Hydrologic Utility of Satellite-Based and Gauge-Based Gridded Precipitation Products in the Huai Bang Sai Watershed of Northeastern Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Obtained data
2.3. Satellite-Based Precipitation Products (SbPPs) and Ground-Based Gridded Precipitation Products (GbGPPs)
2.4. SWAT Model Description
2.5. Overall Methodology
2.5.1. Extraction of SbPPs and GbGPPs
2.5.2. Watershed Model Development
2.5.3. Streamflow Simulation
2.5.4. Hydrologic Performance of the Developed Models
3. Results and Discussion
3.1. Comparison of Rainfall from Rain Gauges and Other Precipitation Products
3.2. Evaluation of Streamflow Simulation Capacity of Different Precipitation Products
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Alazzy, A.; Lü, H.; Chen, R.; Ali, A.; Zhu, Y.; Su, J. Evaluation Of Satellite Precipitation Products And Their Potential Influence On Hydrological Modeling Over The Ganzi River Basin Of The Tibetan Plateau. Adv. Meteorol. 2017, 2017, 3695285. [Google Scholar] [CrossRef] [Green Version]
- Gunathilake, M.; Amaratunga, Y.; Perera, A.; Karunanayake, C.; Gunathilake, A.; Rathnayake, U. Statistical Evaluation And Hydrologic Simulation Capacity Of Different Satellite-Based Precipitation Products (SbPPs) In The Upper Nan River Basin, Northern Thailand. J. Hydrol. Reg. Stud. 2020, 32, 100743. [Google Scholar] [CrossRef]
- Lorenz, C.; Kunstmann, H. The Hydrological Cycle In Three State-Of-The-Art Reanalyses: Intercomparison And Performance Analysis. J. Hydrometeorol. 2012, 13, 1397–1420. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.; Stepaniak, D.; Hurrell, J.; Fiorino, M. Quality of Reanalyses in the Tropics. J. Clim. 2001, 14, 1499–1510. [Google Scholar] [CrossRef]
- Trenberth, K.; Fasullo, J.; Mackaro, J. Atmospheric Moisture Transports from Ocean to Land and Global Energy Flows In Reanalyses. J. Clim. 2011, 24, 4907–4924. [Google Scholar] [CrossRef]
- Brocca, L.; Filippucci, P.; Hahn, S.; Ciabatta, L.; Massari, C.; Camici, S.; Schüller, L.; Bojkov, B.; Wagner, W. SM2RAIN–ASCAT (2007–2018): Global Daily Satellite Rainfall Data From ASCAT Soil Moisture Observations. Earth Syst. Sci. Data 2019, 11, 1583–1601. [Google Scholar] [CrossRef] [Green Version]
- Yatagai, A.; Kamiguchi, K.; Arakawa, O.; Hamada, A.; Yasutomi, N.; Kitoh, A. APHRODITE: Constructing A Long-Term Daily Gridded Precipitation Dataset For Asia Based On A Dense Network Of Rain Gauges. Bull. Am. Meteorol. Soc. 2012, 93, 1401–1415. [Google Scholar] [CrossRef]
- Schamm, K.; Ziese, M.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Schneider, U.; Schröder, M.; Stender, P. Global Gridded Precipitation Over Land: A Description Of The New GPCC First Guess Daily Product. Earth Syst. Sci. Data 2014, 6, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Harris, I.; Jones, P.; Osborn, T.; Lister, D. Updated High-Resolution Grids of Monthly Climatic Observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2013, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Shi, W.; Xie, P.; Silva, V.; Kousky, V.; Wayne Higgins, R.; Janowiak, J. Assessing Objective Techniques For Gauge-Based Analyses Of Global Daily Precipitation. J. Geophys. Res. 2008, 113, 1–13. [Google Scholar] [CrossRef]
- Prigent, C. Precipitation Retrieval from Space: An Overview. Comptes Rendus Geosci. 2010, 342, 380–389. [Google Scholar] [CrossRef]
- Kummerow, C.; Barnes, W.; Kozu, T.; Shiue, J.; Simpson, J. The Tropical Rainfall Measuring Mission (TRMM) Sensor Package. J. Atmos. Ocean. Technol. 1998, 15, 809–817. [Google Scholar] [CrossRef]
- Nguyen, P.; Ombadi, M.; Sorooshian, S.; Hsu, K.; AghaKouchak, A.; Braithwaite, D.; Ashouri, H.; Thorstensen, A. The PERSIANN Family of Global Satellite Precipitation Data: A Review and Evaluation of Products. Hydrol. Earth Syst. Sci. 2018, 22, 5801–5816. [Google Scholar] [CrossRef] [Green Version]
- Joyce, R.; Janowiak, J.; Arkin, P.; Xie, P. CMORPH: A Method That Produces Global Precipitation Estimates From Passive Microwave And Infrared Data At High Spatial And Temporal Resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Huffman, G.; Bolvin, D.; Nelkin, E.; Wolff, D.; Adler, R.; Gu, G.; Hong, Y.; Bowman, K.; Stocker, E. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates At Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Huffman, G.; Bolvin, D. Real-Time TRMM Multi-Satellite Precipitation Analysis Data Set Documentation; pp. 1–48. Available online: http://trmmopen.gsfc.nasa.gov/pub/merged/V7Documents/3B4XRT_doc_V7.pdf (accessed on 20 August 2015).
