Non-Structural Flood Management in European Rural Mountain Areas—Are Scientists Supporting Implementation?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Review
2.1.1. Literature Selection
2.1.2. Variables
2.1.3. Pre-Proceeding
2.1.4. Analysis of the Measures and Flood Management Extracted from the Literature
2.2. Survey
2.2.1. Interviewee Selection
2.2.2. Survey Form
2.2.3. Survey Data Pre-Proceeding Process
2.2.4. Analysis of Survey Data
3. Results
3.1. Analysis of Literature
3.1.1. Combination and Comparison of Dissimilarities and Similarities between the Distinguished Geographical Areas (Sub-Data Sets)
3.1.2. Phase Prioritization of (Flood) Disaster Management
3.1.3. Important Characteristics for Flood Management
3.2. Analysis of Expert Survey
3.2.1. Multifunctionality of Flood Mitigation Measures
3.2.2. Applicability of the Measures for European Rural Mountainous Regions
3.2.3. Spatial Impact of the Flood Mitigation Measures
3.2.4. Prioritization of Flood Management Phases by the Experts
3.2.5. Important Characteristic for Flood Management
3.3. Comparing the Findings between the Literature Review and Expert Survey
4. Discussion
4.1. Addressing the Causes Instead of the Symptoms
4.2. Natural Solutions as Cost-Efficient Measures
4.3. Natural Solutions as Multifunctional Measures
4.4. Natural Measures with Great Large-Scale Implementation Potential
4.5. Social Boundaries as a Barrier to the Implementation of Natural Solutions
4.6. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. List of Publications Used in the Systematic Literature Review
Appendix B. MCA Model Configurations
SDS-1 (REMA) | SDS-2 (RNEMA) | SDS-3 (OMA) | |
---|---|---|---|
Active Modalities | Flood Severity, General Flood Mitigation Effect, Effect on Flooding, Measure Block, Spatial Effect Range, Effect on Peak Discharge | Measure Block, General Flood Mitigation Effect, Effect on Peak Discharge, Spatial Effect Range, Effect on Flooding, Environmental Effect | Spatial Setting, General Flood Mitigation Effect, Effect on Flooding, Measure Block, Spatial Effect Range, Effect on Peak Discharge |
Supplementary Modalities | Year Period, Subregions, Measures, Technical Ease, Environmental Effect, Economic Effect, Societal Effect, Peak Discharge Dilatation Minutes, Peak Discharge Reduction | Year Period, Subregions, Measures, Technical Ease, Flood Severity, Economic Effect, Societal Effect, Peak Discharge Dilatation Minutes, Peak Discharge Reduction | Year Period, Subregions, Measures, Technical Ease, Environmental Effect, Economic Effect, Societal Effect, Peak Discharge Dilatation Minutes, Peak Discharge Reduction, Flood Severity |
Appendix C. Figures of Likert Percentages
Appendix D. Figures of Consensus
References
- Hughes, F.M. Floodplain Biogeomorphology. Prog. Phys. Geogr. Earth Environ. 1997, 21, 501–529. [Google Scholar] [CrossRef]
- Nagl, G.; Schönauer, S. Ökologischer Hochwasserschutz—Raum Für Naturnahe Gewässer, Auen Und Feuchtgebiete—Schutz Für Die Menschen; Bund für Umwelt und Naturschutz Deutschland e.V. “BUND”, Ed.; BUNDhintergrund; Natur & Umwelt Verlag: Berlin, Germany; Köln, Germany, 2002. [Google Scholar]
- Jacob, J. The Response of Small Mammal Populations to Flooding. Mamm. Biol. 2003, 68, 102–111. [Google Scholar] [CrossRef]
- Parolin, P.; Wittmann, F. Struggle in the Flood: Tree Responses to Flooding Stress in Four Tropical Floodplain Systems. AoB Plants 2010, 2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keller, K. Entwicklung Innovativer Tropfbewässerungssysteme zum Projektantrag RESS-125-010 PREFARM.Project Report. 2013. Available online: https://www.cleaner-production.de/fileadmin/assets/02WQ1121_-_Abschlussbericht.pdf (accessed on 19 August 2021).
- Dige, G.; Kleeschulte, S.; Philipsen, C.; Schindler, S.; Sonderegger, G.; European Environment Agency. Exploring Nature-Based Solutions: The Role of Green Infrastructure in Mitigating the Impacts of Weather- and Climate Change-Related Natural Hazards; Publications Office: Luxembourg, 2015; ISBN 978-92-9213-693-2. [Google Scholar]
- Tempels, B. Flood Resilience: A Co-Evolutionary Approach. Residents, Spatial Developments and Flood Risk Management in the Dender Basin. In Planning; Ghent University, Faculty of Engineering and Architecture: Ghent, Belgium, 2016. [Google Scholar]
- Żmihorski, M.; Pärt, T.; Gustafson, T.; Berg, Å. Effects of Water Level and Grassland Management on Alpha and Beta Diversity of Birds in Restored Wetlands. J. Appl. Ecol. 2016, 53, 587–595. [Google Scholar] [CrossRef]
- Yang, B.; Young, R.F. Ecological Wisdom: Theory and Practice, 1st ed.; EcoWISE Innovative Approaches to Socio-Ecological Sustainability; Springer: Singapore, 2019; ISBN 9789811305719. [Google Scholar]
- Belletti, B.; Garcia de Leaniz, C.; Jones, J.; Bizzi, S.; Börger, L.; Segura, G.; Castelletti, A.; van de Bund, W.; Aarestrup, K.; Barry, J.; et al. More than One Million Barriers Fragment Europe’s Rivers. Nature 2020, 588, 436–441. [Google Scholar] [CrossRef]
- European Commission. Flood Risk. Available online: Ec.europa.eu/environment/water/flood_risk/ (accessed on 10 January 2021).
- International Union for Conservation of Nature. Nature-Based Solutions to Disasters. Available online: https://www.iucn.org/resources/issues-briefs/nature-based-solutions-disasters (accessed on 9 January 2021).
- Institute for Economics & Peace. Ecological Threat Register 2020: Understanding Ecological Threats, Resilience and Peace; The Institute for Economics & Peace: Sydney, Australia, 2020; p. 95. [Google Scholar]
- Munich, R.E. Overview of Natural Catastrophe Figures for 2016—The Year in Figures. Available online: https://www.munichre.com/topics-online/en/climate-change-and-natural-disasters/natural-disasters/overview-natural-catastrophe-2016.html (accessed on 10 January 2021).
