Impact of Pumping Rate on Contaminant Transport in Groundwater—A Numerical Study
Abstract
:1. Introduction
2. Model Development
2.1. Governing Groundwater Flow Equation
2.2. Governing Contaminant Transport Equation
3. Numerical Solution
3.1. Groundwater Equation
3.2. Contaminant Transport Equation
3.2.1. Advection Term
3.2.2. Dispersion Term
4. Result
4.1. Verification of the Flow Model
4.2. Verification of the Transport Model
5. Numerical Implementation
5.1. Single Well
5.2. Group of Wells
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ayvaz, M.T. Identification of Pumping Well Characteristics in a Heterogeneous Aquifer System Using a Genetic Algorithm Approach. Ph.D. Thesis, Department of Civil Engineering, Pamukkale University, Denizli, Turkey, 2008. (In Turkish). [Google Scholar]
- Karkush, M.O.; Kareem, Z.A. Investigation the impacts of fuel oil contamination on the behavior of passive piles group in clayey soils. Eur. J. Environ. Civ. Eng. 2018, 25, 485–501. [Google Scholar] [CrossRef]
- Asfaw, D.; Ayalew, D. Modeling megech watershed aquifer vulnerability to pollution using modified DRASTIC model for sustainable groundwater management, Northwestern Ethiopia. Groundw. Sustain. Dev. 2020, 11, 100375. [Google Scholar] [CrossRef]
- Chang, S.W.; Chung, I.M. Water Budget Analysis Considering Surface Water–Groundwater Interactions in the Exploitation of Seasonally Varying Agricultural Groundwater. Hydrology 2021, 8, 60. [Google Scholar] [CrossRef]
- Ducci, D.; Sellerino, M. Vulnerability mapping of groundwater contamination based on 3D lithostratigraphical models of porous aquifers. Sci. Total Environ. 2013, 447, 315–322. [Google Scholar] [CrossRef]
- Medici, G.; Baják, P.; West, L.J.; Chapman, P.J.; Banwart, S.A. DOC and nitrate fluxes from farmland; impact on a dolostone aquifer KCZ. J. Hydrol. 2021, 595, 125658. [Google Scholar] [CrossRef]
- Massabo, M.; Cianci, R.; Paladino, O. Some analytical solutions for two-dimensional convection–dispersion equation in cylindrical geometry. Environ. Model. Softw. 2006, 21, 681–688. [Google Scholar] [CrossRef]
- Wu, X.; Shi, J.; He, J. Analytical solutions for diffusion of organic contaminant through composite liner considering degradation in leachate and soil liner. Int. J. Environ. Pollut. 2017, 61, 166–185. [Google Scholar] [CrossRef]
- Mustafa, S.; Darwish, M.; Bahar, A.; Aziz, Z.A. Analytical Modeling of Well Design in Riverbank Filtration Systems. Groundwater 2019, 57, 756–763. [Google Scholar] [CrossRef]
- Kim, S.B. Numerical analysis of bacterial transport in saturated porous media. Hydrol. Process. Int. J. 2006, 20, 1177–1186. [Google Scholar] [CrossRef]
- Malaguerra, F.; Albrechtsen, H.J.; Binning, P.J. Assessment of the contamination of drinking water supply wells by pesticides from surface water resources using a finite element reactive transport model and global sensitivity analysis techniques. J. Hydrol. 2013, 476, 321–331. [Google Scholar] [CrossRef]
- Ben-Zvi, R.; Jiang, S.; Scher, H.; Berkowitz, B. Finite-Element Method Solution of Non-Fickian Transport in Porous Media: The CTRW-FEM Package. Groundwater 2019, 57, 479–484. [Google Scholar] [CrossRef]
- Gkiougkis, I.; Pouliaris, C.; Pliakas, F.K.; Diamantis, I.; Kallioras, A. Conceptual and Mathematical Modeling of a Coastal Aquifer in Eastern Delta of R. Nestos (N. Greece). Hydrology 2021, 8, 23. [Google Scholar] [CrossRef]
