Quantifying Streambed Dispersion in an Alluvial Fan Facing the Northern Italian Apennines: Implications for Groundwater Management of Vulnerable Aquifers
Abstract
:1. Introduction
2. Study Area
2.1. Climatic and Hydrological Settings
2.2. Hydrogeological Features
- -
- A0 (aquitard/aquiclude): unconfined or locally semiunconfined aquitard/aquiclude that mainly consists of floodplain filling silts and clays covering the majority of the fan (see Figure 1 and Figure 2). In the apical part of the alluvial fan, lenses of gravels and coarse sands with likely-aquifer behavior. In the middle/distal part of the alluvial fan, lenses of sands and fine sands of reduced extension with the possibility of hosting perched groundwater during the winter and spring months (i.e., unconfined groundwater separated from underlying groundwater in A1 by an unsaturated zone; [25]). Maximum thickness is reached in the distal part of the fan (about 10 m);
- -
- A1: along the Tresinaro River and in the vicinity of the apical part, gravels (channel deposits) amalgamated with the underlying hydrogeological complex A2. In the outcrops at the foothills of the northern Apennines, the hydrogeological complex is dominated by silty clays materials. Toward the distal part of the fan, grain size passes through silty clays with gravelly lenses (interchannel deposits). Lenses of coarse sands can be found in the middle/distal part of fan; their hydraulic interconnection with gravels and coarse sands from the apical part is reduced. Maximum thickness is in the order of 30 m (distal part of the fan);
- -
- A2: coarse gravels in the apical part of the fan with greater prograding northward of the braider-river deposits than the above-mentioned A1. The few outcrops from the hillslope facing the city of Scandiano are composed of fine sands with a silty matrix. Good interconnection among the coarser lenses along the entire fan (maximum thickness of about 35 m);
- -
- A3: along with A4, it is characterized by the larger longitudinal extension of braided-river deposits with respect to all the other hydrogeological complexes composing the Aquifer Group A. Maximum thickness is 35 m. Medium sands widely outspread also in the middle part of the fan. No outcrops in the study area;
- -
- A4: well-developed aquifer-like behavior up to the middle part of the alluvial fan (maximum thickness is 55 m) with a mixture of sands and gravels. In the distal part of the fan, a sandy aquifer with a remarkable lateral extension is localized at more than 200 m in depth. As in the case of A3, there are no outcrops in the study area.
3. Material and Methods
3.1. River Discharge Estimates
3.2. Streambed Losses Assessment
4. Results
5. Discussion
5.1. Streambed Dispersions and Relationships with Hydrogeological Features
5.2. Overall Considerations on the Tested Approach: In-Continuous Recharge Assessment and Possible Implications for Other Case Studies
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chahoud, A.; Cristofori, D. Il Le Pressioni Antropiche in Relazione Alle Acque Sotterranee: I Prelievi; Quaderni di Tecniche di Protezione Ambientale, 85 Pitagora Editrice: Bologna, Italy, 2014; pp. 87–94. [Google Scholar]
- Benelli, F.; Pignone, R.; Di Dio, G. Riserve Idriche Sotterranee della Regione Emilia-Romagna; SELCA: Firenze, Italy, 2014; p. 120. [Google Scholar]
- Farina, M.; Marcaccio, M. Lo Stato Qualitativo Delle Acque Sotterranee; 85 Pitagora Editrice: Bologna, Italy, 2014; pp. 57–75. [Google Scholar]
- Di Dio, G. Modelling groundwater-stream water interactions in the Taro river hydrogeological basin (western Emilia-Romagna region, northern Italy). Ital. J. Eng. Geol. Environ. 2012, 12, 23–39. [Google Scholar]
- Martinelli, G.; Dadomo, A.; Cervi, F. An Attempt to Characterize the Recharge of Alluvial Fans Facing the Northern Italian Apennines: Indications from Water Stable Isotopes. Water 2020, 12, 1561. [Google Scholar] [CrossRef]
- Martinelli, G.; Minissale, A.; Verrucchi, C. Geochemistry of heavily exploited aquifers in the Emilia-Romagna region (Po valley, northern Italy). Environ. Geol. 1998, 36, 195–206. [Google Scholar] [CrossRef]
