GFPLAIN and Multi-Source Data Assimilation Modeling: Conceptualization of a Flood Forecasting Framework Supported by Hydrogeomorphic Floodplain Rapid Mapping
Abstract
:1. Introduction
2. The Methodology: Integrating Hydrogeomorphic and Data Assimilation for Flood Forecasting
2.1. The Hydrogeomorphic Model GFPLAIN
2.2. The Hydrogeomorphic Modeling GFPLAIN for Supporting Small-Scale Flood Hazard Mapping and Forecasting
2.3. GFPLAIN Hydrogeomorphic Modeling for Supporting DA in Large-Scale Flood Forecasting
2.3.1. Definition of the Hydraulic Model Domain Using GFPLAIN
2.3.2. Masking Satellite Images Using GFPLAIN for Flood Detection Algorithms
2.3.3. Filtering of the Crowdsourced Observations
2.3.4. Scheme of a DA Approach for Flood Forecasting
3. Conclusions
- The adoption of hydrogeomorphic floodplain terrain processing to identify the maximum flood extent and capture the domain of inclusion of critical nodes whose hydrologic forcing is analyzed by means of a real-time lumped hydrologic model based on a hydrogeomorphic approach (e.g., WFIUH).
- A multiple application of the hydrogeomorphic floodplain dataset for improving a Data Assimilation framework for near-real-time flood forecasting by masking the computational domain of a 1D-2D hydraulic model updated by intermittent and distributed flow observations such as satellite-derived flood extents and geotagged crowdsourced observations filtered with the hydrogeomorphic floodplain dataset.
- Providing ancillary information on the extension of critical areas (e.g., in the case of the application of a simplified lumped hydrologic model) during flood events.
- Pre-process the computational domain of physical models (e.g., 2D hydraulic models) and geospatial algorithms for detecting flood-related observations whose extension or position is unknown a priori.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leopold, L.B.; Maddock, T.J. The Hydraulic Geometry of Stream Channels and Some Physiographic Implications; U.S. Government Printing Office: Washington, DC, USA, 1953.
- Dodov, B.; Foufoula-Georgiou, E. Generalized hydraulic geometry: Insights based on fluvial instability analysis and a physical model. Water Resour. Res. 2004, 40, W12201. [Google Scholar] [CrossRef] [Green Version]
- Nardi, F.; Vivoni, E.R.; Grimaldi, S. Investigating a floodplain scaling relation using a hydrogeomorphic delineation method. Water Resour. Res. 2006, 42, W09409. [Google Scholar] [CrossRef]
- Samela, C.; Troy, T.J.; Manfreda, S. Geomorphic classifiers for flood-prone areas delineation for data-scarce environments. Adv. Water Resour. 2017, 102, 13–28. [Google Scholar] [CrossRef]
- Nardi, F.; Annis, A.; Di Baldassarre, G.; Vivoni, E.R.; Grimaldi, S. GFPLAIN250m, a global high-resolution dataset of Earth’s floodplains. Sci. Data 2019, 6, 180309. [Google Scholar] [CrossRef] [PubMed]
- Samela, C.; Manfreda, S.; Troy, T.J. Dataset of 100-year flood susceptibility maps for the continental U.S. derived with a geomorphic method. Data Brief 2017, 12, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Manfreda, S.; Nardi, F.; Samela, C.; Grimaldi, S.; Taramasso, A.C.; Roth, G.; Sole, A. Investigation on the use of geomorphic approaches for the delineation of flood prone areas. J. Hydrol. 2014, 517, 863–876. [Google Scholar] [CrossRef]
- Hawker, L.; Neal, J.; Bates, P. Accuracy assessment of the TanDEM-X 90 Digital Elevation Model for selected floodplain sites. Remote Sens. Environ. 2019, 232, 111319. [Google Scholar] [CrossRef]
- Morrison, R.R.; Bray, E.; Nardi, F.; Annis, A.; Dong, Q. Spatial Relationships of Levees and Wetland Systems within Floodplains of the Wabash Basin, USA. JAWRA J. Am. Water Resour. Assoc. 2018, 54, 934–948. [Google Scholar] [CrossRef]
