Reliability Analysis of Rainwater Harvesting Tanks for Irrigation Use in Greenhouse Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Climate Type and Rainfall Data
2.3. Daily Water Balance Model
2.3.1. Harvested Rainwater Volume (Rt)
2.3.2. Water Demand (Dt)
- 1st growth stage: Ιr,stage_1 = 0.5 mmd−1;
- 2nd growth stage: Ιr,stage_2 = 1.5 mmd−1;
- 3rd growth stage: Ιr,stage_3 = 2.1 mmd−1;
- 4th growth stage: Ιr,stage_4 = 2.7 mmd−1.
2.3.3. Evaporation Losses from Uncovered Rainwater Harvesting Tank (Et)
2.4. Rainwater Tank Sizing
2.5. Reliability Analysis of Rainwater Harvesting System
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- König, K.W.; Sperfeld, D. RainwaterHarvesting—A global issuematures. Fachver. Betr. Regenwassernutzung Dispon. 2007, 25, 2015. [Google Scholar]
- Angelakis, A.N. Evolution of rainwater harvesting and use in Crete, Hellas, through the millennia. Water Sci. Technol. Water Supply 2016, 16, 1624–1638. [Google Scholar] [CrossRef]
- Yannopoulos, S.; Giannopoulou, I.; Kaiafa-Saropoulou, M. Investigation of the current situation and prospects for the development of rainwater harvesting as a tool to confront water scarcity worldwide. Water 2019, 11, 2168. [Google Scholar] [CrossRef] [Green Version]
- Campisano, A.; Butler, D.; Ward, S.; Burns, M.J.; Friedler, E.; DeBusk, K.; Fisher-Jeffes, L.N.; Ghisi, E.; Rahman, A.; Furumai, H.; et al. Urban rainwater harvesting systems: Research, implementation and future perspectives. Water Res. 2017, 115, 195–209. [Google Scholar] [CrossRef] [PubMed]
- Londra, P.A.; Theocharis, A.T.; Baltas, E.; Tsihrintzis, V.A. Optimal sizing of rainwater harvesting tanks for domestic use in Greece. Water Resour. Manag. 2015, 29, 4357–4377. [Google Scholar] [CrossRef]
- Thamer, A.M.; Megat-Johari, M.M.; Noor, A.H.G. Study on potential uses of rainwater harvesting in urban areas. Presented at Rainwater Utilization Colloquium, NAHRIM Mini Auditorium, Seri Kembangan, Malaysia, 19–20 April 2007. [Google Scholar]
- Velasco-Munoz, J.F.; Aznar-Sanchez, J.A.; Batlles-delaFuente, A.; Fidelibus, M.D. Rainwater harvesting for agricultural irrigation: An analysis of global research. Water 2019, 11, 1320. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.G.; Sharda, R.; Singh, A. Harvesting rainwater from greenhouse rooftop for crop production. Agric. Res. J. 2019, 56, 493–502. [Google Scholar] [CrossRef]
- Boyaci, S.; Kartal, S. Rainwater harvesting on greenhouse roof and use in irrigation. Int. J. Res.—Granthaalayah 2019, 7, 93–100. [Google Scholar] [CrossRef]
- Hellenic Ministry of Development. Plan for Water Management; Hellenic Ministry of Development: Athens, Greece, 2003. [Google Scholar]
- Hellenic Statistical Authority. Annual Agricultural Statistical Survey, Table 3b. 2018. Avaliable online https://www.statistics.gr/el/statistics/-/publication/SPG06/2018 (accessed on 6 May 2021).
- Official Gazette of the Hellenic Republic. Part B, No 2055. Ministerial Decision, 5656/18-09-2015; Official National Printing House of Greece: Athens, Greece, 2015. [Google Scholar]
- Fewkes, A.; Butler, D. Simulating the performance of rainwater collection systems using behavioural models. Build. Serv. Eng. Res. Technol. 2000, 21, 99–106. [Google Scholar] [CrossRef]
- Ghisi, E.; Ferreira, D.F. Potential for potable water savings by using rainwater and greywater in a multi-story residential building in southern Brazil. Build. Environ. 2007, 42, 2512–2522. [Google Scholar] [CrossRef]
- Imteaz, M.A.; Shanableh, A.; Rahman, A.; Ahsan, A. Optimisation of rainwater tank design from large roofs: A case study in Melbourne, Australia. Resour. Conserv. Recycl. 2011, 55, 1022–1029. [Google Scholar] [CrossRef]
- Palla, A.; Gnecco, I.; Lanza, L.G. Non-dimensional design parameters and performance assessment of rainwater harvesting systems. J. Hydrol. 2011, 401, 65–76. [Google Scholar] [CrossRef]
- Campisano, A.; Modica, C. Optimal sizing of storage tanks for domestic rainwater harvesting in Sicily. Resour. Conserv. Recycl. 2012, 63, 9–16. [Google Scholar] [CrossRef]
- Campisano, A.; Modica, C. Regional scale analysis for the design of storage tanks for domestic rainwater harvesting systems. Water Sci. Technol. 2012, 66, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sample, D.J.; Liu, J. Optimizing rainwater harvesting systems for the dual purposes of water supply and runoff capture. J. Clean. Prod. 2014, 75, 174–194. [Google Scholar] [CrossRef]
- Tsihrintzis, V.A.; Baltas, E. Determination of rainwater harvesting tank size. Glob. Nest J. 2014, 16, 822–831. [Google Scholar]