- Perlman, H.; Evans, J. Der Wasserkreislauf, The Water Cycle, German. Available online: https://www.usgs.gov./water-science-school (accessed on 19 March 2021).
- Van Ree, C.C.D.F.; Van, M.A.; Heilemann, K.; Morris, M.W.; Royet, P.; Zevenbergen, C. FloodProBE: Technologies for Improved Safety of the Built Environment in Relation to Flood Events. Environ. Sci. Policy 2011, 14, 874–883. [Google Scholar] [CrossRef]
- Pavesi, F.C.; Barontini, S.; Pezzagno, M. “Sponge Land(Scape)”: An Interdisciplinary Approach for the Transition to Resilient Communities. In Proceedings of the EGU General Assembly Conference Abstracts, 22nd EGU General Assembly, Online, 23 March 2020. [Google Scholar]
- Paprotny, D.; Sebastian, A.; Morales-Nápoles, O.; Jonkman, S.N. Trends in Flood Losses in Europe over the Past 150 Years. Nat. Commun. 2018, 9, 1985. [Google Scholar] [CrossRef]
- Debele, S.E.; Kumar, P.; Sahani, J.; Marti-Cardona, B.; Mickovski, S.B.; Leo, L.S.; Porcù, F.; Bertini, F.; Montesi, D.; Vojinovic, Z.; et al. Nature-Based Solutions for Hydro-Meteorological Hazards: Revised Concepts, Classification Schemes and Databases. Environ. Res. 2019, 179, 108799. [Google Scholar] [CrossRef]
- Assmann, A. Die Planung Dezentraler, Integrierter Hochwasserschutzmaßnahmen-mit dem Schwerpunkt der Standortausweisung von Retentionsarealen an der oberen Elsenz, Kraichgau; Flurneuordnung und Landentwicklung in Baden-Württemberg; Landesamts für Flurneuordnung und Landentwicklung Baden-Württemberg: Kornwestheim, Germany, 1999. [Google Scholar]
- Duwe, J. Hochwasser im Erzgebirge. Historische und aktuelle Überschwemmungen und ihr Schadensausmaß; Freie Universität Berlin, Geografisches Institut: Berlin, Germany, 2007. [Google Scholar]
- Worreschk, B.; Wirksamkeit von Hochwasservorsorge und Hochwasserschutzmaßnahmen (Eds.) Länderarbeitsgemeinschaft Wasser “LAWA”, Schwerin. 2000. Available online: https://www.stmuv.bayern.de/themen/wasserwirtschaft/hochwasser/doc/wirkungsabschaetzung.pdf (accessed on 19 August 2021).
- Bölscher, J. Analyse Des Dezentralen Hochwasserrückhaltepotenzials Im Einzugsgebiet Der Natzschung/Načetínský Potok (Mittleres Erzgebirge) Unter Verwendung Des Niederschlag-Abfluss-Modells NASIM. Ph.D. Thesis, Freie Universität, Berlin, Germany, 2016. [Google Scholar]
- Tullos, D.; Byron, E.; Galloway, G.; Obeysekera, J.; Prakash, O.; Sun, Y.-H. Review of Challenges of and Practices for Sustainable Management of Mountain Flood Hazards. Nat. Hazards 2016, 83, 1763–1797. [Google Scholar] [CrossRef]
- Dittrich, S.; Worm, W. Dezentraler Hochwasserschutz; Schriftenreihe Sächs. Landesanst. Für Landwirtsch; Sächsisches Landesamt für Umwelt; Landwirtschaft und Geologie, LfULG: Dresden, Germany, 2006; p. 111. [Google Scholar]
- Bittner, R.; Günther, K.; Merz, B. Naturkatastrophen in Deutschland; Ernst & Sohn Special & GFZ Helmholtz-Zentrum Potsdam: Berlin, Germany; Potsdam, Germany, 2009; pp. 7–10. Available online: https://gfzpublic.gfz-potsdam.de/rest/items/item_239651_1/component/file_239650/content (accessed on 19 August 2021).
- Wright, J.M. Chapter 2, Types of Floods and Floodplains; Floodplain Management, Principles and Current Practices; FEMA Emergency Management Institute, Emmitsburg 2007. Available online: https://training.fema.gov/hiedu/docs/fmc/chapter%202%20-%20types%20of%20floods%20and%20floodplains.pdf (accessed on 19 August 2021).
- European Environmental Agency. Mapping the Impacts of Natural Hazards and Technological Accidents in Europe: An Overview of the Last Decade; Publications Office of the European Union: Luxembourg, 2010; Volume 13, ISBN 978-92-9213-168-5. [Google Scholar]
- Gellweiler, I.; Seeling, S.; Hefczyk, A.; Hill, J. WaReLa Scientific Conference on Integrated Catchment for Hazard Mitigation; Universität Trier, Fachbereich VI, Abteilung Fernerkundung: Trier, Germany, 18 September 2007; p. 169. [Google Scholar]
- European Commission. Floods and Their Impacts. Available online: https://ec.europa.eu/environment/water/flood_risk/impacts.htm (accessed on 10 January 2021).
- Luo, P.; He, B.; Takara, K.; Xiong, Y.E.; Nover, D.; Duan, W.; Fukushi, K. Historical Assessment of Chinese and Japanese Flood Management Policies and Implications for Managing Future Floods. Environ. Sci. Policy 2015, 48, 265–277. [Google Scholar] [CrossRef] [Green Version]
- Rubinato, M.; Nichols, A.; Peng, Y.; Zhang, J.; Lashford, C.; Cai, Y.; Lin, P.; Tait, S. Urban and River Flooding: Comparison of Flood Risk Management Approaches in the UK and China and an Assessment of Future Knowledge Needs. Water Sci. Eng. 2019, 12, 274–283. [Google Scholar] [CrossRef]
- Umweltbundesamt. Flüsse. Available online: https://www.umweltbundesamt.de/themen/wasser/fluesse#hydromorphologie (accessed on 12 January 2021).