- Scheel, K.; Morrison, R.R.; Annis, A.; Nardi, F. Understanding the Large-Scale Influence of Levees on Floodplain Connectivity Using a Hydrogeomorphic Approach. JAWRA J. Am. Water Resour. Assoc. 2019, 55, 413–429. [Google Scholar] [CrossRef]
- Da Costa, R.T.; Zanardo, S.; Bagli, S.; Hilberts, A.G.J.; Manfreda, S.; Samela, C.; Castellarin, A. Predictive Modeling of Envelope Flood Extents Using Geomorphic and Climatic-Hydrologic Catchment Characteristics. Water Resour. Res. 2020, 56, e2019WR026453. [Google Scholar] [CrossRef]
- Di Baldassarre, G.; Nardi, F.; Annis, A.; Odongo, V.; Rusca, M.; Grimaldi, S. Brief communication: Comparing hydrological and hydrogeomorphic paradigms for global flood hazard mapping. Nat. Hazards Earth Syst. Sci. 2020, 20, 1415–1419. [Google Scholar] [CrossRef]
- Weerts, A.H.; El Serafy, G.Y.; Hummel, S.; Dhondia, J.; Gerritsen, H. Application of generic data assimilation tools (DATools) for flood forecasting purposes. Comput. Geosci. 2010, 36, 453–463. [Google Scholar] [CrossRef]
- Matgen, P.; Schumann, G.; Henry, J.-B.; Hoffmann, L.; Pfister, L. Integration of SAR-derived river inundation areas, high-precision topographic data and a river flow model toward near real-time flood management. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 247–263. [Google Scholar] [CrossRef]
- Andreadis, K.M.; Clark, E.A.; Lettenmaier, D.P.; Alsdorf, D.E. Prospects for river discharge and depth estimation through assimilation of swath-altimetry into a raster-based hydrodynamics model. Geophys. Res. Lett. 2007, 34, L10403. [Google Scholar] [CrossRef] [Green Version]
- Hostache, R.; Chini, M.; Giustarini, L.; Neal, J.; Kavetski, D.; Wood, M.; Corato, G.; Pelich, R.-M.; Matgen, P. Near-Real-Time Assimilation of SAR-Derived Flood Maps for Improving Flood Forecasts. Water Resour. Res. 2018, 54, 5516–5535. [Google Scholar] [CrossRef]
- Lai, X.; Liang, Q.; Yesou, H.; Daillet, S. Variational assimilation of remotely sensed flood extents using a 2-D flood model. Hydrol. Earth Syst. Sci. 2014, 18, 4325–4339. [Google Scholar] [CrossRef] [Green Version]
- Revilla-Romero, B.; Hirpa, F.A.; Pozo, J.T.-D.; Salamon, P.; Brakenridge, R.; Pappenberger, F.; De Groeve, T. On the Use of Global Flood Forecasts and Satellite-Derived Inundation Maps for Flood Monitoring in Data-Sparse Regions. Remote Sens. 2015, 7, 15702–15728. [Google Scholar] [CrossRef] [Green Version]
- Revilla-Romero, B.; Wanders, N.; Burek, P.; Salamon, P.; de Roo, A. Integrating remotely sensed surface water extent into continental scale hydrology. J. Hydrol. 2016, 543, 659–670. [Google Scholar] [CrossRef]
- Dasgupta, A.; Hostache, R.; Ramasankaran, R.; Schumann, G.J.; Grimaldi, S.; Pauwels, V.R.N.; Walker, J.P. A Mutual Information-Based Likelihood Function for Particle Filter Flood Extent Assimilation. Water Resour. Res. 2021, 57, e2020WR027859. [Google Scholar] [CrossRef]
- Shastry, A.; Durand, M. Utilizing Flood Inundation Observations to Obtain Floodplain Topography in Data-Scarce Regions. Front. Earth Sci. 2019, 6, 243. [Google Scholar] [CrossRef] [Green Version]
- Jongman, B.; Wagemaker, J.; Romero, B.R.; De Perez, E.C. Early Flood Detection for Rapid Humanitarian Response: Harnessing Near Real-Time Satellite and Twitter Signals. ISPRS Int. J. Geo-Inf. 2015, 4, 2246–2266. [Google Scholar] [CrossRef] [Green Version]
- Mazzoleni, M.; Verlaan, M.; Alfonso, L.; Monego, M.; Norbiato, D.; Ferri, M.; Solomatine, D.P. Can assimilation of crowdsourced data in hydrological modelling improve flood prediction? Hydrol. Earth Syst. Sci. 2017, 21, 839–861. [Google Scholar] [CrossRef] [Green Version]
- Mazzoleni, M.; Cortes Arevalo, V.J.; Wehn, U.; Alfonso, L.; Norbiato, D.; Monego, M.; Ferri, M.; Solomatine, D. Towards assimilation of crowdsourced observations for different levels of citizen engagement: The flood event of 2013 in the Bacchiglione catchment. Hydrol. Earth Syst. Sci. 2017, 22. [Google Scholar] [CrossRef]
