An Overview of Aquifer Physiognomies and the δ18O and δ2H Distribution in the South African Groundwaters
Abstract
:1. Introduction
1.1. Spatial Isotope Context
1.2. Climatic Setting
1.3. Geological Outline
2. Materials and Methods
3. Results and Discussion
3.1. Characteristics of Major Aquifers
3.2. Hydrogeological Characteristics of the Main Aquifers
3.3. Stable Isotope Distribution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clark, I.D.; Fritz, P. Environmental Isotopes in Hydrogeology; Lewis Publishers: New York, NY, USA, 1997; 328p. [Google Scholar]
- Abiye, T.A. (Ed.) The Use of Isotope Hydrology to Characterize and Assess Water Resources in South(ern) Africa; WRC: Pretoria, South Africa, 2013; 211p. [Google Scholar]
- Xu, Y.; Beekman, H.E. Groundwater Recharge Estimation in Southern Africa; UNESCO Paris: Paris, France, 2003; 206p. [Google Scholar]
- Abiye, T.A. Synthesis on groundwater recharge in Southern Africa: A supporting tool for groundwater users. J. Groundwater Sustain. Dev. 2016, 2, 182–189. [Google Scholar] [CrossRef]
- Van Wyk, E. Correlations between rainwater and groundwater geochemistry signatures with reference to episodic rainfall events in semi-arid environments, South Africa. In The Use of ISOTOPE Hydrology to Characterize and Assess Water Resources in South(ern) Africa; Abiye, Ed.; WRC: Pretoria, South Africa, 2013; pp. 102–110. 210p. [Google Scholar]
- Bowen, G.J.; West, J.B. Isotope Landscapes for TerrestrialMigration Research Tracking Animal Migration with Stable Isotopes; Academic Press: New York, NY, USA, 2008; pp. 79–106. [Google Scholar]
- Wassenaar, L.I.; Van Wilgenburg, S.L.; Larson, K.; Hobson, K.A. A groundwater isoscape (δD, δ18O) for Mexico. J. Geochem. Explor. 2009, 102, 123–136. [Google Scholar] [CrossRef]
- Terzer, S.; Wassenaar, L.I.; Araguás-Araguás, L.J.; Aggarwal, P.K. Global isoscapes for 18O and 2H in precipitation: Improved prediction using regionalized climatic regression models. Hydrol. Earth Syst. Sci. 2013, 17, 1–16. [Google Scholar] [CrossRef]
- Craig, H. Isotopic Variations in Meteoric Waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef] [PubMed]
- West, A.; February, E.; Bowen, G. Creating a Map of Stable Isotopes in Tap Water Across South Africa for Hydrological, Ecological and Forensic Applications; WRC: Pretoria, South Africa, 2011. [Google Scholar]
- West, A.G.; February, E.C.; Bowen, G.J. Spatial analysis of hydrogen and oxygen stable isotopes (“isoscapes”) in groundwater and tap water across South Africa. J. Geochem. Explor. 2014, 145, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Schulze, R.E.; Maharaj, M.; Lynch, S.D.; Howe, B.J.; Melvil-Thomson, M. South Africa Atlas of Agrohydrology and Climatology; WRC: Pretoria, South Africa, 1997. [Google Scholar]
- Van Wyk, E. Estimation of Episodic Groundwater Recharge in Semi-Arid Fractured Rock Aquifers. Ph.D. Thesis, University of the Free State, Bloemfontein, South Africa, 2010; 272p. [Google Scholar]