- Ruangpan, L.; Vojinovic, Z.; Di Sabatino, S.; Leo, L.S.; Capobianco, V.; Oen, A.M.P.; McClain, M.E.; Lopez-Gunn, E. Nature-Based Solutions for Hydro-Meteorological Risk Reduction: A State-of-the-Art Review of the Research Area. Nat. Hazards Earth Syst. Sci. 2020, 20, 243–270. [Google Scholar] [CrossRef] [Green Version]
- Restemeyer, B.; Woltjer, J.; van den Brink, M. A Strategy-Based Framework for Assessing the Flood Resilience of Cities—A Hamburg Case Study. Plan. Theory Pract. 2015, 16, 45–62. [Google Scholar] [CrossRef]
- Stürck, J.; Poortinga, A.; Verburg, P.H. Mapping Ecosystem Services: The Supply and Demand of Flood Regulation Services in Europe. Ecol. Indic. 2014, 38, 198–211. [Google Scholar] [CrossRef]
- Stoffel, M.; Wyżga, B.; Marston, R.A. Floods in Mountain Environments: A Synthesis. Geomorphology 2016, 272, 1–9. [Google Scholar] [CrossRef]
- Blöschl, G.; Hall, J.; Viglione, A.; Perdigão, R.A.P.; Parajka, J.; Merz, B.; Lun, D.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; et al. Changing Climate Both Increases and Decreases European River Floods. Nature 2019, 573, 108–111. [Google Scholar] [CrossRef]
- European Environmental Agency. Floodplain Management: Reducing Flood Risks and Restoring Healthy Ecosystems. Available online: Eea.europa.eu/highlights/floodplain-management-reducing-flood-risks (accessed on 11 September 2021).
- Länderarbeitsgemeinschaft Wasser “LAWA”. Leitlinien Für Einen Zukunftsweisenden Hochwasserschutz Hochwasser -Ursachen Und Konsequenzen-; Länderarbeitsgemeinschaft Wasser “LAWA”: Stuttgart, Germany, 1995; p. 30. Available online: https://www.lawa.de/documents/leitlinien_1552299715.pdf (accessed on 19 August 2021).
- Bund für Umwelt und Naturschutz Deutschland “BUND”. Naturschutz; Natur und Umwelt GmbH: Berlin, Germany, 2012; Volume 59. [Google Scholar]
- De Wrachien, D.; Mambretti, S.; Schultz, B. Flood Management and Risk Assessment in Flood-Prone Areas: Measures and Solutions. Irrig. Drain. 2011, 60, 229–240. [Google Scholar] [CrossRef]
- Thieken, A. Flood Risk Reduction in Germany: Lessons Learned from the 2002 Disaster in the Elbe Region. Summary of the Study; Grünewald, U., Kaltofen, M., Schümberg, S., Merz, B., Kreibich, H., Streitz, W., Dombrowsky, W.R., Deutsches Komitee für Katastrophenvorsorge, Eds.; Schriftenreihe des DKKV, Deutsches Komitee für Katastrophenvorsorge e.V: Bonn, Germany, 2004; ISBN 978-3-933181-34-3. [Google Scholar]
- Ebinger, F.; Elsner, K.; Vogt, P. Ökoeffzienz-Analyse: Entwicklung eines Ansatzes zur Bewertung von Dezentralen Hochwasserschutzmaßnahmen; Arbeitsbericht, Albert-Ludwigs-Universität Freiburg, Institut für Forstökonomie: Freiburg, Germany, 2008; p. 46. [Google Scholar]
- Dadson, S.J.; Hall, J.W.; Murgatroyd, A.; Acreman, M.; Bates, P.; Beven, K.; Heathwaite, L.; Holden, J.; Holman, I.P.; Lane, S.N.; et al. A Restatement of the Natural Science Evidence Concerning Catchment-Based ‘Natural’ Flood Management in the UK. Proc. R. Soc. Math. Phys. Eng. Sci. 2017, 473, 20160706. [Google Scholar] [CrossRef] [Green Version]
- Achal, V.; Mukherjee, A. Ecological Wisdom Inspired Restoration Engineering; EcoWISE; Springer: Cham, Switzerland, 2019; ISBN 9789811343414. [Google Scholar]
- Kreibich, H.; Bubeck, P.; Van Vliet, M.; De Moel, H. A Review of Damage-Reducing Measures to Manage Fluvial Flood Risks in a Changing Climate. Mitig. Adapt. Strateg. Glob. Chang. 2015, 20, 967–989. [Google Scholar] [CrossRef] [Green Version]
- Commission for Interdisciplinary Ecological Studies, “KIOES”. Umwelt und Gesellschaft. Herausforderung für Wissenschaft und Politik; Verlag der Österreichischen Akademie der Wissenschaften: Wien, Germany, 2018; Volume 8, p. 114. [Google Scholar]
- Bechtol, V.; Laurian, L. Restoring Straightened Rivers for Sustainable Flood Mitigation. Disaster Prev. Manag. Int. J. 2005, 14, 6–19. [Google Scholar] [CrossRef]
- Jessel, B.; Tschimpke, O.; Walser, M. Produktivkraft Natur; Aufl.; Hoffmann und Campe: Hamburg, Germany, 2009; ISBN 978-3-455-50140-7. [Google Scholar]
- Lumbroso, D.; Ramsbottom, D.; Spaliveiro, M. Sustainable Flood Risk Management Strategies to Reduce Rural Communities’ Vulnerability to Flooding in Mozambique: Sustainable Flood Risk Management Strategies. J. Flood Risk Manag. 2008, 1, 34–42. [Google Scholar] [CrossRef]
- Highfield, W.E.; Brody, S.D. Evaluating the Effectiveness of Local Mitigation Activities in Reducing Flood Losses. Nat. Hazards Rev. 2013, 14, 229–236. [Google Scholar] [CrossRef]
- Thaler, T.; Hartmann, T. Justice and Flood Risk Management: Reflecting on Different Approaches to Distribute and Allocate Flood Risk Management in Europe. Nat. Hazards 2016, 83, 129–147. [Google Scholar] [CrossRef] [Green Version]
- Bubeck, P.; Kreibich, H.; Penning-Rowsell, E.C.; Botzen, W.J.W.; de Moel, H.; Klijn, F. Explaining Differences in Flood Management Approaches in Europe and in the USA—A Comparative Analysis: Differences in Flood Management Approaches. J. Flood Risk Manag. 2017, 10, 436–445. [Google Scholar] [CrossRef]