- Annis, A.; Nardi, F. Integrating VGI and 2D hydraulic models into a data assimilation framework for real time flood forecasting and mapping. Geo-Spat. Inf. Sci. 2019, 22, 223–236. [Google Scholar] [CrossRef] [Green Version]
- Avellaneda, P.M.; Ficklin, D.L.; Lowry, C.S.; Knouft, J.H.; Hall, D.M. Improving Hydrological Models with the Assimilation of Crowdsourced Data. Water Resour. Res. 2020, 56, e2019WR026325. [Google Scholar] [CrossRef]
- Grimaldi, S.; Li, Y.; Pauwels, V.; Walker, J. Remote Sensing-Derived Water Extent and Level to Constrain Hydraulic Flood Forecasting Models: Opportunities and Challenges. Surv. Geophys. 2016, 37, 977–1034. [Google Scholar] [CrossRef]
- Notti, D.; Giordan, D.; Caló, F.; Pepe, A.; Zucca, F.; Galve, J.P. Potential and Limitations of Open Satellite Data for Flood Mapping. Remote Sens. 2018, 10, 1673. [Google Scholar] [CrossRef] [Green Version]
- Giustarini, L.; Hostache, R.; Matgen, P.; Schumann, G.J.; Bates, P.D.; Mason, D.C. A Change Detection Approach to Flood Mapping in Urban Areas Using TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2417–2430. [Google Scholar] [CrossRef] [Green Version]
- Davids, J.C.; Van De Giesen, N.; Rutten, M. Continuity vs. the Crowd—Tradeoffs Between Continuous and Intermittent Citizen Hydrology Streamflow Observations. Environ. Manag. 2017, 60, 12–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Annis, A.; Nardi, F.; Morrison, R.R.; Castelli, F. Investigating hydrogeomorphic floodplain mapping performance with varying DTM resolution and stream order. Hydrol. Sci. J. 2019, 64, 525–538. [Google Scholar] [CrossRef]
- Nardi, F.; Morrison, R.R.; Annis, A.; Grantham, T.E. Hydrologic scaling for hydrogeomorphic floodplain mapping: Insights into human-induced floodplain disconnectivity. River Res. Appl. 2018, 34, 675–685. [Google Scholar] [CrossRef]
- Convertino, M.; Annis, A.; Nardi, F. Information-theoretic portfolio decision model for optimal flood management. Environ. Model. Softw. 2019, 119, 258–274. [Google Scholar] [CrossRef] [Green Version]
- Nardi, F.; Annis, A.; Biscarini, C. On the impact of urbanization on flood hydrology of small ungauged basins: The case study of the Tiber river tributary network within the city of Rome. J. Flood Risk Manag. 2018, 11, S594–S603. [Google Scholar] [CrossRef]
- Grimaldi, S.; Petroselli, A.; Nardi, F. A parsimonious geomorphological unit hydrograph for rainfall–runoff modelling in small ungauged basins. Hydrol. Sci. J. 2012, 57, 73–83. [Google Scholar] [CrossRef]
- Ignacio, J.A.F.; Cruz, G.T.; Nardi, F.; Henry, S. Assessing the effectiveness of a social vulnerability index in predicting heterogeneity in the impacts of natural hazards: Case study of the Tropical Storm Washi flood in the Philippines. Vienna Yearb. Popul. Res. 2015, 2015, 91–129. [Google Scholar] [CrossRef] [Green Version]
- Peña, F.; Nardi, F. Floodplain Terrain Analysis for Coarse Resolution 2D Flood Modeling. Hydrology 2018, 5, 52. [Google Scholar] [CrossRef] [Green Version]
- Peña, F.; Nardi, F.; Melesse, A.; Obeysekera, J. Assessing geomorphic floodplain models for large scale coarse resolution 2D flood modelling in data scarce regions. Geomorphology 2021, 389, 107841. [Google Scholar] [CrossRef]
- Bates, P.D. Integrating remote sensing data with flood inundation models: How far have we got? Hydrol. Process. 2012, 26, 2515–2521. [Google Scholar] [CrossRef]
- Annis, A.; Nardi, F.; Petroselli, A.; Apollonio, C.; Arcangeletti, E.; Tauro, F.; Belli, C.; Bianconi, R.; Grimaldi, S. UAV-DEMs for Small-Scale Flood Hazard Mapping. Water 2020, 12, 1717. [Google Scholar] [CrossRef]
