A Streamflow Bias Correction and Performance Evaluation Web Application for GEOGloWS ECMWF Streamflow Services
Abstract
:1. Introduction
1.1. Background and Need
1.2. Global Streamflow Modeling and Prediction
1.3. Global Modeling Challenges
- Big data management, having solid infrastructure where the model can be automatically computed, stored and retrieved;
- Communication, using web apps services, standards for producing and sharing hydrological data;
- Adoption in different places through the use of hydrologic modeling as a service (HMaaS) web applications and representational state transfer (REST) application programming interfaces (API’s); and
- Validation and verification of results so that confidence in using the model output can be established.
1.4. Global Model Calibraton and Validation
1.5. Bias Correction
2. Data and Methods
2.1. Overview
2.2. Requirements
2.3. Data
2.4. Spatial Data Pre-processing
- The location of the gauging stations is often not exact or does not match the river reach segments in the shapefile. Therefore, the locations should be visually examined and adjusted to match the right reach ID and location.
- The areas of the simulated basins are not the same as the area that corresponds to the basin defined by a gauging station point.
2.5. Web Applicaation Design
- retrieve data from mapping services for the stations and stream network in a region and present these data using a JavaScript map interface;
- retrieve, process, and visualize the simulated data (i.e., historical simulation and forecast) from the GEOGloWS or GESS servers;
- perform bias corrections on the historic simulation data using observed data;
- construct a bias-corrected forecast using the observed data and the historic simulated data; and
- compute and present comparisons and error metric reports of the historical simulation with and without the bias correction.
2.6. Bias Correction
3. Results
3.1. Software Implementation Results
- Data and plots for the observed, simulated, and bias-corrected historic streamflow data;
- Visual analysis of daily seasonality, monthly seasonality, and scatter plots in normal and log scale;
- Computations and plots of volume analysis;
- Statistical error metrics validation for observed versus simulated and observed versus bias-corrected simulated data to evaluate the improvement from bias corrections; and
- Access to and visualizations of both the GESS hydrologic forecast and the bias-corrected forecast that can be used by local hydrological managers.
3.1.1. User Interface: Hydrographs
3.1.2. User Interface: Visual Analysis
3.1.3. User Interface: Metrics Report
3.1.4. User Interface: Forecast Visualization
3.2. Experimental Case Study Results
- The Australia HVT application retrieved data using the web interface to the Bureau of Meteorology to access the daily streamflow data for the 122 gauging stations. For some of the stations, these data include real-time observed streamflow. HVT accesses these real-time data and uses them in the Forecast tab.
- The Brazil HVT application uses the open data portal of the National Water Agency to access the daily streamflow data for the 1008 gauging stations.
- The Colombia HVT application uses comma-separated-value (CSV) files for the observed data at each of the 412 stations. These data were provided by the Colombian Institute of Hydrology, Meteorology and Environmental Studies (IDEAM). To customize HVT, we grouped and added the observed streamflow CSV files for the 412 gauging stations in a HydroShare resource. The Colombia HVT application also uses the IDEAM Flood Early Warning System (FEWS) web service to retrieve the real time observed and sensor streamflow data that we added to the app in the Forecast section.
- The Dominican Republic HVT application uses an existing HydroServer to retrieve the observed data for each of the 84 gauging stations. The Dominican National Hydrologic service (INDRHI) provided the data on the HydroServer.
- The Peru HVT application uses CSV files for the observed data at each of the 303 stations. These data were provided by the Peruvian National Meteorology and Hydrology Service (SENAMHI). To customize HVT, we grouped and added the CSV files with the observed streamflow for the 303 gauging stations in a HydroShare resource.
4. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
- http://www.bom.gov.au/waterdata/ (accessed on 16 March 2021)
- http://telemetriaws1.ana.gov.br/ServiceANA.asmx (accessed on 16 March 2021)
- https://www.hydroshare.org/resource/d222676fbd984a81911761ca1ba936bf/ (accessed on 16 March 2021)
- http://128.187.106.131/app/index.php/dr (accessed on 16 March 2021)
- https://www.hydroshare.org/resource/b7efdb43bf59470fb5baa4426931d8fe/ (accessed on 16 March 2021)
Acknowledgments
Conflicts of Interest
References
- Jonkman, S.N. Global Perspectives on Loss of Human Life Caused by Floods. Nat. Hazards 2005, 34, 151–175. [Google Scholar] [CrossRef]
- Pandey, S.; Bhandari, H. Drought: Economic costs and research implications. In Drought Frontiers in Rice; WORLD SCIENTIFIC: Singapore, 2009; pp. 3–17. ISBN 978-981-4280-00-6. [Google Scholar]
- Snow, A. A New Global Forecasting Model to Produce High-Resolution Stream Forecasts. Master’s Thesis, Brigham Young University, Provo, UT, USA, 2015. [Google Scholar]
- Souffront Alcantara, M.A. A Flexible Service-Oriented Approach to Address Hydroinformatic Challenges in Large-Scale Hydrologic Predictions. Ph.D. Thesis, Brigham Young University, Provo, UT, USA, 2018. [Google Scholar]
- Pappenberger, F.; Ramos, M.H.; Cloke, H.L.; Wetterhall, F.; Alfieri, L.; Bogner, K.; Mueller, A.; Salamon, P. How do I know if my forecasts are better? Using benchmarks in hydrological ensemble prediction. J. Hydrol. 2015, 522, 697–713. [Google Scholar] [CrossRef] [Green Version]
- Bartholmes, J.C.; Thielen, J.; Ramos, M.H.; Gentilini, S. The european flood alert system EFAS—Part 2: Statistical skill assessment of probabilistic and deterministic operational forecasts. Hydrol. Earth Syst. Sci. 2009, 13, 141–153. [Google Scholar] [CrossRef] [Green Version]
- Thielen, J.; Bartholmes, J.; Ramos, M.-H.; de Roo, A. The European Flood Alert System—Part 1: Concept and development. Hydrol. Earth Syst. Sci. 2009, 13, 125–140. [Google Scholar] [CrossRef] [Green Version]
- National Oceanic and Atmospheric Administration (NOAA). The National Water Model. Available online: https://water.noaa.gov/about/nwm (accessed on 13 May 2020).
- National Oceanic and Atmospheric Administration (NOAA). NOAA Launches America’s First National Water Forecast Model|National Oceanic and Atmospheric Administration. Available online: https://www.noaa.gov/media-release/noaa-launches-america-s-first-national-water-forecast-model (accessed on 13 May 2020).
- Cattoen, C.; McMillan, H.; Moore, S. Coupling a High-Resolution Weather Model with a Hydrological Model for Flood Forecasting in New Zealand. J. Hydrol. N. Z. 2016, 55, 1. [Google Scholar]
- Kundzewicz, Z.W.; Jun, X. Towards an improved flood preparedness system in China. Hydrol. Sci. J. 2004, 49, 941–944. [Google Scholar] [CrossRef]
- Robinson, J.; Perkins, J.; Quig, B. Hydrological Forecasting and Decision Making in Australia. 2015. Available online: https://es.slideshare.net/Delft_Software_Days/dsd-int-2015-hydrological-forecasting-and-decision-making-in-australia-justin-robinson-54944079 (accessed on 13 May 2020).
- Yoshimura, K.; Ishitsuka, Y.; Hibino, K.; Yamazaki, D.; Yamamoto, K.; Kachi, M.; Oki, R. Development of Flood Forecasting System over Japan and Application to 2018 Japan Floods Event. In Proceedings of the 2019 European Geosciences Union General Assembly, EGU 2009, Vienna, Austria, 7–12 April 2019. [Google Scholar]
- Alfieri, L.; Burek, P.; Dutra, E.; Krzeminski, B.; Muraro, D.; Thielen, J.; Pappenberger, F. GloFAS—Global ensemble streamflow forecasting and flood early warning. Hydrol. Earth Syst. Sci. 2013, 17, 1161–1175. [Google Scholar] [CrossRef] [Green Version]
- Lavers, D.A.; Harrigan, S.; Andersson, E.; Richardson, D.S.; Prudhomme, C.; Pappenberger, F. A vision for improving global flood forecasting. Environ. Res. Lett. 2019, 14, 121002. [Google Scholar] [CrossRef] [Green Version]
- The World Bank Group; Global Facility for Disaster Reduction and Recovery (GFDRR). Assessment of the State of Hydrological Services in Developing Countries 2018. Available online: https://www.gfdrr.org/sites/default/files/publication/state-of-hydrological-services_web.pdf (accessed on 29 January 2019).
