Flood Mitigation Measure and Water Storage in East Africa: An Analysis for the Rio Muaguide, Mozambique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hydraulic Conditions of the Study Site
2.2. Data from Digital Elevation Models
2.3. Rainfall Data
2.4. Soil Cover Data
3. Hazard Assessment
3.1. Hydrological Modelling
3.2. Hydraulic Modelling
4. Modelling-Based Proposal of a Mitigation Measure
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rentschler, J.; Salhab, M. People in Harm’s Way: Flood Exposure and Poverty in 189 Countries; Policy Research Working Paper No. 9447; World Bank: Washington, DC, USA, 2020; Available online: https://openknowledge.worldbank.org/handle/10986/34655 (accessed on 13 January 2021).
- FAO. The State of Food and Agriculture 2020. Overcoming Water Challenges in Agriculture; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Hierink, F.; Rodrigues, N.; Muñiz, M.; Panciera, R.; Ray, N. Modelling geographical accessibility to support disaster response and rehabilitation of a healthcare system: An impact analysis of Cyclones Idai and Kenneth in Mozambique. BMJ Open 2020, 10, e039138. [Google Scholar] [CrossRef] [PubMed]
- United Nations Office for the Coordination of Humanitarian Affairs. Southern Africa—Tropical Cyclone Eloise. Flash update N.7. 24 January 2021. Available online: https://reliefweb.int/report/mozambique/southern-africa-tropical-cyclone-eloise-flash-update-no7-24-january-2021 (accessed on 25 January 2021).
- McCartney, M.; Rebelo, L.-M.; Xenarios, S.; Smakhtin, V. Agricultural Water Storage in an Era of Climate Change: Assessing Need and Effectiveness in Africa; IWMI Research Report 152; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2013. [Google Scholar] [CrossRef] [Green Version]
- Kalantari, Z.; Santos Ferreira, C.S.; Keesstra, S.; Destouni, G. Nature-based solutions for flood-drought risk mitigation in vulnerable urbanizing parts of East-Africa. Curr. Opin. Environ. Sci. Health 2018, 5, 73–78. [Google Scholar] [CrossRef]
- Bodian, A.; Dezetter, A.; Diop, L.; Deme, A.; Djaman, K.; Diop, A. Future climate change impacts on streamflows of two main West Africa river basins: Senegal and Gambia. Hydrology 2018, 5, 21. [Google Scholar] [CrossRef] [Green Version]
- Van Steenbergen, F.; Verheyen, O.; van Aarst, S.; Mehari, A. Spate irrigation, livelihood improvement and adaptation to climate variability and change. IFAD/MetaMeta/UNESCO-IHE. 2008. Available online: https://sswm.info/sites/default/files/reference_attachments/STEENBERGEN%20et%20al%20ny%20Spate%20Irrigation.pdf (accessed on 15 January 2021).
- Mehari, A.; Van Steenbergen, F.; Schultz, B. Modernization of spate irrigated agriculture: A new approach. Irrig. Drain. 2011, 60, 163–173. [Google Scholar] [CrossRef]
- Komakech, H.C.; Mul, M.L.; van der Zaag, P.; Rwehumbiza, F.B. Water allocation and management in an emerging spate irrigation system in Makanya catchment, Tanzania. Agric. Water Manag. 2011, 98, 1719–1726. [Google Scholar] [CrossRef]
- Gebrehiwot, K.A.; Haile, A.M.; de Fraiture, C.M.S.; Chukalla, A.D.; Embaye, T.G.G. Optimizing flood and sediment management of spate irrigation in Aba’ala Plains. Water Resour. Manage. 2015, 29, 833–847. [Google Scholar] [CrossRef]
- Gebremariam, H.L.; Haile, A.M. Improving spate flow diversions in spate irrigation intake structures. ISH J. Hydraul. Eng. 2020. [Google Scholar] [CrossRef]
- Fujihara, Y.; Tanakamaru, H.; Tada, A.; Adam, B.M.A.; Elamin, K.A.E. Analysis of cropping patterns in Sudan’s Gash spate irrigation system using Landsat 8 images. J. Arid Environ. 2020, 173, 104044. [Google Scholar] [CrossRef]