- Wiering, M.; Kaufmann, M.; Mees, H.; Schellenberger, T.; Ganzevoort, W.; Hegger, D.L.T.; Larrue, C.; Matczak, P. Varieties of Flood Risk Governance in Europe: How Do Countries Respond to Driving Forces and What Explains Institutional Change? Glob. Environ. Chang. 2017, 44, 15–26. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Hegger, D.L.T.; Matczak, P.; Driessen, P.P.J. Opinion: Flood-Risk Reduction: Structural Measures and Diverse Strategies. Proc. Natl. Acad. Sci. USA 2018, 115, 12321–12325. [Google Scholar] [CrossRef] [Green Version]
- Jongman, B. Effective Adaptation to Rising Flood Risk. Nat. Commun. 2018, 9, 1986. [Google Scholar] [CrossRef] [Green Version]
- Evers, M.; Mußbach, J.; Arndt, P.; Tischbierek, M. Integrative River Basin Management. Synergies and Target Areas in the Catchment Area of River Ilmenau (Final Report SAWA Ilmenau Project); Leuphana Universität Lüneburg & Bartels Druck GmbH: Lüneburg, Germany, 2011; ISBN 978-3-935786-54-6. [Google Scholar] [CrossRef]
- Reinhardt, C.; Bölscher, J.; Schulte, A.; Wenzel, R. Decentralised Water Retention along the River Channels in a Mesoscale Catchment in South-Eastern Germany. Phys. Chem. Earth Parts ABC 2011, 36, 309–318. [Google Scholar] [CrossRef]
- Egli, M.; Poulenard, J. Soils of Mountainous Landscapes. In International Encyclopedia of Geography: People, the Earth, Environment and Technology; Richardson, D., Castree, N., Goodchild, M.F., Kobayashi, A., Liu, W., Marston, R.A., Eds.; John Wiley & Sons, Ltd.: Oxford, UK, 2016; pp. 1–10. ISBN 978-0-470-65963-2. [Google Scholar]
- Holub, M.; Hübl, J. Local Protection against Mountain Hazards—State of the Art and Future Needs. Nat. Hazards Earth Syst. Sci. 2008, 8, 81–99. [Google Scholar] [CrossRef]
- Siegrist, M.; Gutscher, H. Natural Hazards and Motivation for Mitigation Behavior: People Cannot Predict the Affect Evoked by a Severe Flood. Risk Anal. Int. J. 2008, 28, 771–778. [Google Scholar] [CrossRef]
- Watson, D.; Adams, M. Design for Flooding: Architecture, Landscape, and Urban Design for Resilience to Flooding and Climate Change; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 978-0-470-47564-5. [Google Scholar]
- Hochwasserkompetenzzentrum e.V. Hochwasserpass. Available online: https://www.hochwasser-pass.com/Hochwasser (accessed on 10 January 2021).
- Garrote, J.; Díez-Herrero, A.; Bodoque, J.; Perucha, M.; Mayer, P.; Génova, M. Flood Hazard Management in Public Mountain Recreation Areas vs. Ungauged Fluvial Basins. Case Study of the Caldera de Taburiente National Park, Canary Islands (Spain). Geosciences 2017, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Peters, R. The European Agricultural Fund for Rural Development: Examples of Project Linkages with Other EU Funds; European Agricultural Fund for Rural Development, Publications Office: Brussel, Belgium, 2012; ISSN 1831-936X. [Google Scholar]
- Yuen, E.; Anda, M.; Mathew, K.; Ho, G. Water Harvesting Techniques for Small Communities in Arid Areas. Water Sci. Technol. 2001, 44, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ford, C.R.; Laseter, S.H.; Swank, W.T.; Vose, J.M. Can Forest Management Be Used to Sustain Water-Based Ecosystem Services in the Face of Climate Change? Ecol. Appl. 2011, 21, 2049–2067. [Google Scholar] [CrossRef]
- Lourenço, L.C. Mutirão Reflorestamento: Reforestation Collective Action. Available online: https://oppla.eu/casestudy/20067 (accessed on 10 January 2021).
- Nicholson, A.; Wilkinson, M.; O’Donnell, G.; Quinn, P. Runoff Attenuation Features: A Sustainable Flood Mitigation Strategy in the Belford Catchment, UK. Area 2012, 44, 463–469. [Google Scholar] [CrossRef]
- Merten, J.; Stiegler, C.; Hennings, N.; Purnama, E.S.; Röll, A.; Agusta, H.; Dippold, M.A.; Fehrmann, L.; Gunawan, D.; Hölscher, D.; et al. Flooding and Land Use Change in Jambi Province, Sumatra: Integrating Local Knowledge and Scientific Inquiry. Ecol. Soc. 2020, 25, art14. [Google Scholar] [CrossRef]
- Wegner, H. Dezentraler Hochwasserschutz. Wasser Boden 1992, 44, 6–10. [Google Scholar]
- Jordan, P. Großgliederung Europas nach kulturräumlichen Kriterien. Eur. Reg. 2005, 13, 162–173. [Google Scholar]
- United Nations Statistics Division, “UNSD”. Standard Country or Area Codes for Statistical Use (M49). Available online: https://unstats.un.org/unsd/methodology/m49/#geo-regions (accessed on 10 September 2021).
- Yevjevich, V. Classification and description of flood mitigation measures. In Coping with Floods; Rossi, G., Harmancioğlu, N., Yevjevich, V., Eds.; NATO ASI Series; Springer: Dordrecht, The Netherlands, 1994; pp. 573–584. ISBN 978-94-011-1098-3. [Google Scholar]
- Klimanavigator. Naturkatastrophen in Deutschland—Ein Überblick; Wie Können Wir Uns Schützen? Available online: https://www.klimanavigator.eu/dossier/artikel/012154/index.php; (accessed on 12 January 2021).