- Ushio, T.; Sasashige, K.; Kubota, T.; Shige, S.; Okamoto, K.; Aonashi, K.; Inoue, T.; Takahashi, N.; Iguchi, T.; Kachi, M.; et al. A Kalman Filter Approach to the Global Satellite Mapping of Precipitation (GSMap) from Combined Passive Microwave and Infrared Radiometric Data. Jpn. Meteorol. Soc. Jpn. 2009, 87, 137–151. [Google Scholar] [CrossRef] [Green Version]
- Turk, F.; Miller, S. Toward Improved Characterization Of Remotely Sensed Precipitation Regimes with MODIS/AMSR-E Blended Data Techniques. IEEE Trans. Geosci. Remote. Sens. 2005, 43, 1059–1069. [Google Scholar] [CrossRef]
- Beck, H.; van Dijk, A.; Levizzani, V.; Schellekens, J.; Miralles, D.; Martens, B.; de Roo, A. MSWEP: 3-Hourly 0.25° Global Gridded Precipitation (1979–2015) By Merging Gauge, Satellite, and Reanalysis Data. Hydrol. Earth Syst. Sci. 2017, 21, 589–615. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record For Monitoring Extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [Green Version]
- Maidment, R.; Grimes, D.; Black, E.; Tarnavsky, E.; Young, M.; Greatrex, H.; Allan, R.; Stein, T.; Nkonde, E.; Senkunda, S.; et al. A New, Long-Term Daily Satellite-Based Rainfall Dataset for Operational Monitoring In Africa. Sci. Data 2017, 4, 17063. [Google Scholar]
- Vila, D.; de Goncalves, L.; Toll, D.; Rozante, J. Statistical Evaluation Of Combined Daily Gauge Observations And Rainfall Satellite Estimates Over Continental South America. J. Hydrometeorol. 2009, 10, 533–543. [Google Scholar] [CrossRef]
- Wijayarathne, D.; Coulibaly, P. Identification Of Hydrological Models For Operational Flood Forecasting In St. John’S, Newfoundland, Canada. J. Hydrol. Reg. Stud. 2020, 27, 100646. [Google Scholar] [CrossRef]
- Habib, E.; Haile, A.; Sazib, N.; Zhang, Y.; Rientjes, T. Effect Of Bias Correction Of Satellite-Rainfall Estimates On Runoff Simulations At The Source Of The Upper Blue Nile. Remote Sens. 2014, 6, 6688–6708. [Google Scholar] [CrossRef] [Green Version]
- Elgamal, A.; Reggiani, P.; Jonoski, A. Impact Analysis of Satellite Rainfall Products on Flow Simulations in the Magdalena River Basin, Colombia. J. Hydrol. Reg. Stud. 2017, 9, 85–103. [Google Scholar] [CrossRef]
- Yoshimoto, S.; Amarnath, G. Applications of Satellite-Based Rainfall Estimates In Flood Inundation Modeling—A Case Study in Mundeni Aru River Basin, Sri Lanka. Remote Sens. 2017, 9, 998. [Google Scholar] [CrossRef] [Green Version]
- Hatmoko, W.; Seizarwati, W.; Vernimmen, R. Comparison of TRMM Satellite Rainfall and APHRODITE for Drought Analysis in the Pemali-Comal River Basin. Procedia Environ. Sci. 2016, 33, 187–195. [Google Scholar]
- Pandey, A.; Mishra, S.; Gautam, A. Soil Erosion Modeling Using Satellite Rainfall Estimates. J. Water Resour. Hydraul. Eng. 2015, 4, 318–325. [Google Scholar] [CrossRef]
- Rozante, J.; Vila, D.; Barboza Chiquetto, J.; Fernandes, A.; Souza Alvim, D. Evaluation Of TRMM/GPM Blended Daily Products Over Brazil. Remote Sens. 2018, 10, 882. [Google Scholar] [CrossRef] [Green Version]