- Cervi, F.; Corsini, A.; Marcaccio, M. Confronto tra metodo euristico SINTACS e SINTACS-Woe in base alla distribuzione dell’inquinamento da nitrati-caso studio della conoide del Fiume Enza. In Esperienze e Prospettive nel Monitoraggio delle Acque Sotterranee: Il Contributo dell’Emilia-Romagna; Quaderni di Tecniche di Protezione Ambientale, 85 Pitagora Editrice: Bologna, Italy, 2014; pp. 140–147. [Google Scholar]
- Tagliavini, S.; Perego, S.; Zontini, S. Carta Della Vulnerabilità All’inquinamento Degli Acquiferi Della Conoide del Fiume Enza; Note illustrative. Quad. Tecniche Protezione Ambientale, 11. Studi Sulla Vulnerabilità Degli Aquiferi, 1: 15-51; 85 Pitagora Editrice: Bologna, Italy, 1990. [Google Scholar]
- Martinelli, G.; Dadomo, A.; De Luca, D.A.; Mazzola, M.; Lasagna, M.; Pennisi, M.; Pilla, G. Nitrate sources, accumulation and reduction in groundwater from Northern Italy: Highlights provided by a nitrate and boron isotopic database. Appl. Geochem. 2018, 91, 23–35. [Google Scholar] [CrossRef]
- Zanini, A.; Petrella, E.; Sanangelantoni, A.M.; Angelo, L.; Ventosi, B.; Viani, L.; Rizzo, P.; Remelli, S.; Bartoli, M.; Bolpagni, R.; et al. Groundwater characterization from an ecological and human perspective: An interdisciplinary approach in the Functional Urban Area of Parma, Italy. Rend. Lincei. Sci. Fis. Nat. 2019, 30, 93–108. [Google Scholar] [CrossRef]
- Anselmi, M.; Renoldi, F.; Alberti, L. Analytical and numerical methods for a preliminary assessment of the remediation time of Pump and Treat system. Water 2020, 12, 2850. [Google Scholar] [CrossRef]
- Modoni, G.; Darini, G.; Spacagna, R.L.; Saroli, M.; Russo, G.; Croce, P. Spatial analysis of land subsidence induced by groundwater withdrawal. Eng. Geol. 2013, 167, 59–71. [Google Scholar] [CrossRef]
- Bitelli, G.; Bonsignore, F.; Conte, S.D.; Franci, F.; Lambertini, A.; Novali, F.; Severi, P.; Vittuari, L. Updating the subsidence map of Emilia-Romagna region (Italy) by integration of SAR interferometry and GNSS time series: The 2011–2016 period. Proc. Int. Assoc. Hydrol. Sci. 2020, 382, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Preciso, E.; Salemi, E.; Billi, P. Land use changes, torrent control works and sediment mining: Effects on channel morphology and sediment flux, case study of the Reno River (Northern Italy). Hydrol. Proc. 2012, 26, 1134–1148. [Google Scholar] [CrossRef]
- Pavanelli, D.; Cavazza, C.; Lavrnić, S.; Toscano, A. The long-term effects of land use and climate changes on the hydro-morphology of the Reno river catchment (Northern Italy). Water 2019, 11, 1831. [Google Scholar] [CrossRef] [Green Version]
- Bonazzi, U. Modificazioni d’alveo del fiume Secchia avvenute negli ultimi cento anni nei dintorni di Sassuolo (Modena). Atti Soc. Nat. E Mat. Modena 1996, 127, 67–99. [Google Scholar]
- Pellegrini, M.; Tosatti, G. Engineering geology, geotechnics and hydrogeology in environmental management: Northern Italian experiences. In Geomechanics and Water Engineering in Environmental Management; Taylor and Francis: London, UK, 1992; pp. 407–428. [Google Scholar]
- Cervi, F.; Nistor, M.M. High resolution of water availability for Emilia-Romagna region over 1961–2015. Adv. Meteorol. 2018, 2018, 2489758. [Google Scholar] [CrossRef]
- Chahoud, A.; Gelati, L.; Palumbo, A.; Patrizi, G.; Pellegrino, I.; Zaccanti, G. Groundwater flow model management and case studies in Emilia-Romagna (Italy). Acque Sotter. Ital. J. Groundw. 2013, 2, 59–73. [Google Scholar] [CrossRef] [Green Version]
- Chahoud, A.; Patrizi, G.; Zazzanti, G.; Gelati, L. Il modello di flusso delle acque sotterranee della Regione Emilia-Romagna. In Esperienze e Prospettive nel Monitoraggio delle Acque Sotterranee: Il Contributo dell’Emilia-Romagna; Quaderni di Tecniche di Protezione Ambientale, 85 Pitagora Editrice: Bologna, Italy, 2014; pp. 186–224. [Google Scholar]
- SGSS-EMR. Geological, Seismic and Soil Survey of the Emilia-Region: Cartografia. 2019. Available online: https://applicazioni.regione.emilia-romagna.it/cartografia_sgss/user/viewer.jsp (accessed on 31 May 2021).