- Reinhardt, C.; Bölscher, J.; Imjela, R.; Schulte, A. Dezentraler Hochwasserrückhalt–Maßnahmen, Potentiale und ein Fallbeispiel aus dem Mittleren Erzgebirge. In Hochwasserdynamik und Risikomanagement—Neue Ansätze für bekannte Probleme? Schulte, A., Reinhardt, C., Dittrich, A., Jüpner, R., Lüderitz, V., Eds.; Shaker Verlag: Berlin, Germany, 2011; pp. 61–76. [Google Scholar]
- Morris, J.; Beedell, J.; Hess, T.M. Mobilising Flood Risk Management Services from Rural Land: Principles and Practice: Flood Risk Management Services from Rural Land. J. Flood Risk Manag. 2016, 9, 50–68. [Google Scholar] [CrossRef]
- Manderscheid, K. Sozialwissenschaftliche Datenanalyse mit R: Eine Einführung, 2nd ed.; Lehrbuch; Springer Fachmedien Wiesbaden GmbH: Wiesbaden, Germany; Heidelberg, Germany, 2017; ISBN 978-3-658-15902-3. [Google Scholar]
- Blasius, J.; Georg, W. Clusteranalyse und Korrespondenzanalyse in der Lebensstilforschung: Ein Vergleich am Beispiel der Wohnungseinrichtung; ZA-InformationZentralarchiv Für Empirische Sozialforschung (Universität zu Köln): Cologne, Germany, 1992; pp. 112–133. [Google Scholar]
- Diaz-Bone, R. Statistik für Soziologen, 4th ed.; UTB Basics; UVK Verlag: München, Germany, 2019; ISBN 978-3-8252-5071-3. [Google Scholar]
- Pouyanfar, S.; Tao, Y.; Tian, H.; Chen, S.-C.; Shyu, M.-L. Multimodal Deep Learning Based on Multiple Correspondence Analysis for Disaster Management. World Wide Web 2019, 22, 1893–1911. [Google Scholar] [CrossRef]
- Amador-Cruz, F.; Figueroa-Rangel, B.L.; Olvera-Vargas, M.; Mendoza, M.E. A Systematic Review on the Definition, Criteria, Indicators, Methods and Applications behind the Ecological Value Term. Ecol. Indic. 2021, 129, 107856. [Google Scholar] [CrossRef]
- Marcillo-Delgado, J.C.; Alvarez-Garcia, A.; García-Carrillo, A. Analysis of Risk and Disaster Reduction Strategies in South American Countries. Int. J. Disaster Risk Reduct. 2021, 61, 102363. [Google Scholar] [CrossRef]
- Zengul, F.D.; Zengul, A.G.; Mugavero, M.J.; Oner, N.; Ozaydin, B.; Delen, D.; Willig, J.H.; Kennedy, K.C.; Cimino, J. A Critical Analysis of COVID-19 Research Literature: Text Mining Approach. Intell.-Based Med. 2021, 5, 100036. [Google Scholar] [CrossRef]
- Zingraff-Hamed, A.; Hüesker, F.; Albert, C.; Brillinger, M.; Huang, J.; Lupp, G.; Scheuer, S.; Schlätel, M.; Schröter, B. Governance Models for Nature-Based Solutions: Seventeen Cases from Germany. Ambio 2021, 50, 1610–1627. [Google Scholar] [CrossRef]
- Batista-Foguet, J.M.; Mendoza, R.; Pérez-Perdigón, M.; Ruis, R. Life-Styles of Spanish School-Aged Children: Their Evolution over Time 1. Use of Multiple Correspondence Analysis to Determine Overall Trends over Time in a Sequential, Cross-Sectional Study. Advances in Methodology, Data analysis and Statistics; Ferligoj, A., Mrvar, A., Eds.; Metodološki Zvezki: Ljubljana, Slovenia, 2000; Volume 16, pp. 147–172. [Google Scholar]
- D’Enza, A.I.; Greenacre, M. Multiple Correspondence Analysis for the Quantification and Visualization of Large Categorical Data Sets. In Advanced Statistical Methods for the Analysis of Large Data-Sets; Di Ciaccio, A., Coli, M., Angulo Ibanez, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 453–463. ISBN 978-3-642-21036-5. [Google Scholar]
- Avolio, M.; Montagnoli, S.; Marino, M.; Basso, D.; Furia, G.; Ricciardi, W.; de Belvis, A.G. Factors Influencing Quality of Life for Disabled and Nondisabled Elderly Population: The Results of a Multiple Correspondence Analysis. Curr. Gerontol. Geriatr. Res. 2013, 2013, 258274. [Google Scholar] [CrossRef] [PubMed]
- Greenacre, M.; Pardo, R. Subset Correspondence Analysis: Visualizing Relationships among a Selected Set of Response Categories From a Questionnaire Survey. Sociol. Methods Res. 2006, 35, 193–218. [Google Scholar] [CrossRef]
- Dramalidis, A.; Markos, A. Subset Multiple Correspondence Analysis as a Tool for Visualizing Affiliation Networks. J. Data Anal. Inf. Process. 2016, 4, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Grau Larsen, A.; Ellersgaard, C.; Andrade, S. Package “soc.ca”; 9 February 2016. Available online: github.com/Rsoc/soc.ca (accessed on 19 August 2021).
- Josse, J.; Husson, F. MissMDA: A Package for Handling Missing Values in Multivariate Data Analysis. J. Stat. Softw. 2016, 70, 1–30. [Google Scholar] [CrossRef]
- Carpenter, J.; Kenward, M. Brief Comments on Computational Issues with Multiple Imputation. Unpublished Paper Retrieved from CiteSeerX. 2008. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.394.9545&rep=rep1&type=pdf (accessed on 19 August 2021).
- Carpenter, J.R.; Smuk, M. Missing Data: A Statistical Framework for Practice. Biometr. J. 2021, 63, 915–947. [Google Scholar] [CrossRef]
- Josse, J.; Chavent, M.; Liquet, B.; Husson, F. Handling Missing Values with Regularized Iterative Multiple Correspondence Analysis. J. Classif. 2012, 29, 91–116. [Google Scholar] [CrossRef] [Green Version]
- Häder, M.; Häder, S. Delphi-Befragung. In Handbuch Methoden der Empirischen Sozialforschung; Baur, N., Blasius, J., Eds.; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2019; pp. 701–707. ISBN 978-3-658-21307-7. [Google Scholar]
- Tastle, W.J.; Wierman, M.J.; Dumdum, U.R. Ranking Ordinal Scales Using the Consensus Measure. Issues Inf. Syst. 2005, 6, 96–102. [Google Scholar]
- Tastle, W.J.; Wierman, M.J. Consensus and Dissention: A Measure of Ordinal Dispersion. Int. J. Approx. Reason. 2007, 45, 531–545. [Google Scholar] [CrossRef] [Green Version]
- Mangiafico, S.S. Summary and Analysis of Extension Program Evaluation in R, Version 1.18.8; Rutgers Coop. Ext.: New Brunswick, NJ, USA, 2016; pp. 16–22. Available online: rcompanion.org/documents/RHandbookProgramEvaluation.pdf (accessed on 19 August 2021).