- Tessema, A.; Mengistu, H.; Chirenje, A.; Abiye, T.A.; Demlie, M.B. The relationship between Lineaments density and Borehole yield in the Northwest Province, South Africa: Results from Geophysical Studies. Hydrogeol. J. 2012, 20, 351–368. [Google Scholar] [CrossRef]
- Harris, C.; Diamond, R. Oxygen and hydrogen isotopes record of cape town rainfall and its application to recharge studies of Table Mountain groundwater. In The Use of Isotope Hydrology to Characterize and Assess Water Resources in South(ern) Africa; Abiye, Ed.; WRC: Pretoria, South Africa, 2013; pp. 38–52. 210p. [Google Scholar]
- Rosewarne, P.N. Hydrogeological characteristics of the Table Mountain Group Aquifers. In A Synthesis of the Hydrogeology of the Table Mountain Group—Formation of a Research Strategy; Pietersen, K., Parsons, R., Eds.; WRC: Pretoria, South Africa, 2002; pp. 33–44. [Google Scholar]
- Abiye, T.; Mengistu, H.; Masindi, K.; Demlie, M. Surface Water And Groundwater Interaction in The Upper Crocodile River Basin, Johannesburg, South Africa: Environmental Isotope Approach. South Afr. J. Geol. 2015, 118, 109–118. [Google Scholar] [CrossRef]
- Brandl, G.; Cloete, M.; Anhaeusser, C.R. Archaean Greenstone Belts. In The Geology of South Africa; Johnson, M.R., Anhaeusser, C.R., Thomas, R.J., Eds.; The Geological Society of South Africa, Council for Geosciences: Pretoria, South Africa, 2006; pp. 9–56. 691p. [Google Scholar]
- Mccarthy, T.; Rubidge, B. The Story of Earth and Life; Struik: Cape Town, South Africa, 2005; 336p. [Google Scholar]
- Robb, L.J.; Brandl, G.; Anhaeusser, C.R.; Poujol, M. Archaean granitoid intrusions. In The Geology of South Africa; Johnson, M.R., Anhaeusser, C.R., Thomas, R.J., Eds.; The Geological Society of South Africa, Council for Geosciences: Pretoria, South Africa, 2006; pp. 57–94. 691p. [Google Scholar]
- Johnson, M.R.; Anhaeusser, C.R.; Thomas, R.J. (Eds.) The Geology of South Africa; The Geological Society of South Africa, Council for Geosciences: Pretoria, South Africa, 2006; 691p. [Google Scholar]
- Barnard, H.C. An Explanation for the 1:500,000 Hydrogeological Map of Johannesburg 2526; Department of Water Affairs and Forestry: Pretoria, South Africa, 2000; 84p.
- Vegter, J.R. Hydrogeology of Groundwater, Limpopo Granulite-Gneiss Belt; WRC: Pretora, South Africa, 2001; 81p. [Google Scholar]
- Vegter, J.R. Hydrogeology of Groundwater Region 1: Makoppa Dome; WRC: Pretoria, South Africa, 2001; 42p. [Google Scholar]
- Vegter, J.R. Hydrogeology of the Groundwater Region 7. Polokwane/Pietersburg Plateau; WRC: Pretora, South Africa, 2003; 41p. [Google Scholar]
- Holland, M. Hydrogeological Characterisation of Crystalline Basement Aquifers within the Limpopo Province, South Africa. Ph.D. Thesis, The University of Pretoria, Pretoria, South Africa, 2011. [Google Scholar]
- Abiye, T.A.; Mengistu, H.; Demlie, M.B. Groundwater resource in the crystalline rocks of the Johannesburg area, South Africa. J. Water Resour. Protect. 2011, 3, 199–212. [Google Scholar] [CrossRef] [Green Version]
- Mohuba, S.C.; Abiye, T.A.; Demlie, M.B.; Modiba, M.J. Hydrogeological Characterization of the Thyspunt Area, Eastern Cape Province, South Africa. Hydrology 2020, 7, 49. [Google Scholar] [CrossRef]