- Maqsood, I.; Luo, B. Integrated 3D physical-numerical modelling for simulating bioremediation of petroleum contamination in heterogeneous subsurface environment. Int. J. Environ. Pollut. 2010, 42, 199–219. [Google Scholar] [CrossRef]
- Meenal, M.; Eldho, T.I. Meshless Point Collocation Method for 1D and 2D groundwater flow simulation. ISH J. Hydraul. Eng. 2011, 17, 71–87. [Google Scholar] [CrossRef]
- Navas, P.; López-Querol, S.; Yu, R.C.; Li, B. B-bar based algorithm applied to meshfree numerical schemes to solve unconfined seepage problems through porous media. Int. J. Numer. Anal. Methods Geomech. 2016, 40, 962–984. [Google Scholar] [CrossRef]
- Ahmadi, H. An implicit numerical model for solving free-surface seepage problems. ISH J. Hydraul. Eng. 2021, 1–9. [Google Scholar] [CrossRef]
- Ahmadi, H. A numerical scheme for advection dominated problems based on a Lagrange interpolation. Groundw. Sustain. Dev. 2021, 13, 100542. [Google Scholar] [CrossRef]
- Ahmadi, H.; Namin, M.M.; Kilanehei, F. Development a numerical model of flow and contaminant transport in layered soils. Adv. Environ. Res. 2016, 5, 263–282. [Google Scholar] [CrossRef]
- Halford, K.J.; Stamos, C.L.; Nishikawa, T.; Martin, T. Arsenic management through well modification and simulation. Groundwater 2010, 48, 526–537. [Google Scholar] [CrossRef]
- Johnson, R.L.; Clark, B.R.; Landon, M.K.; Kauffman, L.J.; Ebert, S.M. Modeling the potential impact of seasonal and inactive multi-aquifer wells on contaminant movement to public water supply wells. J. Am. Water Resour. Assoc. 2011, 47, 588–596. [Google Scholar] [CrossRef]
- Park, C.H.; Aral, M.M. Multi-objective optimization of pumping rates and well placement in coastal aquifers. J. Hydrol. 2004, 290, 80–99. [Google Scholar] [CrossRef]
- Kalwij, I.M.; Peralta, R.C. Simulation/optimization modeling for robust pumping strategy design. Groundwater 2006, 44, 574–582. [Google Scholar] [CrossRef]
- Zinn, B.A.; Konikow, L.F. Effects of intraborehole flow on groundwater age distribution. Hydrogeol. J. 2007, 15, 633–643. [Google Scholar] [CrossRef]
- Sharief, S.M.V.; Eldho, T.I.; Rastogi, A.K. Optimal pumping policy for aquifer decontamination by pump and treat method using genetic algorithm. ISH J. Hydraul. Eng. 2008, 14, 1–17. [Google Scholar] [CrossRef]
- Bexfield, L.M.; Jurgens, B.C. Effects of Seasonal Operation on the Quality of Water Produced by Public-Supply Wells. Groundwater 2014, 52, 10–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cyriac, R.; Rastogi, A.K. Optimization of pumping policy using coupled finite element-particle swarm optimization modelling. ISH J. Hydraul. Eng. 2016, 22, 88–99. [Google Scholar] [CrossRef]
- Rodriguez-Pretelin, A.; Nowak, W. Dynamic re-distribution of pumping rates in well fields to counter transient problems in groundwater production. Groundw. Sustain. Dev. 2019, 8, 606–616. [Google Scholar] [CrossRef]
- Dey, S.; Prakash, O. Managing saltwater intrusion using conjugate sharp interface and density dependent models linked with pumping optimization. Groundw. Sustain. Dev. 2020, 11, 100446. [Google Scholar] [CrossRef]
- Medici, G.; West, L.J.; Chapman, P.J.; Banwart, S.A. Prediction of contaminant transport in fractured carbonate aquifer types: A case study of the Permian Magnesian Limestone Group (NE England, UK). Environ. Sci. Pollut. Res. 2019, 26, 24863–24884. [Google Scholar] [CrossRef] [Green Version]