- Balsamo, G.; Beljaars, A.; Scipal, K.; Viterbo, P.; van den Hurk, B.; Hirschi, M.; Betts, A.K. A Revised Hydrology for the ECMWF Model: Verification from Field Site to Terrestrial Water Storage and Impact in the Integrated Forecast System. J. Hydrometeorol. 2009, 10, 623–643. [Google Scholar] [CrossRef]
- Zsoter, E.; Wetterhall, F. GloFAS v2.1—Copernicus Services—ECMWF Confluence Wiki. Available online: https://confluence.ecmwf.int/display/COPSRV/GloFAS+v2.1 (accessed on 17 June 2020).
- Harrigan, S.; Zsoter, E.; Alfieri, L.; Prudhomme, C.; Salamon, P.; Wetterhall, F.; Barnard, C.; Cloke, H.; Pappenberger, F. GloFAS-ERA5 Operational Global River Discharge Reanalysis 1979–Present. Earth Syst. Sci. Data Discuss. 2020, 12, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Snow, A.D.; Christensen, S.D.; Swain, N.R.; Nelson, E.J.; Ames, D.P.; Jones, N.L.; Ding, D.; Noman, N.S.; David, C.H.; Pappenberger, F.; et al. A High-Resolution National-Scale Hydrologic Forecast System from a Global Ensemble Land Surface Model. JAWRA J. Am. Water Resour. Assoc. 2016, 52, 950–964. [Google Scholar] [CrossRef] [Green Version]
- Qiao, X.; Nelson, E.J.; Ames, D.P.; Li, Z.; David, C.H.; Williams, G.P.; Roberts, W.; Sánchez Lozano, J.L.; Edwards, C.; Souffront, M.; et al. A systems approach to routing global gridded runoff through local high-resolution stream networks for flood early warning systems. Environ. Model. Softw. 2019, 120, 104501. [Google Scholar] [CrossRef]
- Souffront Alcantara, M.A.; Nelson, E.J.; Shakya, K.; Edwards, C.; Roberts, W.; Krewson, C.; Ames, D.P.; Jones, N.L.; Gutierrez, A. Hydrologic Modeling as a Service (HMaaS): A New Approach to Address Hydroinformatic Challenges in Developing Countries. Front. Environ. Sci. 2019, 7, 158. [Google Scholar] [CrossRef]
- Hirpa, F.A.; Salamon, P.; Beck, H.E.; Lorini, V.; Alfieri, L.; Zsoter, E.; Dadson, S.J. Calibration of the Global Flood Awareness System (GloFAS) using daily streamflow data. J. Hydrol. 2018, 566, 595–606. [Google Scholar] [CrossRef]
- Hales, R. Geoglows. Zenodo. 2020. Available online: https://doi.org/10.5281/zenodo.3891938 (accessed on 30 June 2020).
- Chen, M.; Voinov, A.; Ames, D.P.; Kettner, A.J.; Goodall, J.L.; Jakeman, A.J.; Barton, M.C.; Harpham, Q.; Cuddy, S.M.; DeLuca, C.; et al. Position paper: Open web-distributed integrated geographic modelling and simulation to enable broader participation and applications. Earth-Sci. Rev. 2020, 207, 103223. [Google Scholar] [CrossRef]
- Conner, L.G.; Ames, D.P.; Gill, R.A. HydroServer Lite as an open source solution for archiving and sharing environmental data for independent university labs. Ecol. Inform. 2013, 18, 171–177. [Google Scholar] [CrossRef]
- Khattar, R.; Ames, D. A Web Services Based Water Data Sharing Approach Using Open Geospatial Consortium Standards. Open Water J. 2020, 6, 2. [Google Scholar]
- Kadlec, J.; StClair, B.; Ames, D.P.; Gill, R.A. WaterML R package for managing ecological experiment data on a CUAHSI HydroServer. Ecol. Inform. 2015, 28, 19–28. [Google Scholar] [CrossRef]
- Valentine, D.W.; Zaslavsky, I.; Whitenack, T.; Maidment, D. Design and Implementation of CUAHSI WaterML and WaterOneFlow Web Services. AGU Fall Meet. Abstr. 2007, 53, IN53C-08. [Google Scholar]
- Tarboton, D.; Idaszak, R.; Horsburgh, J.; Heard, J.; Ames, D.; Goodall, J.; Band, L.; Merwade, V.; Couch, A.; Arrigo, J.; et al. HydroShare: Advancing Collaboration through Hydrologic Data and Model Sharing. In Proceedings of the International Congress on Environmental Modelling and Software, San Diego, CA, USA, 15–19 June 2014. [Google Scholar]
- GeoServer GeoServer. GeoServer. 2020. Original Work Published 2011. Available online: https://github.com/geoserver/geoserver (accessed on 30 June 2020).