- Londra, P.A.; Theocharis, A.T.; Baltas, E.; Tsihrintzis, V.Α. Assessment of rainwater harvesting tank size for livestock use”. Water Sci. Technol. Water Supply 2018, 18, 555–566. [Google Scholar] [CrossRef]
- Guo, Y.; Baetz, B. Sizing of rainwater storage units for green building applications. J. Hydrol. Eng. 2007, 12, 197–205. [Google Scholar] [CrossRef]
- Cowden, J.R.; Watkins, D.W., Jr.; Mihelcic, J.R. Stochastic rainfall modeling in West Africa: Parsimonious approaches for domestic rainwater harvesting assessment. J. Hydrol. 2008, 361, 64–77. [Google Scholar] [CrossRef]
- Basinger, M.; Montalto, F.; Lall, U. A rainwater harvesting system reliability model based on nonparametric stochastic rainfall generator. J. Hydrol. 2010, 392, 105–118. [Google Scholar] [CrossRef]
- Chang, N.; Rivera, B.J.; Wanielista, M.P. Optimal design for water conservation and energy savings using green roofs in a green building under mixed uncertainties. J. Clean. Prod. 2011, 19, 1180–1188. [Google Scholar] [CrossRef]
- Aladenola, O.O.; Adeboye, O.B. Assessing the potential for rainwater harvesting. Water Resour. Manag. 2010, 24, 2129–2137. [Google Scholar] [CrossRef]
- Ghisi, E. Parameters influencing the sizing of rainwater tanks for use in houses. Water Resour. Manag. 2010, 24, 2381–2403. [Google Scholar] [CrossRef]
- Palla, A.; Gnecco, I.; Lanza, L.G.; La Barbera, P. Performance analysis of domestic rainwater harvesting systems under various European climate zones. Resour. Conserv. Recycl. 2012, 62, 71–80. [Google Scholar] [CrossRef]
- Hellenic National Meteorological Service. Available online: http://www.hnms.gr/emy/en/climatology/climatology (accessed on 25 August 2021).
- Mitchell, V.G.; McCarthy, D.T.; Deletic, A.; Fletcher, T.D. Urban stormwater harvesting—Sensitivity of a storage behaviour model. Environ. Model. Softw. 2008, 23, 782–793. [Google Scholar] [CrossRef]
- Campisano, A.; Modica, C. Appropriate resolution timescale to evaluate water saving and retention potential of rainwater harvesting for toilet flushing in single houses. J. Hydroinform. 2015, 17, 331–346. [Google Scholar] [CrossRef] [Green Version]
- Kinkade-Levario, Η. Design for Water Rainwater Harvesting, Stormwater Catchment and Alternate Water Reuse; New Society Publishers: Gabriola Island, BC, Canada, 2007; p. 38. [Google Scholar]
- Chartzoulakis, K.; Michelakis, N. Influence of different irrigation systems on greenhouse tomatoes. Acta Hortic. 1988, 228, 97–104. [Google Scholar] [CrossRef]
- Chartzoulakis, K.S. The Irrigation of Crops; AgroTypos Publishers: Athens, Greece, 2019; pp. 384–385. (In Greek) [Google Scholar]
- Londra, P.A.; Paraskevopoulou, A.T.; Psychoyou, M. Evaluation of water-air balance of various substrates on begonia growth. HortScience 2012, 47, 1153–1158. [Google Scholar] [CrossRef] [Green Version]
- Hellenic National Meteorological Service. Available online: http://www.emy.gr/emy/el/agriculture/agriculture_city?poli=Tympaki (accessed on 6 May 2021).
Month | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sept | Oct | Nov | Dec | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Evaporation depth (mm) | 82.6 | 83.9 | 119.1 | 147.4 | 210.1 | 270.5 | 358.8 | 333.5 | 228.1 | 163.5 | 102.4 | 87.3 | 2187.2 |
Rainfall Station | Administrative Region | Altitude (m) | Longitude (Deg.) | Latitude (Deg) | P (mm) | Ndd (Days) | Ndd,max (Days) | Ndd,min (Days) |
---|---|---|---|---|---|---|---|---|
Athens | Attica | 50 | 23.71545 | 37.97841 | 447.87 | 71.83 | 109 | 30 |
Ierapetra | Crete | 5 | 25.74899 | 35.01019 | 418.93 | 123.92 | 173 | 92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Londra, P.A.; Kotsatos, I.-E.; Theotokatos, N.; Theocharis, A.T.; Dercas, N. Reliability Analysis of Rainwater Harvesting Tanks for Irrigation Use in Greenhouse Agriculture. Hydrology 2021, 8, 132. https://doi.org/10.3390/hydrology8030132
Londra PA, Kotsatos I-E, Theotokatos N, Theocharis AT, Dercas N. Reliability Analysis of Rainwater Harvesting Tanks for Irrigation Use in Greenhouse Agriculture. Hydrology. 2021; 8(3):132. https://doi.org/10.3390/hydrology8030132
Chicago/Turabian StyleLondra, Paraskevi A., Ioannis-Eleftherios Kotsatos, Nikolaos Theotokatos, Achilleas T. Theocharis, and Nicholas Dercas. 2021. "Reliability Analysis of Rainwater Harvesting Tanks for Irrigation Use in Greenhouse Agriculture" Hydrology 8, no. 3: 132. https://doi.org/10.3390/hydrology8030132
APA StyleLondra, P. A., Kotsatos, I. -E., Theotokatos, N., Theocharis, A. T., & Dercas, N. (2021). Reliability Analysis of Rainwater Harvesting Tanks for Irrigation Use in Greenhouse Agriculture. Hydrology, 8(3), 132. https://doi.org/10.3390/hydrology8030132