- Medici, G.; West, L.J. Groundwater flow velocities in karst aquifers; importance of spatial observation scale and hydraulic testing for contaminant transport prediction. Environ. Sci. Pollut. Res. 2021, 1–14. [Google Scholar] [CrossRef]
- Bear, J. Hydraulics of Groundwater; McGraw-Hill: New York, NY, USA, 1979. [Google Scholar]
- Schulze-Makuch, D. Longitudinal Dispersivity Data and Implications for Scaling Behavior. Groundwater 2005, 14, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Bear, J.; Verruijt, A. Modeling Groundwater Flow and Pollution; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2012; Volume 2. [Google Scholar]
- Zech, A.; Attinger, S.; Bellin, A.; Cvetkovic, V.; Dietrich, P.; Fiori, A.; Teutsch, G.; Dagan, G. A Critical Analysis of Transverse Dispersivity Field Data. Groundwater 2019, 57, 632–639. [Google Scholar] [CrossRef]
- Yanenko, N.N. The Method of Fractional Steps; Springer: Berlin/Heidelberg, Germany, 1971. [Google Scholar] [CrossRef]
- Namin, M.M.; Falconer, R.A. An efficient coupled 2-DH and 3D hydrodynamic model for river and coastal application. In Hydroinformatics; World Scientifc: Singapore, 2008; pp. 374–382. [Google Scholar] [CrossRef]
- Arshad, I.; Baber, M.M. Finite element analysis of seepage through an earthen dam by using geo-slope (SEEP/W) software. Int. J. Res. 2014, 1, 612–619. [Google Scholar]
- Theis, C.V. The relation between the lowering the piezometric surface and the rate and duration of discharge of a well using Ground-Water storage. Trans. Am. Geophys. Union 1935, 16, 519–524. [Google Scholar] [CrossRef]
- Massabo, M.; Cianci, R.; Paladino, O. An Analytical Solution of the Advection Dispersion Equation in a Bounded Domain and Its Application to Laboratory Experiments. J. Appl. Math. 2011, 23, 90–104. [Google Scholar] [CrossRef]
- Ogata, A.; Banks, R.B. A Solution of the Differential Equation of Longitudinal Dispersion in Porous Media: Fluid Movement in Earth Materials; US Government Printing Office: Washington, DC, USA, 1961; Volume 411. [CrossRef] [Green Version]
Parameter | Symbol | Value |
---|---|---|
Hydraulic conductivity | K | 0.01 (m/s) |
Average hydraulic gradient | i | 0.008 |
Single well coordination | (Xsw, Ysw) | (210, 22.5) |
Group of wells coordination | (Xgw, Ygw) | (210, 15), (210, 30) |
Injection point | (X0, Y0, Z0) | (20, 22.5, 10) |
Initial concentration | C0 | 100 (mg/L) |
Injection time | T0 | 24 h. |
Diffusion coefficient | D | |
Porosity | n | 0.34 |
Reduction of Pumping Rate | Single Well | Group of Wells |
---|---|---|
100% to 70% | 28.4 | 31.2 |
100% to 30% | 33.2 | 38.5 |
100% to cease pumping | 42.3 | 54.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmadi, H.; Kilanehei, F.; Nazari-Sharabian, M. Impact of Pumping Rate on Contaminant Transport in Groundwater—A Numerical Study. Hydrology 2021, 8, 103. https://doi.org/10.3390/hydrology8030103
Ahmadi H, Kilanehei F, Nazari-Sharabian M. Impact of Pumping Rate on Contaminant Transport in Groundwater—A Numerical Study. Hydrology. 2021; 8(3):103. https://doi.org/10.3390/hydrology8030103
Chicago/Turabian StyleAhmadi, Hossein, Fouad Kilanehei, and Mohammad Nazari-Sharabian. 2021. "Impact of Pumping Rate on Contaminant Transport in Groundwater—A Numerical Study" Hydrology 8, no. 3: 103. https://doi.org/10.3390/hydrology8030103
APA StyleAhmadi, H., Kilanehei, F., & Nazari-Sharabian, M. (2021). Impact of Pumping Rate on Contaminant Transport in Groundwater—A Numerical Study. Hydrology, 8(3), 103. https://doi.org/10.3390/hydrology8030103