- Dawson, C.W.; Abrahart, R.J.; See, L.M. HydroTest: Further development of a web resource for the standardised assessment of hydrological models. Environ. Model. Softw. 2010, 25, 1481–1482. [Google Scholar] [CrossRef]
- Jackson, E.K.; Roberts, W.; Nelsen, B.; Williams, G.P.; Nelson, E.J.; Ames, D.P. Introductory overview: Error metrics for hydrologic modelling—A review of common practices and an open source library to facilitate use and adoption. Environ. Model. Softw. 2019, 119, 32–48. [Google Scholar] [CrossRef]
- Roberts, W.; Williams, G.P.; Jackson, E.; Nelson, E.J.; Ames, D.P. Hydrostats: A Python Package for Characterizing Errors between Observed and Predicted Time Series. Hydrology 2018, 5, 66. [Google Scholar] [CrossRef] [Green Version]
- Farmer, W.H.; Over, T.M.; Kiang, J.E. Bias correction of simulated historical daily streamflow at ungauged locations by using independently estimated flow duration curves. Hydrol. Earth Syst. Sci. 2018, 22, 5741–5758. [Google Scholar] [CrossRef] [Green Version]
- Swain, N. Tethys Platform: A Development and Hosting Platform for Water Resources Web Apps. Ph.D. Thesis, Brigham Young University, Provo, UT, USA, 2015. [Google Scholar]
- Nelson, E.J.; Pulla, S.T.; Matin, M.A.; Shakya, K.; Jones, N.; Ames, D.P.; Ellenburg, W.L.; Markert, K.N.; David, C.H.; Zaitchik, B.F.; et al. Enabling Stakeholder Decision-Making With Earth Observation and Modeling Data Using Tethys Platform. Front. Environ. Sci. 2019, 7. [Google Scholar] [CrossRef]
- Jones, N.; Nelson, J.; Swain, N.; Christensen, S.; Tarboton, D.; Dash, P. Tethys: A Software Framework for Web-Based Modeling and Decision Support Applications. In Proceedings of the 8th International Congress on Environmental Modelling and Software: Bold Visions for Environmental Modeling, iEMSs 2014, San Diego, CA, USA, 15–19 June 2014. [Google Scholar]
- Swain, N.R.; Christensen, S.D.; Snow, A.D.; Dolder, H.; Espinoza-Dávalos, G.; Goharian, E.; Jones, N.L.; Nelson, E.J.; Ames, D.P.; Burian, S.J. A new open source platform for lowering the barrier for environmental web app development. Environ. Model. Softw. 2016, 85, 11–26. [Google Scholar] [CrossRef] [Green Version]
- Ashby, K. Derived Hydrography of World Regions 2020. Brigham Young University. Available online: https://doi.org/10.4211/hs.d5155cb57987489a95b83364d2c0f6c0 (accessed on 30 June 2020).
- Plotly Technologies Inc. Collaborative Data Science; Plotly Technologies Inc.: Montréal, QC, Canada, 2015. [Google Scholar]
- BYU-Hydroinformatics World Water—Historical Data. Available online: https://worldwater.byu.edu/historical-data (accessed on 30 June 2020).