- Woodford, A.C. Interpretation and applicability of pumping-tests in Table Mountain Group Aquifers. P7184. In A Synthesis of the Hydrogeology of the Table Mountain Group-Formation of a Research Strategy; Pietersen, K., Parsons, R., Eds.; WRC: Pretoria, South Africa, 2002; 258p. [Google Scholar]
- Meyer, R.; Talma, A.S.; Duvenhage, A.W.A.; Eglington, B.M.; Taljaard, J.; Botha, J.F.; Verwey, J.; van der Voort, I. Geohydrological Investigation and Evaluation of the Zululand Coastal Aquifer; WRC: Pretoria, South Africa, 2002. [Google Scholar]
- Nel, J.; Nel, M.; Dustay, S.; Siwawa, S.; Mbali, S. Towards a Guideline for the Delineation of Groundwater Protection Zones in Complex Aquifer Settings; WRC: Pretoria, South Africa, 2014. [Google Scholar]
- Botha, J.F.; Verwey, J.P.; van der Voort, I.; Vivier, J.J.P.; Buys, J.; Colliston, W.P.; Look, J.C. Karoo Aquifer: Their Geology, Geometry and Physical Properties; WRC: Pretoria, South Africa, 1998; 192p. [Google Scholar]
- Holland, M.; Witthüser, K. Evaluation of geologic and geomorphologic influences on borehole productivity in crystalline bedrock aquifers of Limpopo Province, South Africa. Hydrogeol. J. 2011, 19, 1065–1083. [Google Scholar] [CrossRef]
- Titus, R.; Beekman, H.; Adams, S.; Strachan, L. (Eds.) The Basement Aquifers of Southern Africa; WRC: Pretora, South Africa, 2009. [Google Scholar]
- Kafri, U.; Foster, M. Hydrogeology of the Malmani dolomite in the Klip River and Natalspruit basins, South Africa. Environ. Geol. Water Sci. 1989, 13, 153–166. [Google Scholar] [CrossRef]
- Schrader, A.; Erasmus, E.; Winde, F. Determining hydraulic parameters of a karst aquifer using unique historical data from large scale dewatering by deep level mining—A case study from South Africa. Water S. Afr. 2014, 40, 555–570. [Google Scholar] [CrossRef] [Green Version]
- Walker, D.; Jovanovic, N.; Bugan, R.; Abiye, T.A.; du Preez, D.; Parkin, G.; Gowing, J. Alluvial aquifer characterisation and resource assessment of the Molototsi sand river, Limpopo, South Africa. J. Hydrol. Reg. Stud. 2018, 19, 177–192. [Google Scholar] [CrossRef]
- Peck, H. The Preliminary Study of the Stampriet Transboundary Aquifer in the South East Kalahari/Karoo Basin. Master’s Thesis, University of the Western Cape, Cape Town, South Africa, 2009; 93p. [Google Scholar]
- A Synthesis of the Hydrogeology of the Table Mountain Group-Formation of a Research Strategy; Pietersen, K.; Parsons, R. (Eds.) WRC: Pretoria, South Africa, 2002; 258p. [Google Scholar]
- Woodford, A.C.; Chevallier, L. (Eds.) Hydrogeology of the Main Karoo Basin: Current Knowledge and Future Research Needs; WRC: Pretora, South Africa, 2002; 506p. [Google Scholar]
- Murray, R.; Swana, K.; Miller, J.; Talma, A.S.; Tredoux, G.; Vengosh, A.; Darrah, T. The Use of Chemistry, Isotopes and Gases as Indicators of Deeper Circulating Groundwater in the Main Karoo Basin; WRC: Pretoria, South Africa, 2015; 243p. [Google Scholar]
- The Karoo Groundwater Atlas; SRK Consulting (Pty)Ltd.: Cape Town, South Africa, 2012; 18p.