- Ayoub, A.; Tangang, F.; Juneng, L.; Tan, M.; Chung, J. Evaluation of Gridded Precipitation Datasets in Malaysia. Remote Sens. 2020, 12, 613. [Google Scholar] [CrossRef] [Green Version]
- Koutsouris, A.; Chen, D.; Lyon, S. Comparing Global Precipitation Data Sets In Eastern Africa: A Case Study of Kilombero Valley, Tanzania. Int. J. Climatol. 2015, 36, 2000–2014. [Google Scholar] [CrossRef]
- Dinku, T.; Connor, S.J.; Ceccato, P. Comparison of CMORPH and TRMM-3B42 over Mountainous Regions of Africa and South America. In Satellite Rainfall Applications for Surface Hydrology; Gebremichael, M., Hossain, F., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 193–204. [Google Scholar] [CrossRef]
- Seibert, J.; Vis, M. Teaching Hydrological Modeling with A User-Friendly Catchment-Runoff-Model Software Package. Hydrol. Earth Syst. Sci. 2012, 16, 3315–3325. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K. A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef] [Green Version]
- Tobin, K.; Bennett, M. Using SWAT To Model Streamflow In Two River Basins with Ground And Satellite Precipitation Data. JAWRA J. Am. Water Resour. Assoc. 2009, 45, 253–271. [Google Scholar] [CrossRef]
- Li, R.; Shi, J.; Ji, D.; Zhao, T.; Plermkamon, V.; Moukomla, S.; Kuntiyawichai, K.; Kruasilp, J. Evaluation and Hydrological Application of TRMM and GPM Precipitation Products in a Tropical Monsoon Basin of Thailand. Water 2019, 11, 818. [Google Scholar] [CrossRef] [Green Version]
- Janjai, S.; Nimnuan, P.; Nunez, M.; Buntoung, S.; Cao, J. An assessment of three satellite-based precipitation data sets as applied to the Thailand region. Phys. Geogr. 2015, 36, 282–304. [Google Scholar] [CrossRef]
- Pakoksung, K.; Takagi, M. Effect of Satellite Based Rainfall Products on River Basin Responses of Runoff Simulation on Flood Event. Modeling Earth Syst. Environ. 2016, 2, 143. [Google Scholar] [CrossRef]
- Chokngamwong, R.; Chiu, L. Thailand Daily Rainfall and Comparison with TRMM Products. J. Hydrometeorol. 2008, 9, 256–266. [Google Scholar] [CrossRef]
- Sakolnakhon, K. Comparison the Estimate Rainfall from Global Satellite Mapping of Precipitation (GSMaP) to Ground-based Precipitation data over Thailand. In 1st Joint Project Team Meeting for Sentinel Asia STEP3 (JPTM2013); Grand Millennium Hotel: Bangkok, Thailand, 2013. [Google Scholar]
- Trang, H.T.; Manomaiphiboon, K.; Singhrattna, N.; Assareh, N. Evaluation of multiple sub-daily satellite precipitation products for Thailand. J. Sustain. Energy Environ. 2020, 11, 81–91. [Google Scholar]
- Iresh, A.D.S.; Marasingha, A.G.N.S.; Wedanda, A.M.T.S.H.; Wickramasekara, G.P.; Wickramasooriya, M.D.J.P.; Premathilaka, M.T.C. Development of a Hydrological Model for Kala Oya Basin Using SWAT Model. Eng. J. Inst. Eng. Sri Lanka 2021, 54, 57–65. [Google Scholar] [CrossRef]
