27.9703 | −15.2 | 0.3 | −3.05 | 0.1 | +5.2 |
September 2017 | −26.1616 | 27.9703 | −18.3 | 0.3 | −3.72 | 0.1 | +6.6 |
October 2017 | −26.1616 | 27.9703 | −20.3 | 0.3 | −4.12 | 0.1 | +7.3 |
November 2017 | −26.1616 | 27.9703 | −12.0 | 0.4 | −2.28 | 0.1 | +3.2 |
December 2017 | −26.1616 | 27.9703 | −11.7 | 1.5 | −2.81 | 0.1 | +7.1 |
January 2018 | −26.1616 | 27.9703 | −10.5 | 2.2 | −2.79 | 0.2 | +8.2 |
February 2018 | −26.1616 | 27.9703 | −14.2 | 0.5 | −2.86 | 0.1 | +5.0 |
March 2018 | −26.1616 | 27.9703 | −16.0 | 1.3 | −3.45 | 0.1 | +7.2 |
April 2018 | −26.1616 | 27.9703 | −12.9 | 0.8 | −3.10 | 0.1 | +7.9 |
May 2018 | −26.1616 | 27.9703 | −12.3 | 2.8 | −3.13 | 0.4 | +8.7 |
June 2018 | −26.1616 | 27.9703 | −12.9 | 1.1 | −2.85 | 0.1 | +6.3 |
Date | δ18O (‰) | δ2H (‰) | Spring Discharge: Q (L/s) |
---|---|---|---|
February 17 | −3.43 | −15.0 | 3.2 |
March 17 | −3.67 | −16.4 | 3.9 |
April 17 | −4.13 | −15.2 | 4.8 |
May 17 | −3.11 | −12.3 | 2.2 |
June 17 | −3.46 | −14.9 | 3.6 |
July 17 | −3.92 | −16.3 | 3.8 |
August 17 | −3.05 | −15.2 | 1.4 |
September 17 | −3.72 | −18.3 | 1.4 |
October 17 | −4.12 | −20.3 | 1.9 |
November 17 | −2.28 | −12.0 | 0.66 |
December 17 | −2.81 | −11.7 | 1.3 |
January 18 | −2.79 | −10.5 | 1.3 |
February 18 | −2.86 | −14.2 | 1.2 |
March 18 | −3.45 | −16.0 | 2.3 |
Sample Date | Estimated Annual Air Temp. (°C) on the Year of Recharge | Estimated Daily Air Temperature during Recharge (°C) |
---|---|---|
June 2016 | 12.0 | 16.0 |
July 2016 | 10.9 | 14.7 |
August 2016 | 13.4 | 17.8 |
September 2016 | 15.5 | 20.4 |
October 2016 | 14.1 | 18.7 |
November 2016 | 14.1 | 18.7 |
December 2016 | 14.4 | 19.1 |
January 2017 | 15.1 | 19.9 |
February 2017 | 14.6 | 19.3 |
March 2017 | 14.3 | 18.9 |
April 2017 | 13.6 | 18.1 |
May 2017 | 15.1 | 19.9 |
June 2017 | 14.6 | 19.3 |
July 2017 | 13.9 | 18.4 |
August 2017 | 15.2 | 20.0 |
September 2017 | 14.2 | 18.8 |
October 2017 | 13.6 | 18.1 |
November 2017 | 16.3 | 21.4 |
December 2017 | 15.5 | 20.5 |
January 2018 | 15.6 | 20.5 |
February 2018 | 15.5 | 20.4 |
March 2018 | 14.6 | 19.3 |
April 2018 | 15.1 | 19.9 |
May 2018 | 15.1 | 19.9 |
June 2018 | 15.5 | 20.4 |
Average | 14.5 | 19.1 |
MIN | 10.9 | 14.7 |
MAX | 16.3 | 21.4 |
Site ID | Date | Water Level (mbgl) | δ2H (‰) | ±2H StDev | δ18O (‰) | ±18O StDev |
---|---|---|---|---|---|---|
PZ1 | 6 June 2016 | 1.12 | −12.5 | 0.33 | −3.00 | 0.06 |
PZ2 | 6 June 2016 | 0.64 | −68.5 | 0.13 | −12.47 | 0.09 |
River head | 6 June 2016 | 0.72 | −66.3 | 0 | −12.27 | 0 |
PZ1 | 13 July 2016 | 1.12 | −17.8 | 0 | −5.36 | 0 |
PZ2 | 13 July 2016 | 0.52 | −16.3 | 0 | −5.04 | 0 |
River head | 13 July 2016 | 0.75 | −9.8 | 0 | −3.88 | 0 |
PZ1 | 12 August 2016 | 1.17 | −12.4 | 0.22 | −3.05 | 0.05 |
PZ2 | 12 August 2016 | 0.58 | −12.3 | 0.16 | −2.85 | 0.07 |
River head | 12 August 2016 | 0.72 | −4.9 | 0.24 | −1.59 | 0.06 |
PZ1 | 6 September 2016 | PZ dry no sample | PZ dry no sample | PZ dry no sample | PZ dry no sample | PZ dry no sample |