- Amini, A.; Ghazvinei, P.T.; Javan, M.; Saghafian, B. Evaluating the Impacts of Watershed Management on Runoff Storage and Peak Flow in Gav-Darreh Watershed, Kurdistan, Iran. Arab. J. Geosci. 2014, 7, 3271–3279. [Google Scholar] [CrossRef]
- Massolle, C.; Lankenau, L.; Koppe, B. Emergency Flood Control: Practice-Oriented Test Series for the Use of Sandbag Replacement Systems. Geosciences 2018, 8, 482. [Google Scholar] [CrossRef] [Green Version]
- Ikeuchi, K. Flood Management in Japan. Available online: https://www.mlit.go.jp/river//////basic_info/english/pdf/conf_01-0.pdf (accessed on 13 March 2012).
- Deen, S. Pakistan 2010 Floods. Policy Gaps in Disaster Preparedness and Response. Int. J. Disaster Risk Reduct. 2015, 12, 341–349. [Google Scholar] [CrossRef]
- Yadav, D.K.; Barve, A. Prioritization of Cyclone Preparedness Activities in Humanitarian Supply Chains Using Fuzzy Analytical Network Process. Nat. Hazards 2019, 97, 683–726. [Google Scholar] [CrossRef]
- Titko, M.; Ristvej, J. Assessing Importance of Disaster Preparedness Factors for Sustainable Disaster Risk Management: The Case of the Slovak Republic. Sustainability 2020, 12, 9121. [Google Scholar] [CrossRef]
- European Commission. How Local Action Can Boost Europe’s Flood Resilience. Available online: https://ec.europa.eu/programmes/horizon2020/en/news/how-local-action-can-boost-europe%E2%80%99s-flood-resilience (accessed on 11 September 2021).
- Vojinovic, Z.; Keerakamolchai, W.; Weesakul, S.; Pudar, R.; Medina, N.; Alves, A. Combining Ecosystem Services with Cost-Benefit Analysis for Selection of Green and Grey Infrastructure for Flood Protection in a Cultural Setting. Environments 2016, 4, 3. [Google Scholar] [CrossRef]
- European Commission. Putting the Citizen at the Centre of Flood Prevention. Available online: https://ec.europa.eu/programmes/horizon2020/en/news/putting-citizen-centre-flood-prevention (accessed on 13 January 2021).
- EU Water Directors. Best Practices on Flood Prevention, Protection and Mitigation; Water Directors of the European Union: Brussels, Belgium, 2003. [Google Scholar]
- Egli, T. Non Structural Flood Plain Management Measures and Their Effectiveness; Internationale Kommission zum Schutz des Rheins, Ed.; International Commission for the Protection of the Rhine (ICPR): Koblenz, Germany, 2002; ISBN 978-3-935324-47-2. [Google Scholar]
- Schanze, J.; Zeman, E.; Marsalek, J. Flood Risk Management: Hazards, Vulnerability and Mitigation Measures; NATO Science Series, Series IV, Earth and Environmental Sciences; Springer: Dordrecht, The Netherlands, 2006; ISBN 978-1-4020-4596-7. [Google Scholar]
- Liu, D.; Li, Y.; Fang, S.; Zhang, Y. Influencing Factors for Emergency Evacuation Capability of Rural Households to Flood Hazards in Western Mountainous Regions of Henan Province, China. Int. J. Disaster Risk Reduct. 2017, 21, 187–195. [Google Scholar] [CrossRef]
- Scolobig, A.; De Marchi, B. Dilemma in land-use planning in flood prone areas. In Flood Risk Management: Extended Abstracts; Volume (332 Pages) + Full Paper CD-ROM (1772 Pages); Samuels, P., Huntington, S., Allsop, W., Harrop, J., Eds.; CRC Press: Hoboken, NJ, USA, 2008; p. 204. ISBN 978-0-203-88302-0. [Google Scholar]
- Koks, E.E.; Jongman, B.; Husby, T.G.; Botzen, W.J.W. Combining Hazard, Exposure and Social Vulnerability to Provide Lessons for Flood Risk Management. Environ. Sci. Policy 2015, 47, 42–52. [Google Scholar] [CrossRef]
- Perosa, F.; Gelhaus, M.; Zwirglmaier, V.; Arias-Rodriguez, L.F.; Zingraff-Hamed, A.; Cyffka, B.; Disse, M. Integrated Valuation of Nature-Based Solutions Using TESSA: Three Floodplain Restoration Studies in the Danube Catchment. Sustainability 2021, 13, 1482. [Google Scholar] [CrossRef]
- Moos, C.; Bebi, P.; Schwarz, M.; Stoffel, M.; Sudmeier-Rieux, K.; Dorren, L. Ecosystem-Based Disaster Risk Reduction in Mountains. Earth-Sci. Rev. 2018, 177, 497–513. [Google Scholar] [CrossRef]
- Veldman, J.W.; Overbeck, G.E.; Negreiros, D.; Mahy, G.; Le Stradic, S.; Fernandes, G.W.; Durigan, G.; Buisson, E.; Putz, F.E.; Bond, W.J. Where Tree Planting and Forest Expansion Are Bad for Biodiversity and Ecosystem Services. BioScience 2015, 65, 1011–1018. [Google Scholar] [CrossRef]
- Geist, J.; Hawkins, S.J. Habitat Recovery and Restoration in Aquatic Ecosystems: Current Progress and Future Challenges: Aquatic Restoration. Aquat. Conserv. Mar. Freshw. Ecosyst. 2016, 26, 942–962. [Google Scholar] [CrossRef]
- Pugliese, F.; Caroppi, G.; Zingraff-Hamed, A.; Lupp, G.; Giugni, M. Nature-Based Solutions (NBSs) Application for Hydro-Environment Enhancement. A Case Study of the Isar River (DE). Environ. Sci. Proc. 2020, 2, 30. [Google Scholar] [CrossRef]
- Shaw, R.; Uy, N.; Baumwoll, J. Indigenous Knowledge for Disaster Risk Reduction: Good Practices and Lessons Learned from Experiences in the Asia-Pacific Region; International Strategy for Disaster Reduction: Bangkok, Thailand, 2008; Volume 19. [Google Scholar]
- Bhattacharyya, K. The Lower Damodar River, India: Understanding the Human Role in Changing Fluvial Environment; Advances in Asian Human-Environmental Research; Springer: Dordrecht, The Netherlands; New York, NY, USA, 2011; ISBN 978-94-007-0467-1. [Google Scholar]
- Van der Meulen, J.; de Vries, M.; Olieman, M.; Venema, H.; Schelfhout, H. Willows for Less Expensive and More Beautiful Dikes. Water Matters Knowl. J. Water Prof. 2015, 2, 1. Available online: https://www.h2o-watermatters.com/includes/partials/printArticle.php?ed=201511&art=05_Artikel (accessed on 19 August 2021).