- Sammut, C.; Webb, G.I. (Eds.) Mean Error. In Encyclopedia of Machine Learning; Springer: Boston, MA, USA, 2010; p. 652-652. ISBN 978-0-387-30164-8. [Google Scholar]
- Jain, A.; Srinivasulu, S. Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques. J. Hydrol. 2006, 317, 291–306. [Google Scholar] [CrossRef]
- Swamidass, P.M. (Ed.) MAPE (mean absolute percentage error) MEAN ABSOLUTE PERCENTAGE ERROR (MAPE). In Encyclopedia of Production and Manufacturing Management; Springer: Boston, MA, USA, 2000; p. 462-462. ISBN 978-1-4020-0612-8. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 2012, 424–425, 264–277. [Google Scholar] [CrossRef]
- Kirch, W. (Ed.) Pearson’s Correlation Coefficient. In Encyclopedia of Public Health; Springer Netherlands: Dordrecht, The Netherlands, 2008; pp. 1090–1091. ISBN 978-1-4020-5614-7. [Google Scholar]
- Dodge, Y. Spearman Rank Correlation Coefficient. In The Concise Encyclopedia of Statistics; Springer: New York, NY, USA, 2008; pp. 502–505. ISBN 978-0-387-32833-1. [Google Scholar]
- Dodge, Y. Coefficient of Determination. In The Concise Encyclopedia of Statistics; Springer: New York, NY, USA, 2008; pp. 88–91. ISBN 978-0-387-32833-1. [Google Scholar]
- BYU-Hydroinformatics. Historical_Validation_Tool_Australia; BYU Hydroinformatics Lab, 2021. Original Work Published 2019. Available online: https://github.com/BYU-Hydroinformatics/historical_validation_tool_australia (accessed on 5 February 2021).
- BYU-Hydroinformatics. Historical_Validation_Tool_Brazil; BYU Hydroinformatics Lab, 2021. Original Work Published 2020. Available online: https://github.com/BYU-Hydroinformatics/historical_validation_tool_brazil (accessed on 5 February 2021).
- BYU-Hydroinformatics. Historical_Validation_Tool_Colombia; BYU Hydroinformatics Lab, 2021. Original Work Published 2019. Available online: https://github.com/BYU-Hydroinformatics/historical_validation_tool_colombia (accessed on 5 February 2021).
- BYU-Hydroinformatics. Historical_Validation_Tool_Dominican_Republic; BYU Hydroinformatics Lab, 2021. Original Work Published 2019. Available online: https://github.com/BYU-Hydroinformatics/historical_validation_tool_dominican_republic (accessed on 5 February 2021).
- BYU-Hydroinformatics. Historical_Validation_Tool_Peru; BYU Hydroinformatics Lab, 2021. Original Work Published 2020. Available online: https://github.com/BYU-Hydroinformatics/historical_validation_tool_peru (accessed on 5 February 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchez Lozano, J.; Romero Bustamante, G.; Hales, R.C.; Nelson, E.J.; Williams, G.P.; Ames, D.P.; Jones, N.L. A Streamflow Bias Correction and Performance Evaluation Web Application for GEOGloWS ECMWF Streamflow Services. Hydrology 2021, 8, 71. https://doi.org/10.3390/hydrology8020071
Sanchez Lozano J, Romero Bustamante G, Hales RC, Nelson EJ, Williams GP, Ames DP, Jones NL. A Streamflow Bias Correction and Performance Evaluation Web Application for GEOGloWS ECMWF Streamflow Services. Hydrology. 2021; 8(2):71. https://doi.org/10.3390/hydrology8020071
Chicago/Turabian StyleSanchez Lozano, Jorge, Giovanni Romero Bustamante, Riley Chad Hales, E. James Nelson, Gustavious P. Williams, Daniel P. Ames, and Norman L. Jones. 2021. "A Streamflow Bias Correction and Performance Evaluation Web Application for GEOGloWS ECMWF Streamflow Services" Hydrology 8, no. 2: 71. https://doi.org/10.3390/hydrology8020071
APA StyleSanchez Lozano, J., Romero Bustamante, G., Hales, R. C., Nelson, E. J., Williams, G. P., Ames, D. P., & Jones, N. L. (2021). A Streamflow Bias Correction and Performance Evaluation Web Application for GEOGloWS ECMWF Streamflow Services. Hydrology, 8(2), 71. https://doi.org/10.3390/hydrology8020071