PZ2 | 6 September 2016 | 0.66 | −1.7 | 0.22 | −0.45 | 0.05 |
Stream head | 6 September 2016 | 0.92 | −9.5 | 0.65 | −1.83 | 0.02 |
PZ1 -26.149247 DD Lat, 27.997857 DD Long, 1593 masl Elev, 1.2mbgl PZ depth PZ2 -26.149333 DD Lat, 27.997868 DD Long, 1593 masl Elev, 2.15mbgl PZ depth |
Sample ID | Latitude | Longitude | Elev. | EC | Temp. | pH | TDS | ORP | Ca2+ | Mg2+ | Na+ | K+ | HCO3− | CO32− | Cl- | SO42− | Electrical Balance |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DD | DD | masl | μS/cm | °C | mg/L | mV | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | % | ||
SP1-Nash Farm spring | −25.90806 | 27.79755 | 1450 | 181.4 | 22.1 | 7.53 | 116.2 | −15.7 | 38 | 23 | 1.6 | 0.5 | 224 | 0 | 2.4 | 2.9 | 1.3 |
SP2 | −25.90455 | 27.79596 | 1440 | 188.9 | 21.3 | 8.11 | 120.7 | −64.5 | 32 | 24 | 1.5 | 0.2 | 207 | 1 | 2.4 | 2.4 | 1.7 |
SP3-Nouklip spring | −25.87515 | 27.78574 | 1323 | 220 | 21.6 | 7.65 | 140.2 | −22.2 | 41 | 26 | 1.5 | 0.4 | 243 | 0 | 1.4 | 2.1 | 2.7 |
SP4 | −25.87448 | 27.78378 | 1319 | 172.3 | 21.3 | 7.66 | 110 | −31 | 38 | 24 | 1.5 | 0.3 | 226 | 2 | 1 | 0.6 | 2.1 |
SP5 | −25.87471 | 27.7809 | 1320 | - | 21.5 | 7.77 | - | - | - | - | - | - | - | - | - | - | |
SP6 | −25.87472 | 27.78048 | 1300 | 172.6 | 21.5 | 8.53 | 110.6 | −73.2 | 34 | 24 | 1.3 | 0.3 | 221 | 4 | 1.4 | 1.9 | −0.9 |
SP7 | −25.87541 | 27.77959 | 1290 | 136.5 | 20.8 | 8.59 | 87.4 | −75.2 | 31 | 20 | 1.8 | 0.4 | 219 | 5 | 2 | 1 | −7.4 |
SP8 | −25.87569 | 27.77913 | 1313 | - | 21.10 | 8.52 | - | - | - | - | - | - | - | - | - | - | |
SP9 | −25.87598 | 27.77968 | 1316 | - | 19.20 | 8.38 | - | - | - | - | - | - | - | - | - | - |
Sample ID | Saturation Indices | |
---|---|---|
Calcite (CaCO3) | Dolomite (CaMg(CO3)2) | |
SP1 | 2.62 | 5.14 |
SP2 | 3.04 | 6.07 |
SP3 | 2.77 | 5.46 |
SP4 | 2.74 | 5.39 |
SP6 | 3.37 | 6.75 |
SP7 | 3.37 | 6.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leketa, K.; Abiye, T. Using Environmental Tracers to Characterize Groundwater Flow Mechanisms in the Fractured Crystalline and Karst Aquifers in Upper Crocodile River Basin, Johannesburg, South Africa. Hydrology 2021, 8, 50. https://doi.org/10.3390/hydrology8010050
Leketa K, Abiye T. Using Environmental Tracers to Characterize Groundwater Flow Mechanisms in the Fractured Crystalline and Karst Aquifers in Upper Crocodile River Basin, Johannesburg, South Africa. Hydrology. 2021; 8(1):50. https://doi.org/10.3390/hydrology8010050
Chicago/Turabian StyleLeketa, Khahliso, and Tamiru Abiye. 2021. "Using Environmental Tracers to Characterize Groundwater Flow Mechanisms in the Fractured Crystalline and Karst Aquifers in Upper Crocodile River Basin, Johannesburg, South Africa" Hydrology 8, no. 1: 50. https://doi.org/10.3390/hydrology8010050
APA StyleLeketa, K., & Abiye, T. (2021). Using Environmental Tracers to Characterize Groundwater Flow Mechanisms in the Fractured Crystalline and Karst Aquifers in Upper Crocodile River Basin, Johannesburg, South Africa. Hydrology, 8(1), 50. https://doi.org/10.3390/hydrology8010050