- Hapuarachchi, P.; Zhijia, L.; Flugel, A.W. Application of the SWAT Model for River Flow Forecasting in Sri Lanka. J. Lake Sci. 2003, 15, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Talchabhadel, R.; Aryal, A.; Kawaike, K.; Yamanoi, K.; Nakagawa, H.; Bhatta, B.; Karki, S.; Thapa, B. Evaluation Of Precipitation Elasticity Using Precipitation Data From Ground And Satellite-Based Estimates And Watershed Modeling In Western Nepal. J. Hydrol. Reg. Stud. 2021, 33, 100768. [Google Scholar] [CrossRef]
- Worku, T.; Khare, D.; Tripathi, S. Modeling Runoff–Sediment Response to Land Use/Land Cover Changes using Integrated GIS and SWAT Model in the Beressa Watershed. Environ. Earth Sci. 2017, 76, 550. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Jha, M. Hydrological Response Due To Projected Climate Variability in Haw River Watershed, North Carolina, USA. Hydrol. Sci. J. 2016, 61, 495–506. [Google Scholar] [CrossRef]
- Ayivi, F.; Jha, M. Estimation of Water Balance and Water Yield in the Reedy Fork-Buffalo Creek Watershed in North Carolina using SWAT. Int. Soil Water Conserv. Res. 2018, 6, 203–213. [Google Scholar] [CrossRef]
- Li, M.; Guo, Q. SWAT Model Simulation of Non-Point Source Pollution in the Miyun Reservoir Watershed. IOP Conf. Ser. Earth Environ. Sci. 2020, 428, 012075. [Google Scholar] [CrossRef]
- Warusavitharana, E. Semi-Distributed Parameter Optimization and Uncertainty Assessment for an Ungauged Catchment of Deduru Oya Basin in Sri Lanka. Int. J. River Basin Manag. 2019, 18, 95–105. [Google Scholar] [CrossRef]
- Titapiwatanakun, B.; Titapiwatanakun, B. The Rice Situation in Thailand—TA-REG 7495. In Support for the Association of Southeast Asian Nations Plus Three Integrated Food Security Framework; Asian Development Bank (ADB): Mandaluyong, PH, USA, 2012; pp. 1–29. [Google Scholar]
- Volker, A. Proceedings of the Hamburg Symposium—Publ. No. 140; International Association of Hydrological Sciences (IAHS): Hamburg, Germany, 1983; pp. 127–138.
- Puktlang, W.; Mongkolsawat, C.; Suwanwerakamtorn, R. The Impact of Expanding Rubber Tree Plantation on Soil Erosion in the Mekong-Sub Basin. In Proceedings of the 34th Asian Conference on Remote Sensing—ACRS 2013, Bali, Indonesia, 20–24 October 2013; pp. 1–8. [Google Scholar]
- Phien, H.; Arbhabhirama, A.; Sunchindah, A. Rainfall Distribution In Northeastern Thailand / Sur La Distribution De Pluie Dans Le Nord-Est De Thailande. Hydrol. Sci. Bull. 1980, 25, 167–182. [Google Scholar] [CrossRef]
- Schröder, M.; Becker, A.; Dietzsch, F.; Fennig, K.; Graw, K.; Gutenstein, M.; Hollmann, R.; Niedorf, A.; Ziese, M. HOAPS/GPCC Global Daily Precipitation Data Record with Uncertainty Estimates Using Satellite and Gauge Based Observations at 1.0°; Deutscher Wetterdienst: Offenbach, Germany, 2019. [Google Scholar] [CrossRef]
- Maeda, M.; Yasutomi, N.; Yatagai, A.; National Center for Atmospheric Research Staff (Eds.) The Climate Data Guide: APHRODITE: Asian Precipitation—Highly-Resolved Observational Data Integration Towards Evaluation of Water Resources. (Last Modified 29 July 2020). Available online: https://climatedataguide.ucar.edu/climate-data/aphrodite-asian-precipitation-highly-resolved-observational-data-integration-towards (accessed on 14 December 2020).