- Cervi, F.; Marcaccio, M.; Petronici, F.; Borgatti, L. Hydrogeological characterization of peculiar Apenninic springs. Proc. Int. Assoc. Hydrol. Sci. 2014, 364, 333–338. [Google Scholar] [CrossRef]
- ARPAE-EMR. Regional Agency for Environmental Protection in Emilia-Romagna Region: Annali Idrologici. 2019. Available online: https://www.arpae.it/sim/ (accessed on 31 May 2021).
- Cervi, F.; Blöschl, G.; Corsini, A.; Borgatti, L.; Montanari, A. Perennial springs provide information to predict low flows in mountain basins. Hydrol. Sci. J. 2017, 62, 2469–2481. [Google Scholar] [CrossRef]
- Municipality of Scandiano. Seismic Analyses and geological Feasibility Study.Geological, Hydrogeological and Seismic Framework in Support of the Municipal Structural Plan. Available online: https://www.comune.scandiano.re.it/piano-strutturale-comunale/quadro-conoscitivo-geologico/ (accessed on 31 May 2021).
- ATERSIR-RE. Integrated Water Service Area Plan for the Reggio Emilia Province. 2019. Available online: http://www.atersir.it/servizio-idrico/territorio-provinciale-di-reggio-emilia/piano-dambito (accessed on 31 May 2021).
- Farina, M.; Marcaccio, M.; Zavatti, A. Esperienze e Prospettive nel Monitoraggio Delle Acque Sotterranee. Il Contributo Dell’emilia-Romagna; Quaderni di Tecniche di Protezione Ambientale, Pitagora Editrice: Bologna, Italy, 2014; p. 560. [Google Scholar]
- Martinelli, G.; Chahoud, A.; Dadomo, A.; Fava, A. Isotopic features of Emilia-Romagna region (North Italy) groundwaters: Environmental and climatological implications. J. Hydrol. 2014, 519, 1928–1938. [Google Scholar] [CrossRef]
- Leibundgut, C.; Maloszewski, P.; Külls, C. Tracers in Hydrology; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Tazioli, A. Experimental methods for river discharge measurements: Comparison among tracers and current meter. Hydrol. Sci. J. 2011, 56, 1314–1324. [Google Scholar] [CrossRef]
- Vizzi, L. Studio idrogeologico delle sorgenti Mulino delle Vene (Val Tresinaro). Master’s Thesis, University of Modena and Reggio Emilia, Modena, Italy, 2013; 101p. Available online: https://morethesis.unimore.it/ETD-db/ETD-search/search (accessed on 31 May 2021).