- Lumbroso, D.; Ramsbottom, D.; Spaliveiro, M. Sustainable flood risk management strategies to reduce rural communities’ vulnerability to flooding in Mozambique. J. Flood Risk Manag. 2008, 1, 34–42. [Google Scholar] [CrossRef]
- Farooq, M.; Shafique, M.; Khattak, M.S. Flood hazard assessment and mapping of River Swat using HEC-RAS 2D model and high-resolution 12-m TanDEM-X DEM (WorldDEM). Nat. Hazards 2019, 97, 477–492. [Google Scholar] [CrossRef]
- Álvarez, M.; Puertas, J.; Peña, E.; Bermúdez, M. Two-dimensional dam-break flood analysis in data-scarce regions: The case study of chipembe dam, Mozambique. Water 2017, 9, 432. [Google Scholar] [CrossRef] [Green Version]
- Mahe, G.; New, M.; Paturel, J.E.; Cres, A.; Dezetter, A.; Dieulin, C.; Boyer, J.F.; Rouche, N.; Servat, E. Comparing available rainfall gridded datasets for West Africa and the impact on rainfall-runoff Modelling Results, the case of Burkina-Faso. Water SA 2008, 34, 529–536. [Google Scholar] [CrossRef] [Green Version]
- Chomba, I.C.; Banda, K.E.; Winsemius, H.C.; Chomba, M.J.; Mataa, M.; Ngwenya, V.; Sichingabula, H.M.; Nyambe, I.A.; Ellender, B. A review of coupled hydrologic-hydraulic models for floodplain assessments in Africa: Opportunities and challenges for floodplain wetland management. Hydrology 2021, 8, 44. [Google Scholar] [CrossRef]
- Karlsson, J.M.; Arnberg, W. Quality analysis of SRTM and HYDRO1K: A case study of flood inundation in Mozambique. Int. J. Remote Sens. 2011, 32, 267–285. [Google Scholar] [CrossRef]
- Khaddor, I.; Achab, M.; Hafidi Alaoui, A. Estimation of peak discharge in a poorly gauged catchment based on a specified hyetograph model and geomorphological parameters: Case study for the 23–24 October 2008 flood, KALAYA basin, Tangier, Morocco. Hydrology 2019, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- Abrams, M.; Crippen, R.; Fujisada, H. ASTER global Digital Elevation Model (GDEM) and ASTER global water body dataset (ASTWBD). Remote Sens. 2020, 12, 1156. [Google Scholar] [CrossRef] [Green Version]
- Shawky, M.; Moussa, A.; Hassan, Q.K.; El-Sheimy, N. Pixel-based geometric assessment of channel networks/orders derived from global Spaceborne Digital Elevation Models. Remote Sens. 2019, 11, 235. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Negi, H.S.; Kumar, K.; Shekhar, C. Accuracy validation and bias assessment for various multi-sensor open-source DEMs in part of the Karakoram region. Remote Sens. Letters. 2020, 11, 893–902. [Google Scholar] [CrossRef]
- Khal, M.; Algouti, A.; Algouti, A.; Akdim, N.; Stankevich, S.A.; Menenti, M. Evaluation of open Digital Elevation Models: Estimation of topographic indices relevant to erosion risk in the Wadi M’Goun watershed, Morocco. AIMS Geosci. 2020, 6, 231–257. [Google Scholar] [CrossRef]
- Schumann, G.J.-P.; Bates, P.D. The need for a high-accuracy, open-access global DEM. Front. Earth Sci. 2018, 6, 1–5. [Google Scholar] [CrossRef]
- Corti, B.; Rrokaj, S. Flood Risk Assessment and Mitigation for Rio Muaguide in Cabo Delgado, Mozambique. Master’s Thesis, Politecnico di Milano, Milan, Italy, 2019. [Google Scholar]
- Bichet, A.; Diedhiou, A. West African Sahel has become wetter during the last 30 years, but dry spells are shorter and more frequent. Clim Res. 2018, 75, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Mouhamed, L.; Kouakou, K.; Adeline, B.; Arona, D.; Salomon, O.; Issiaka, S. Using the CHIRPS dataset to investigate historical changes in precipitation extremes in West Africa. Climate 2020, 8, 84. [Google Scholar] [CrossRef]