- Deutsche Gesellschaft für Internationale Zusammenarbeit, “GIZ”. Solutions in Focus: Ecosystem-Based Adaptation from Mountains to Oceans. How People Adapt to Climate Change by Using Nature; PANORAMA Solutions for a Healthy Planet: Bonn, Germany; Eschborn, Germany, 2018. [Google Scholar]
- Ryan, J.; McAlpine, C.; Ludwig, J.; Callow, J. Modelling the Potential of Integrated Vegetation Bands (IVB) to Retain Stormwater Runoff on Steep Hillslopes of Southeast Queensland, Australia. Land 2015, 4, 711–736. [Google Scholar] [CrossRef] [Green Version]
- Vogt, N.; Pinedo-Vasquez, M.; Brondízio, E.S.; Rabelo, F.G.; Fernandes, K.; Almeida, O.; Riveiro, S.; Deadman, P.J.; Dou, Y. Local Ecological Knowledge and Incremental Adaptation to Changing Flood Patterns in the Amazon Delta. Sustain. Sci. 2016, 11, 611–623. [Google Scholar] [CrossRef]
- Nordbeck, R.; Löschner, L.; Scherhaufer, P.; Hogl, K.; Seher, W. Hochwasserschutzverbände als Instrument der interkommunalen Kooperation im Hochwasserrisikomanagement. Österr. Wasser-Abfallwirtsch. 2018, 70, 316–327. [Google Scholar] [CrossRef] [Green Version]
- Thieken, A.H.; Cammerer, H.; Dobler, C.; Lammel, J.; Schöberl, F. Estimating Changes in Flood Risks and Benefits of Non-Structural Adaptation Strategies—A Case Study from Tyrol, Austria. Mitig. Adapt. Strateg. Glob. Chang. 2016, 21, 343–376. [Google Scholar] [CrossRef] [Green Version]
- Grünewald, U. Von Hochwasser Zu Hochwasser: Eine Herausforderung Nicht Nur Für Die Wasserwirtschaftliche Praxis. Presentation at Fachtagung Hochwasser 2013 in Mitteldeutschland-Ein Jahr nach der Flut-, Dessau, Germany, 17 September 2014. Available online: https://www.dwa-st.de/files/_media/content/PDFs/LV_ST/serv/rueck/fach/2014_hws_1_gruenewald.pdf (accessed on 19 August 2021).
- International Union for Conservation of Nature. Environment and Disasters. Available online: https://www.iucn.org/theme/ecosystem-management/our-work/environment-and-disasters (accessed on 9 January 2021).
- Wahren, A.; Schwärzel, K.; Feger, K.-H. Potentials and Limitations of Natural Flood Retention by Forested Land in Headwater Catchments: Evidence from Experimental and Model Studies: Potentials and Limitations of Natural Flood Retention. J. Flood Risk Manag. 2012, 5, 321–335. [Google Scholar] [CrossRef]
- Schmidt, O. Schutz Vor Hochwasser Durch Alpine Berg- Und Schutzwälder—Beiträge Zur Tagung Im Oktober 2017. LWF Wissen 2018, 82, 62. [Google Scholar]
- Andersson-Sköld, Y. Collocation of Experiences with SGI Matrix Based Decision Support Tool (MDST) within SAWA; Swedish Geotechnical Institute: Linköping, Sweden, 2012; p. 627. [Google Scholar]
- Evers, M.; Nyberg, L.; Svedung, I. Reducing Flood Risk by Integrative Land Use Planning. In Proceedings of the Land Use Planning and Risk-Informed Decision Making: Proceedings of the 43rd ESReDA Seminar Hosted by INSA Rouen, France; European Commission, Joint Research Centre, Institute for Energy and Transport, Eds.; Publications Office: Luxembourg, 2014; p. 467. [Google Scholar]
- Spreafico, M. Flash Floods in Mountain Areas. In Proceedings of the Climate Variability and Change—Hydrological Impacts, Havana, Cuba, 27 November–1 December 2006; IAHS Publication: Havana, Cuba, 2006; Volume 308, p. 232. [Google Scholar]
- Pedersen Zari, M. Biomimetic Materials for Addressing Climate Change. In Handbook of Ecomaterials; Martínez, L.M.T., Kharissova, O.V., Kharisov, B.I., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–23. ISBN 978-3-319-48281-1. [Google Scholar]
- European Commission. Shoring up Europe’s Flood Defences. Available online: https://ec.europa.eu/programmes/horizon2020/en/news/shoring-europe%E2%80%99s-flood-defences (accessed on 10 September 2021).