- Guizerix, J.; Florkowski, T. Streamflow measurements. In Guidebook on Nuclear Techniques in Hydrology, 65–80; IAEA, International Atomic Energy Agency: Vienna, Austria, 1983; ISBN 92-0-145083. [Google Scholar]
- Taylor, J.R. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, 2nd ed.; University Science Books: Sausalito, CA, USA, 1997. [Google Scholar]
- Davis, J.C. Statistics and Data Analysis in Geology; John Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
- Doornik, J.A.; Hansen, H. An omnibus test for univariate and multivariate normality. Oxf. Bull. Econ. Stat. 2008, 70, 927–939. [Google Scholar] [CrossRef]
- Breusch, T.S.; Pagan, A.R. A Simple Test for Heteroscedasticity and Random Coefficient Variation. Econometrica 1979, 47, 1287. [Google Scholar] [CrossRef]
- Durbin, J.; Watson, G.S. Testing For Serial Correlation in Least Squares Regression: I. Biometrika 1950, 37, 409–428. [Google Scholar]
- Day, T.J. On the precision of salt dilution gauging. J. Hydrol. 1976, 31, 293–306. [Google Scholar] [CrossRef]
- Day, T.J. Observed mixing lengths in mountain streams. J. Hydrol. 1977, 36, 125–136. [Google Scholar] [CrossRef]
- Poulain, A.; Marc, V.; Gillon, M.; Mayer, A.; Cognard-Plancq, A.L.; Simler, R.; Babic, M.; Leblanc, M. Enhanced pumping test using physicochemical tracers to determine surface-water/groundwater interactions in an alluvial island aquifer, river Rhône, France. Hydrogeol. J. 2021, 29, 1569–1585. [Google Scholar] [CrossRef]
Longitude (X) | Latitude (Y) | Station Code (Discharge Code) | Number of Tests | Amount of Tracer (g) in 5 L of Water | Station Code | Discharge ls−1 | Errors (2 σ; %) | Errors (2 σ; ls−1) |
---|---|---|---|---|---|---|---|---|
10°42′51.69″ E | 44°36′42.85″ N | S7 | 4 | 700 | S7 | 111 | ±12.8 | ±15 |
10°42′51.69″ E | 44°36′42.85″ N | S7 | 4 | 400 | S7 | 102 | ±6.3 | ±6 |
10°42′51.69″ E | 44°36′42.85″ N | S7 | 4 | 300 | S7 | 94 | ±4.1 | ±4 |
10°42′51.69″ E | 44°36′42.85″ N | S7(QS7) | 4 | 200 | S7 | 98 | ±3.3 | ±3 |
10°42′51.69″ E | 44°36′42.85″ N | S7 | 4 | 100 | S7 | 76 | ±8.9 | ±7 |
Longitude (X) | Latitude (Y) | Progressive Distance from S1 (in m) | Station Code (Discharge Code) | Campaign | ||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | ||||
Discharge (ls−1) | Discharge (ls−1) | Discharge (ls−1) | Discharge (ls−1) | Discharge (ls−1) | Discharge (ls−1) | Discharge (ls−1) | ||||
10°42′51.69′′ E | 44°36′42.85′′ N | 6868 | S7 (QS7) | 98 ± 3 | 99 ± 3 | 97 ± 3 | 68 ± 2 | 34 ± 1 | 43 ± 1 | 21 ± 1 |
10°42′17.09′′ E | 44°36′27.55′′ N | 5740 | S6 (QS6) | 99 ± 3 | 103 ± 3 | 96 ± 3 | 70 ± 2 | 35 ± 1 | 46 ± 1 | 35 ± 1 |
10°41′35.25′′ E | 44°36′27.18′′ N | 4804 | S5 (QS5) | 95 ± 3 | 98 ± 3 | 95 ± 3 | 72 ± 2 | 35 ± 1 | 45 ± 1 | 38 ± 1 |
10°40′39.55′′ E | 44°35′46.54′′ N | 3039 | S4 (QS4) | 104 ± 3 | 103 ± 3 | 106 ± 3 | 69 ± 2 | 48 ± 2 | 47 ± 2 | 37 ± 1 |
10°40′21.38′′ E | 44°35′20.29′′ N | 2116 | S3 (QS3) | 156 ± 5 | 144 ± 5 | 154 ± 5 | 86 ± 3 | 58 ± 2 | 76 ± 3 | 57 ± 2 |
10°39′31.58′′ E | 44°34′42.16′′ N | 456 | S2 (QS2) | 253 ± 8 | 162 ± 5 | 224 ± 7 | 109 ± 4 | 81 ± 3 | 94 ± 3 | 73 ± 2 |