- Toté, C.; Patricio, D.; Boogaard, H.; Van der Wijngaart, R.; Tarnavsky, E.; Funk, C. Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique. Remote Sens. 2015, 7, 1758–1776. [Google Scholar] [CrossRef] [Green Version]
- Macey, P.; Miller, J.; Rower, C.; Grantham, G.; Siegfried, P.; Armstrong, R.; Kemp, J.; Bacalu, J. Geology of the Monapo Klippe, NE Mozambique and its significance for assembly of central Gondwana. Precambiran Res. 2013, 233, 259–281. [Google Scholar] [CrossRef]
- Nelson, J.M.; Shimizu, Y.; Abe, T.; Asahi, K.; Gamou, M.; Inoue, T.; Iwasaki, T.; Kakinuma, T.; Kawamura, S.; Kimura, I.; et al. The international river interface cooperative: Public domain flow and morphodynamics software for education and applications. Adv. Water Resour. 2016, 93, 62–74. [Google Scholar] [CrossRef]
- Biotto, D.; Cancelliere, G.; Corti, B.; Giovannini, A.; Radice, A.; Rrokaj, S. Inundation hazard analysis using open data from the web: Application to the Rio Muaguide in Mozambique. River Flow 2020, 2020, 1415–1423. [Google Scholar] [CrossRef]
- Bokhove, O.; Kelmanson, M.A.; Kent, T.; Piton, G.; Tacnet, J.-M. Communicating (nature-based) flood-mitigation schemes using flood-excess volume. River Res. Applic. 2019, 35, 1402–1414. [Google Scholar] [CrossRef] [Green Version]
- Brambilla, D.; Longoni, L.; Papini, M.; Giorgetti, E.; Radice, A. On analysis of sediment sources toward proper characterization of hydro-geological hazard for mountain environments. Int. J. Saf. Secur. Eng. 2011, 1, 423–437. [Google Scholar] [CrossRef]
- Radice, A.; Giorgetti, E.; Brambilla, D.; Longoni, L.; Papini, M. On integrated sediment transport modelling for flash events in mountain environments. Acta Geophys. 2012, 60, 191–213. [Google Scholar] [CrossRef]
- Longoni, L.; Ivanov, V.I.; Brambilla, D.; Radice, A.; Papini, M. Analysis of the temporal and spatial scales of soil erosion and transport in a mountain basin. Ital. J. Eng. Geol. Environ. 2016, 16, 17–30. [Google Scholar] [CrossRef]
DEM | Cell Size | 1st Acquisition | Realised | Absolute Vertical Accuracy |
---|---|---|---|---|
SRTM | 90 m | 2000 | 2004 | <16 m |
SRTM | 30 m | 2000 | 2014 | <16 m |
ASTER GDEM | 30 m | 2000–2007 [21] | 2009 | <17 m |
ALOS PALSAR | 12.5 m | 2006–2011 | 2011 | 4–17 m |
Sub-Basin | Copernicus | ESA | FAO Geo-Network | Average CN |
---|---|---|---|---|
Sub-basin 1 | 77.00 | 77.00 | 78.89 | 77.63 |
Sub-basin 2 | 77.00 | 77.00 | 78.83 | 77.61 |
Sub-basin 3 | 77.00 | 77.81 | 86.17 | 80.83 |
Sub-basin 4 | 77.00 | 96.34 | 86.60 | 85.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rrokaj, S.; Corti, B.; Giovannini, A.; Cancelliere, G.; Biotto, D.; Radice, A. Flood Mitigation Measure and Water Storage in East Africa: An Analysis for the Rio Muaguide, Mozambique. Hydrology 2021, 8, 92. https://doi.org/10.3390/hydrology8020092
Rrokaj S, Corti B, Giovannini A, Cancelliere G, Biotto D, Radice A. Flood Mitigation Measure and Water Storage in East Africa: An Analysis for the Rio Muaguide, Mozambique. Hydrology. 2021; 8(2):92. https://doi.org/10.3390/hydrology8020092
Chicago/Turabian StyleRrokaj, Sara, Benedetta Corti, Anna Giovannini, Giorgio Cancelliere, Davide Biotto, and Alessio Radice. 2021. "Flood Mitigation Measure and Water Storage in East Africa: An Analysis for the Rio Muaguide, Mozambique" Hydrology 8, no. 2: 92. https://doi.org/10.3390/hydrology8020092
APA StyleRrokaj, S., Corti, B., Giovannini, A., Cancelliere, G., Biotto, D., & Radice, A. (2021). Flood Mitigation Measure and Water Storage in East Africa: An Analysis for the Rio Muaguide, Mozambique. Hydrology, 8(2), 92. https://doi.org/10.3390/hydrology8020092