- Arnold, J.; Srinivasan, R.; Muttiah, R.; Williams, J. Large Area Hydrologic Modeling and Assessment: Part I. Model Development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Abbaspour, K. SWAT-CUP User Manual, SWAT Calibration and Uncertainty Programs; EAWAG: Zurich, Switzerland, 2015. [Google Scholar]
- Babel, M.S.; Gunathilake, M.B.; Jha, M.K. Evaluation of Ecosystem-based Adaptation Measures for Sediment Yield in a Tropical Watershed in Thailand. Water 2021, 13, 2767. [Google Scholar] [CrossRef]
- Moriasi, D.; Arnold, J.; Van Liew, M.; Bingner, R.; Harmel, R.; Veith, T. Model Evaluation Guidelines for Systematic Quantification Of Accuracy In Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Bitew, M.M.; Gabremichael, M. Evaluation through Independent Measurements: Complex Terrain and Humid Tropical Region in Ethiopia. In Satellite Rainfall Applications for Surface Hydrology; Gebremichael, M., Hossain, F., Eds.; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Wu, Z.; Xu, Z.; Wang, F.; He, H.; Zhou, J.; Wu, X.; Liu, Z. Hydrologic Evaluation of Multi-Source Satellite Precipitation Products for the Upper Huaihe River Basin, China. Remote Sens. 2018, 10, 840. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Yong, B.; Hong, Y.; Chen, S.; Zhang, X. Error analysis of multi-satellite precipitation estimates with an independent raingauge observation network over a medium-sized humid basin. Hydrol. Sci. J. 2016, 61, 1813–1830. [Google Scholar] [CrossRef]
- Behrangi, A.; Khakbaz, B.; Jaw, T.; AghaKouchak, A.; Hsu, K.; Sorooshian, S. Hydrologic Evaluation Of Satellite Precipitation Products Over A Mid-Size Basin. J. Hydrol. 2011, 397, 225–237. [Google Scholar] [CrossRef] [Green Version]
- Gunathilake, M.; Karunanayake, C.; Gunathilake, A.; Marasingha, N.; Samarasinghe, J.; Bandara, I.; Rathnayake, U. Hydrological Models And Artificial Neural Networks (Anns) To Simulate Streamflow In A Tropical Catchment Of Sri Lanka. Appl. Comput. Intell. Soft Comput. 2021, 2021, 6683389. [Google Scholar]
- Gunathilake, M.; Senerath, T.; Rathnayake, U. Artificial Neural Network Based PERSIANN Data Sets In Evaluation Of Hydrologic Utility Of Precipitation Estimations In A Tropical Watershed Of Sri Lanka. AIMS Geosci. 2021, 7, 478–489. [Google Scholar] [CrossRef]
- Tan, M.; Ibrahim, A.; Duan, Z.; Cracknell, A.; Chaplot, V. Evaluation of Six High-Resolution Satellite and Ground-Based Precipitation Products over Malaysia. Remote Sens. 2015, 7, 1504–1528. [Google Scholar] [CrossRef] [Green Version]
Types | Product | Temporal Coverage | Finest Temporal Frequency | Spatial Coverage | Spatial Resolution | References |
---|---|---|---|---|---|---|
SbPPs | PERSIANN | 03/2000 to date | 1 h | 60° N–60° S | 0.25° × 0.25° | Nguyen et al. [13] |
PERSIANN-CSS | 2003 to date | 1 h | 60° N–60° S | 0.04° × 0.04° | Nguyen et al. [13] | |
PERSIANN-CDR | 1983 to date | 1 day | 60° N–60° S | 0.25° × 0.25° | Nguyen et al. [13] | |
TMPA-3B42 | 1998 to 12/2019 | 3 h | 50° N–50° S | 0.25° × 0.25° | Huffman et al. [16] | |
TMPA-3B42RT | 03/2000 to 12/2019 | 3 h | 60° N–60° S | 0.25° × 0.25° | Huffman & Bolvin [15] | |
IMERG | 03/2000 to present | 30 min | 90° N–90° S | 0.10° × 0.10° | Huffman et al. [16] | |
MSWEP | 1979 to present | 3 h | Global | 0.25° × 0.25° | Beck et al. [19] | |