- Assumpção, T.H.; Popescu, I.; Jonoski, A.; Solomatine, D.P. Citizen observations contributing to flood modelling: Opportunities and challenges. Hydrol. Earth Syst. Sci. 2018, 22, 1473–1489. [Google Scholar] [CrossRef] [Green Version]
- Nundloll, V.; Lamb, R.; Hankin, B.; Blair, G. A semantic approach to enable data integration for the domain of flood risk management. Environ. Chall. 2021, 3, 100064. [Google Scholar] [CrossRef]
- Smith, L.S.; Liang, Q.; James, P.; Lin, W. Assessing the utility of social media as a data source for flood risk management using a real-time modelling framework. J. Flood Risk Manag. 2015, 10, 370–380. [Google Scholar] [CrossRef]
- Tkachenko, N.; Jarvis, S.; Procter, R. Predicting floods with Flickr tags. PLoS ONE 2017, 12, e0172870. [Google Scholar] [CrossRef]
- Brouwer, T.; Eilander, D.; van Loenen, A.; Booij, M.J.; Wijnberg, K.M.; Verkade, J.S.; Wagemaker, J. Probabilistic flood extent estimates from social media flood observations. Nat. Hazards Earth Syst. Sci. 2017, 17, 735–747. [Google Scholar] [CrossRef] [Green Version]
- De Bruijn, J.A.; De Moel, H.; Jongman, B.; Wagemaker, J.; Aerts, J.C.J.H. TAGGS: Grouping Tweets to Improve Global Geoparsing for Disaster Response. J. Geovis. Spat. Anal. 2018, 2, 2. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Liu, J.; Qin, C.-Z.; Wang, D. Extraction of Urban Waterlogging Depth from Video Images Using Transfer Learning. Water 2018, 10, 1485. [Google Scholar] [CrossRef] [Green Version]
- Andreadis, K.M.; Schumann, G. Estimating the impact of satellite observations on the predictability of large-scale hydraulic models. Adv. Water Resour. 2014, 73, 44–54. [Google Scholar] [CrossRef]
- Giustarini, L.; Matgen, P.; Hostache, R.; Montanari, M.; Plaza, D.; Pauwels, V.R.N.; De Lannoy, G.J.M.; De Keyser, R.; Pfister, L.; Hoffmann, L.; et al. Assimilating SAR-derived water level data into a hydraulic model: A case study. Hydrol. Earth Syst. Sci. 2011, 15, 2349–2365. [Google Scholar] [CrossRef] [Green Version]
- García-Pintado, J.; Mason, D.C.; Dance, S.; Cloke, H.; Neal, J.; Freer, J.; Bates, P. Satellite-supported flood forecasting in river networks: A real case study. J. Hydrol. 2015, 523, 706–724. [Google Scholar] [CrossRef] [Green Version]
- Annis, A.; Nardi, F.; Volpi, E.; Fiori, A. Quantifying the relative impact of hydrological and hydraulic modelling parameterizations on uncertainty of inundation maps. Hydrol. Sci. J. 2020, 65, 507–523. [Google Scholar] [CrossRef]
- Giustarini, L.; Hostache, R.; Kavetski, D.; Chini, M.; Corato, G.; Schlaffer, S.; Matgen, P. Probabilistic Flood Mapping Using Synthetic Aperture Radar Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6958–6969. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Annis, A.; Nardi, F. GFPLAIN and Multi-Source Data Assimilation Modeling: Conceptualization of a Flood Forecasting Framework Supported by Hydrogeomorphic Floodplain Rapid Mapping. Hydrology 2021, 8, 143. https://doi.org/10.3390/hydrology8040143
Annis A, Nardi F. GFPLAIN and Multi-Source Data Assimilation Modeling: Conceptualization of a Flood Forecasting Framework Supported by Hydrogeomorphic Floodplain Rapid Mapping. Hydrology. 2021; 8(4):143. https://doi.org/10.3390/hydrology8040143
Chicago/Turabian StyleAnnis, Antonio, and Fernando Nardi. 2021. "GFPLAIN and Multi-Source Data Assimilation Modeling: Conceptualization of a Flood Forecasting Framework Supported by Hydrogeomorphic Floodplain Rapid Mapping" Hydrology 8, no. 4: 143. https://doi.org/10.3390/hydrology8040143
APA StyleAnnis, A., & Nardi, F. (2021). GFPLAIN and Multi-Source Data Assimilation Modeling: Conceptualization of a Flood Forecasting Framework Supported by Hydrogeomorphic Floodplain Rapid Mapping. Hydrology, 8(4), 143. https://doi.org/10.3390/hydrology8040143