- Xu, Y.; Wu, Y.; Duah, A. Groundwater Recharge Estimation of Table Mountain Group Aquifer Systems with Case Studies; WRC: Pretoria, South Africa, 2007; 196p. [Google Scholar]
- Hartnady, C.H.H.; Hay, E.R. Fracture system and Attribute studies in Table Mountain Group Groundwater Target generation. In A Synthesis of the Hydrogeology of the Table Mountain Group-Formation of a Research Strategy; Pietersen, K., Pasons, R., Eds.; WRC: Pretoria, South Africa, 2002; pp. 89–96. [Google Scholar]
- Demlie, M.; Titus, R. Hydrogeological and hydrogeochemical characteristics of the Natal Group sandstone, South Africa. S. Afr. J. Geol. 2015, 118, 33–44. [Google Scholar] [CrossRef]
- Eriksson, K.A. and Truswell, J.F. Stratotypes from the Malmani Subgroup north-west of Johannesburg, South Africa. Trans. Geol. Soc. S. Afr. 1974, 77, 211–222. [Google Scholar]
- Meyer, R. Hydrogeology of Groundwater, The Karst Belt; WRC: Pretoria, South Africa, 2014; 285p. [Google Scholar]
- Bredenkamp, D.B.; Vogel, J.C.; Wiegmans, F.E.; Xu, Y.; Janse van Rensburg, H. Use of Natural Isotopes and Groundwater Quality for Improved Estimation of Recharge and Flow in Dolomitic Aquifers; KV 177/07; Water Research Commission: Pretoria, South Africa, 2007. [Google Scholar]
- Winde, F. Challenges for sustainable water use in dolomitic mining regions of South Africa – a case study of uranium pollution, Part I: Sources and pathways. Phys. Geogr. 2006, 27, 335–346. [Google Scholar] [CrossRef] [Green Version]
- Bredenkamp, D.B. The use of natural isotopes and groundwater quality for improved recharge and flow estimates in dolomitic aquifers. Water Sa 2007, 33, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Abiye, T.A. Provenance of groundwater in the crystalline aquifer of Johannesburg area, South Africa. Int. J. Phys. Sci. 2011, 6, 98–111. [Google Scholar]
- Abiye, T.A.; Tshipala, D.; Leketa, K.; Villholth, K.G.; Ebrahim, K.G.; Magombeyi, M. Hydrogeological characterization of the crystalline aquifer in the Hout River Catchment, Limpopo province, South Africa. J. Groundw. Sustain. Dev. 2020, 11, 100406. [Google Scholar] [CrossRef]
- Jonker, B.; Abiye, T.A. Groundwater potential in the Kalahari region of South Africa. S. Afr. J. Geol. 2017, 120, 385–402. [Google Scholar] [CrossRef]
- Leketa, K.; Abiye, T.A. Investigating stable isotope effects and moisture trajectories for rainfall events in Johannesburg, South Africa. Water Sa 2020, 46, 429–437. [Google Scholar] [CrossRef]
- Leketa, K.; Abiye, T.A.; Butler, M. Characterisation of groundwater recharge conditions and flow mechanisms in bedrock aquifers of the Johannesburg area, South Africa. Environ. Earth Sci. 2018, 77, 726–737. [Google Scholar] [CrossRef]
- Harris, C.; Burgers, C.; Miller, J.; Rawoot, F. O and H isotope record of Cape Town rainfall from 1996, to 2008, and its application to recharge studies of Table Mountain groundwater, South African. S. Afr. J. Geol. 2010, 113, 33–56. [Google Scholar] [CrossRef]