CMORPH | 2002 to present | 30 min | 60° N–60° S | 0.027° × 0.027° | Joyce et al. [14] | |
CHIRPS | 1981 to date | Daily | 50° N–50° S | 0.05° × 0.05° | Funk et al. [20] | |
GbGPPs | GPCC | 1988 to present | 1 day | Global | 1.0° × 1.0° | Schröder et al. [54] |
APHRODITE-V _1801 | 1988 to 2015 | 1 day | Monsoon Asia | 0.25° × 0.25° | Maeda et al. [55] | |
APHRODITE-V_1901 | 1988 to 2015 | 1 day | Monsoon Asia | 0.05° × 0.05° | Maeda et al. [55] |
Rank | Parameter | Description | Initial Values | Fitted Value |
---|---|---|---|---|
1 | CN | SCS-CN | 73–92 | |
Deciduous forest | 77 | 73 | ||
Cassava | 85 | 83 | ||
Sugarcane | 85 | 83 | ||
Rice | 81 | 81 | ||
Rubber | 77 | 77 | ||
Rangeland | 79 | 79 | ||
Water | 92 | 92 | ||
Urban | 90 | 90 | ||
2 | ESCO | Soil evaporation compensation factor | 0.95 | 0.70–0.95 |
3 | SOL_AWC | Available soil water capacity | ||
Hang Chat/Loamy sand | 0.14 | 0.1 | ||
Slope Complex/Loamy sand | 0.14 | 0.1 | ||
San Sai/Sandy loamy | 0.1 | 0.13 | ||
Phon Phisai/Sandy loamy | 0.1 | 0.14 | ||
San Patong/Loamy sand | 0.1 | 0.15 | ||
4 | ALPHA_BF | Base-flow alpha factor | 0.048 | 0.99 |
5 | GW_DELAY | Ground water delay | 31 | 2 |
6 | GW_REVAP | Groundwater “revap” coefficient | 0.02 | 0.19 |
Precipitation Product | For Calibration (2007–2010) | For Validation (2011–2014) | ||
---|---|---|---|---|
NSE | R2 | NSE | R2 | |
Rain gauge | 0.82 | 0.83 | 0.77 | 0.78 |
PERSIANN | 0.19 | 0.49 | 0.50 | 0.73 |
CCS | 0.27 | 0.57 | 0.35 | 0.76 |
CDR | 0.15 | 0.60 | 0.40 | 0.81 |
3B42 | 0.55 | 0.72 | 0.68 | 0.85 |
TMPA-3B42RT | 0.01 | 0.63 | 0.10 | 0.62 |
IMERG | 0.08 | 0.74 | 0.13 | 0.82 |
MSWEP | 0.55 | 0.75 | 0.30 | 0.77 |
CHIRPS | 0.55 | 0.69 | 0.14 | 0.61 |
CMORPH | −0.17 | 0.53 | -0.07 | 0.68 |
APHRODITE_V1901 | 0.61 | 0.72 | 0.53 | 0.91 |
APHRODIE_V1801 | 0.21 | 0.66 | 0.49 | 0.90 |
GPCC | 0.32 | 0.73 | 0.45 | 0.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunathilake, M.B.; Zamri, M.N.M.; Alagiyawanna, T.P.; Samarasinghe, J.T.; Baddewela, P.K.; Babel, M.S.; Jha, M.K.; Rathnayake, U.S. Hydrologic Utility of Satellite-Based and Gauge-Based Gridded Precipitation Products in the Huai Bang Sai Watershed of Northeastern Thailand. Hydrology 2021, 8, 165. https://doi.org/10.3390/hydrology8040165
Gunathilake MB, Zamri MNM, Alagiyawanna TP, Samarasinghe JT, Baddewela PK, Babel MS, Jha MK, Rathnayake US. Hydrologic Utility of Satellite-Based and Gauge-Based Gridded Precipitation Products in the Huai Bang Sai Watershed of Northeastern Thailand. Hydrology. 2021; 8(4):165. https://doi.org/10.3390/hydrology8040165
Chicago/Turabian StyleGunathilake, Miyuru B., M. N. M. Zamri, Tharaka P. Alagiyawanna, Jayanga T. Samarasinghe, Pavithra K. Baddewela, Mukand S. Babel, Manoj K. Jha, and Upaka S. Rathnayake. 2021. "Hydrologic Utility of Satellite-Based and Gauge-Based Gridded Precipitation Products in the Huai Bang Sai Watershed of Northeastern Thailand" Hydrology 8, no. 4: 165. https://doi.org/10.3390/hydrology8040165
APA StyleGunathilake, M. B., Zamri, M. N. M., Alagiyawanna, T. P., Samarasinghe, J. T., Baddewela, P. K., Babel, M. S., Jha, M. K., & Rathnayake, U. S. (2021). Hydrologic Utility of Satellite-Based and Gauge-Based Gridded Precipitation Products in the Huai Bang Sai Watershed of Northeastern Thailand. Hydrology, 8(4), 165. https://doi.org/10.3390/hydrology8040165