10°39′11.50′′ E | 44°34′18.91′′ N | 0 | S1 (QS1) | 324 ± 11 | 214 ± 7 | 270 ± 9 | 154 ± 5 | 122 ± 4 | 104 ± 3 | 84 ± 3 |
Losses from Streambed as per River Reach (Distance between Subsequent Sections in m) | Campaign 1 (Stream Losses) | Campaign 2 (Stream Losses) | Campaign 3 (Stream Losses) | Campaign 4 (Stream Losses) | Campaign 5 (Stream Losses) | Campaign 6 (Stream Losses) | Campaign 7 (Stream Losses) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(ls−1) | (ls−1 km−1) | (ls−1) | (ls−1 km−1) | (ls−1) | (ls−1 km−1) | (ls−1) | (ls−1 km−1) | (ls−1) | (ls−1 km−1) | (ls−1) | (ls−1 km−1) | (ls−1) | (ls−1 km−1) | |
QS6–S7 (1128 m) | 1 ± 5 | 1 ± 4 | 4 ± 2 | 4 ± 4 | 0 | 0 | 2 ± 3 | 2 ± 3 | 1 ± 2 | 1 ± 1 | 3 ± 1 | 3 ± 2 | 14 ± 2 | 12 ± 2 |
QS5–S6 (936 m) | 0 | 0 | 0 | 0 | 0 | 0 | 4 ± 3 | 2 ± 4 | 0 | 0 | 0 | 0 | 3 ± 2 | 3 ± 1 |
QS4–S5 (1765 m) | 9 ± 5 | 5 ± 3 | 5 ± 5 | 3 ± 3 | 6 ± 5 | 6 ± 3 | 0 | 0 | 7 ± 2 | 7 ± 1 | 1 ± 2 | 1 ± 1 | 0 | 0 |
QS3–S4 (923 m) | 52 ± 6 | 56 ± 7 | 41 ± 6 | 44 ± 6 | 48 ± 6 | 52 ± 7 | 17 ± 4 | 18 ± 5 | 11 ± 2 | 11 ± 3 | 31 ± 2 | 31 ± 3 | 20 ± 2 | 22 ± 2 |
QS2–S3 (1660 m) | 97 ± 10 | 58 ± 6 | 18 ± 7 | 11 ± 4 | 70 ± 9 | 42 ± 5 | 23 ± 5 | 14 ± 3 | 14 ± 3 | 14 ± 2 | 11 ± 3 | 11 ± 2 | 16 ± 4 | 10 ± 2 |
QS1–S2 (456 m) | 71 ± 14 | 156 ± 30 | 52 ± 9 | 114 ± 19 | 46 ± 12 | 101 ± 25 | 45 ± 6 | 99 ± 14 | 41 ± 5 | 90 ± 11 | 10 ± 4 | 22 ± 10 | 11 ± 5 | 24 ± 8 |
Incremental Stream Losses from S1
(Distances between Sections) | Campaign 1 | Campaign 2 | Campaign 3 | Campaign 4 | Campaign 5 | Campaign 6 | Campaign 7 |
---|---|---|---|---|---|---|---|
QS1–S5 (4804) | 229 ± 11 | 116 ± 8 | 175 ± 9 | / | 87 ± 4 | 59 ± 4 | / |
QS1–S4 (3039) | 220 ± 11 | 111 ± 8 | 164 ± 10 | 85 ± 6 | 74 ± 4 | 57 ± 4 | 47 ± 3 |
QS1–S3 (2116) | 168 ± 12 | 70 ± 9 | 116 ± 10 | 68 ± 6 | 64 ± 4 | 28 ± 4 | 27 ± 3 |
QS1–S2 (456) | 71 ± 14 | 52 ± 9 | 46 ± 12 | 45 ± 6 | 41 ± 5 | 10 ± 5 | 11 ± 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cervi, F.; Tazioli, A. Quantifying Streambed Dispersion in an Alluvial Fan Facing the Northern Italian Apennines: Implications for Groundwater Management of Vulnerable Aquifers. Hydrology 2021, 8, 118. https://doi.org/10.3390/hydrology8030118
Cervi F, Tazioli A. Quantifying Streambed Dispersion in an Alluvial Fan Facing the Northern Italian Apennines: Implications for Groundwater Management of Vulnerable Aquifers. Hydrology. 2021; 8(3):118. https://doi.org/10.3390/hydrology8030118
Chicago/Turabian StyleCervi, Federico, and Alberto Tazioli. 2021. "Quantifying Streambed Dispersion in an Alluvial Fan Facing the Northern Italian Apennines: Implications for Groundwater Management of Vulnerable Aquifers" Hydrology 8, no. 3: 118. https://doi.org/10.3390/hydrology8030118
APA StyleCervi, F., & Tazioli, A. (2021). Quantifying Streambed Dispersion in an Alluvial Fan Facing the Northern Italian Apennines: Implications for Groundwater Management of Vulnerable Aquifers. Hydrology, 8(3), 118. https://doi.org/10.3390/hydrology8030118