- Leketa, K.; Abiye, T.A. Modelling the impacts of climatic variables on the hydrology of the Upper Crocodile River Basin, Johannesburg, South Africa. Environ. Earth Sci. 2019, 78, 358. [Google Scholar] [CrossRef]
- Butler, M.; Verhagen, B.T. Towards a management model for the exploitation of groundwater from the Taaibosch Karoo Graben, Limpopo province. In The Use of Isotope Hydrology to Characterize and Assess Water Resources in South(ern) Africa; Abiye, Ed.; WRC: Pretoria, South Africa, 2013; pp. 53–82. 210p. [Google Scholar]
- Talma, A.S.; van Wyk, E. Rainfall and Groundwater Isotope Atlas. In The Use of Isotope Hydrology to Characterize and Assess water Resources in South(ern) Africa; Abiye, Ed.; WRC: Pretoria, South Africa, 2013; pp. 83–101. 210p. [Google Scholar]
- Miller, J.; Swana, K.; Talma, S.; Vengosh, A.; Tredoux, G.; Murray, R.; Butler, M. O, H, CDIC, Sr, B and 14C isotope fingerprinting of deep groundwaters in the Karoo Basin, South Africa as a precursor to shale gas exploration. Procedia Earth Planet. Sci. 2015, 13, 211–214. [Google Scholar] [CrossRef] [Green Version]
- De Varies, J.J. Holocene depletion and active recharge of the Kalahari groundwaters- A review and an indicative model. J. Hydrol. 1984, 1–4, 221–232. [Google Scholar] [CrossRef]
- Talma, A.S.; Verhagen, B.T.; Tredoux, G. Kalahari groundwater isotope synthesis. In The Use of Isotope Hydrology to Characterize and Assess Water Resources in South(ern) Africa; Abiye, Ed.; WRC: Pretoria, South Africa, 2013; pp. 111–122. 210p. [Google Scholar]
Aquifers | K (m/Day) | Tmean (m2/Day) | Source |
---|---|---|---|
TMG (Eastern Cape) | 0.0089–1.5829 0.07–2.67 | 22.0 165–2485 | [28] [16] |
TMG (Western Cape) | 0.002–1.99 | 10–200 | |
TMG (Little Karoo) | - | 7–434 | [29] |
Coastal Sediment | 0.0440–19.13 | 156 | [28,30] |
Unconsolidated sediments | - | 4–70 | [31] |
Karoo sedimentary rocks | - | 17–19 | [32] |
Basement (Limpopo) | - | 19.6–93.3 | [33] |
Bushveld Igneous Complex | 2–5.7 | 3–8 285–500 | [34] |
Malmani Dolomite | - 6–13 0.25–0.86 | 800–8000 4–700 1000–25,000 | [35] [31] [35] |
Alluvials (Limpopo) | 170–290 | - | [36] |
Aquifer Lithology | Type of Aquifer | Water Level (m) |
---|---|---|
Alluvium | Unconfined | 5−15 |
Semi-consolidated Cenozoic sediments | Unconfined | 10−25 |
Kalahari sediments | Unconfined Unconfined | 10−150 |
Karoo Supergroup Sedimentary rocks, dykes and sills | Unconfined Confined | 10−420 |
Cape Supergroup: TMG | Unconfined Confined | 50−450 |
Witwatersrand Supergroup quartzites | Unconfined | 50−150 |
Malmani Dolomites | Unconfined | 50−350 |
Bushveld Igneous Complex | Unconfined Confined | 50−250 |
Metamorphosed basement rocks | Unconfined | 10−85 |
Monitoring Scale/Site | Observation Period | Regression Equation (MWL) | Comments | Source | Source | |
---|---|---|---|---|---|---|
1 | GNIP (Global) | 1960–1961 | δ2H = 8 δ18O + 10.0 | [9] | Craig, 1961 | |
2 | GNIP (Global) | 1960–2009 | δ2H= 7.9 δ18O+ 8.72 | [8] | Terzer et al., 2013 | |
3 | GNIP (Pretoria) | Since 1961 | δ2H = 6.7 δ18O + 7.2 | [53] | Abiye et al., 2015 | |
4 | Beaufort West | 2003–2008 | δ2H = 5.4 δ18O + 2.6 | Western Cape, summer rainfall | [5] | vanWyk, 2013 |
5 | Kalahari | 2002–2009 | δ2H = 6.1 δ18O + 6.5 | Western Kalahari, summer rainfall | [5] | vanWyk, 2013 |
6 | KwaZulu Natal | 2003–2006 | δ2H = 5.6 δ18O + 6.7 | Northern KZN, summer rainfall | [5] | vanWyk, 2013 |
7 | Langebaan | 2003–2006 | δ2H = 6.5 δ18O + 6.6 | Western Cape, winter rainfall | [5] | vanWyk, 2013 |
8 | Sandveld | 2003–2006 | δ2H = 5.8 δ18O + 5.2 | Western Cape, winter rainfall | [5] | vanWyk, 2013 |
10 | Kuruman | 2002–2008 | δ2H = 5.5 δ18O + 0.6 | Northern Cape, summer rainfall | [5] | vanWyk, 2013 |
11 | Stella | 2002–2009 | δ2H = 6.4 δ18O + 4.4 | Northern Cape, summer rainfall | [5] | vanWyk, 2013 |
12 | Taaiboschgroet | 2003–2006 | δ2H = 7.7 δ18O + 8.1 | Limpopo, summer rainfall | [5] | vanWyk, 2013 |
13 | JHB | 2016–2019 | δ2H = 6.7 δ18O + 10 | JHB summer rainfall | [54] | Leketa et al., 2018 |
14 | CT | 1996–2008 | δ2H = 6.4 δ18O + 8.7 | CT, Winter rainfall | [55] | Harris, et al., 2010 |
δ2H (‰) | δ18O (‰) | |||||
---|---|---|---|---|---|---|
Sampling Place | Min | Max | Ave | Min | Max | Ave |
Brits (n = 8) | −19.6 | 10.0 | −4.9 | −3.49 | 2.15 | −0.75 |
Johanesburg (n = 65) | −39.3 | −0.9 | −18.0 | −5.76 | 1.58 | −3.18 |
Taaiboschgroet (n = 194) | −41.3 | −22.3 | −30.8 | −6.57 | −3.57 | −4.77 |
Cape Town (n = 52) | −19.0 | −4.9 | −10.4 | −4.17 | −1.67 | −2.98 |
Dendron (n = 18) | −35.9 | −25.1 | −29.0 | −5.78 | −3.72 | −4.58 |
Dolomite Cave (n = 215) | −24.1 | 35.3 | 4.0 | −4.59 | 3.90 | −0.94 |
Kalahari_Ramotswa (n = 32) | −48.2 | −8.7 | −30.5 | −9.74 | −1.50 | −5.72 |
Namaqualand (n = 7) | −41.0 | −21.1 | −30.7 | −6.24 | −3.52 | −4.35 |
Bongwana-Bizana (n = 9) | −28.3 | −8.4 | −18.7 | −7.90 | −2.33 | −5.42 |
Oyster Bay-Jeffreys Bay (n = 55) | −24.3 | 17.3 | −10.2 | −5.37 | 2.57 | −3.24 |
Far West Rand (n = 28) | −17.2 | 7.6 | −49.0 | −3.13 | 1.10 | −7.99 |
Berg (n = 10) | −14.9 | −13.1 | −20.0 | −3.82 | −3.22 | −4.45 |
Karoo (n = 33) | −30.4 | 1.5 | −15.9 | −5.60 | 3.50 | −2.49 |
Molototsi (n = 4) | −25.4 | −10.1 | −17.3 | −4.09 | −3.09 | −3.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abiye, T.A.; Demlie, M.B.; Mengistu, H. An Overview of Aquifer Physiognomies and the δ18O and δ2H Distribution in the South African Groundwaters. Hydrology 2021, 8, 68. https://doi.org/10.3390/hydrology8020068
Abiye TA, Demlie MB, Mengistu H. An Overview of Aquifer Physiognomies and the δ18O and δ2H Distribution in the South African Groundwaters. Hydrology. 2021; 8(2):68. https://doi.org/10.3390/hydrology8020068
Chicago/Turabian StyleAbiye, Tamiru A., Molla B. Demlie, and Haile Mengistu. 2021. "An Overview of Aquifer Physiognomies and the δ18O and δ2H Distribution in the South African Groundwaters" Hydrology 8, no. 2: 68. https://doi.org/10.3390/hydrology8020068
APA StyleAbiye, T. A., Demlie, M. B., & Mengistu, H. (2021). An Overview of Aquifer Physiognomies and the δ18O and δ2H Distribution in the South African Groundwaters. Hydrology, 8(2), 68. https://doi.org/10.3390/hydrology8020068