- Engelke, J. Wetlands: A Flooding Solution; Kansas State University: Manhatten, KS, USA, 2012. [Google Scholar]
- Thorslund, J.; Jarsjo, J.; Jaramillo, F.; Jawitz, J.W.; Manzoni, S.; Basu, N.B.; Chalov, S.R.; Cohen, M.J.; Creed, I.F.; Goldenberg, R.; et al. Wetlands as Large-Scale Nature-Based Solutions: Status and Challenges for Research, Engineering and Management. Ecol. Eng. 2017, 108, 489–497. [Google Scholar] [CrossRef]
- Pfammatter, U. Bauen im Kultur- und Klimawandel: Green Traditions—Clean Future; vdf Hochschulverl: Zurich, Switzerland, 2012; Volume 317, ISBN 978-3-7281-3395-3. [Google Scholar]
- Wantzen, K.M.; Ballouche, A.; Longuet, I.; Bao, I.; Bocoum, H.; Cissé, L.; Chauhan, M.; Girard, P.; Gopal, B.; Kane, A.; et al. River Culture: An Eco-Social Approach to Mitigate the Biological and Cultural Diversity Crisis in Riverscapes. Ecohydrol. Hydrobiol. 2016, 16, 7–18. [Google Scholar] [CrossRef]
- Yang, B.; Li, M.-H.; Li, S. Design-with-Nature for Multifunctional Landscapes: Environmental Benefits and Social Barriers in Community Development. Int. J. Environ. Res. Public. Health 2013, 10, 5433–5458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, I.; Connelly, A.; Garvin, S.; Lawson, N.; O’Hare, P. Flood Resilience Technology in Europe: Identifying Barriers and Co-Producing Best Practice: Flood Resilience Technology in Europe. J. Flood Risk Manag. 2018, 11, S468–S478. [Google Scholar] [CrossRef]
- Schad, I.; Schmitter, P.; Saint-Macary, C.; Neef, A.; Lamers, M.; Nguyen, L.; Hilger, T.; Hoffmann, V. Why Do People Not Learn from Flood Disasters? Evidence from Vietnam’s Northwestern Mountains. Nat. Hazards 2012, 62, 221–241. [Google Scholar] [CrossRef] [Green Version]
- Priest, S.J.; Suykens, C.; Van Rijswick, H.F.M.W.; Schellenberger, T.; Goytia, S.; Kundzewicz, Z.W.; van Doorn-Hoekveld, W.J.; Beyers, J.-C.; Homewood, S. The European Union Approach to Flood Risk Management and Improving Societal Resilience: Lessons from the Implementation of the Floods Directive in Six European Countries. Ecol. Soc. 2016, 21, art50. [Google Scholar] [CrossRef] [Green Version]
- Lumbroso, D.M.; Vinet, F. A Comparison of the Causes, Effects and Aftermaths of the Coastal Flooding of England in 1953 and France in 2010. Nat. Hazards Earth Syst. Sci. 2011, 11, 2321–2333. [Google Scholar] [CrossRef] [Green Version]
- Le Roux, B.; Rouanet, H. Geometric Data Analysis: From Correspondence Analysis to Structured Data Analysis; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA, 2004; ISBN 978-1-4020-2235-7. [Google Scholar]
- Le Roux, B.; Rouanet, H. Multiple Correspondence Analysis; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2010; Volume 163, ISBN 978-1-4129-6897-3. [Google Scholar]
- Robette, N. Package “GDAtools”; 17 May 2020. Available online: nicolas.robette.free.fr/outils_eng.html (accessed on 19 August 2021).
- Döring, N.; Bortz, J. Forschungsmethoden und Evaluation in den Sozial- und Humanwissenschaften; Springer-Lehrbuch, 5. Vollständig überarbeitete Aktualisierte und Erweiterte Auflage; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-642-41089-5. [Google Scholar]
- Andersson-Sköld, Y.; Nyberg, L. Effective and Sustainable Flood and Landslide Risk Reduction Measures: An Investigation of Two Assessment Frameworks. Int. J. Disaster Risk Sci. 2016, 7, 374–392. [Google Scholar] [CrossRef] [Green Version]
- Ballesteros-Cánovas, J.A.; Czajka, B.; Janecka, K.; Lempa, M.; Kaczka, R.J.; Stoffel, M. Flash Floods in the Tatra Mountain Streams: Frequency and Triggers. Sci. Total Environ. 2015, 511, 639–648. [Google Scholar] [CrossRef]
- Bathurst, J.C.; Iroumé, A.; Cisneros, F.; Fallas, J.; Iturraspe, R.; Novillo, M.G.; Urciuolo, A.; de Bièvre, B.; Borges, V.G.; Coello, C.; et al. Forest Impact on Floods Due to Extreme Rainfall and Snowmelt in Four Latin American Environments 1: Field Data Analysis. J. Hydrol. 2011, 400, 281–291. [Google Scholar] [CrossRef]
- Bianchin, S. Feldhecken und deren Einfluss auf Hochwasser und Naturschutz unter Berücksichtigung von Agrarökonomischen Belangen im Naturraum Erzgebirge; Technische Universität Bergakademie Freiberg: Freiberg, Germany, 2012. [Google Scholar]
- Biron, P.M.; Buffin-Bélanger, T.; Larocque, M.; Choné, G.; Cloutier, C.-A.; Ouellet, M.-A.; Demers, S.; Olsen, T.; Desjarlais, C.; Eyquem, J. Freedom Space for Rivers: A Sustainable Management Approach to Enhance River Resilience. Environ. Manag. 2014, 54, 1056–1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bullock, A.; Acreman, M. The Role of Wetlands in the Hydrological Cycle. Hydrol. Earth Syst. Sci. 2003, 7, 358–389. [Google Scholar] [CrossRef] [Green Version]
- Burby, R.J.; French, S.P. Coping With Floods: The Land Use Management Paradox. J. Am. Plann. Assoc. 1981, 47, 289–300. [Google Scholar] [CrossRef]
- Bwambale, B.; Muhumuza, M.; Nyeko, M. Traditional Ecological Knowledge and Flood Risk Management: A Preliminary Case Study of the Rwenzori. Jàmbá J. Disaster Risk Stud. 2018, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Cao, F.; Tao, Q.; Dong, S.; Li, X. Influence of Rain Pattern on Flood Control in Mountain Creek Areas: A Case Study of Northern Zhejiang. Appl. Water Sci. 2020, 10, 224. [Google Scholar] [CrossRef]
- European Commission. Annex: Towards Better Environmental Options for Flood Risk Management; European Commission: Brussels, Belgium, 2011; p. 16. [Google Scholar]
- Ferk, M.; Ciglič, R.; Komac, B.; Loczy, D. Management of Small Retention Ponds and Their Impact on Flood Hazard Prevention in the Slovenske Gorice Hills. Acta Geogr. Slov. 2020, 60, 107–125. [Google Scholar] [CrossRef]
- Fuchs, S.; Heiser, M.; Schlögl, M.; Zischg, A.; Papathoma-Köhle, M.; Keiler, M. Short Communication: A Model to Predict Flood Loss in Mountain Areas. Environ. Model. Softw. 2019, 117, 176–180. [Google Scholar] [CrossRef]
- González-Arqueros, M.L.; Mendoza, M.E.; Bocco, G.; Solís Castillo, B. Flood Susceptibility in Rural Settlements in Remote Zones: The Case of a Mountainous Basin in the Sierra-Costa Region of Michoacán, Mexico. J. Environ. Manag. 2018, 223, 685–693. [Google Scholar] [CrossRef]
- Hall, J.; Arheimer, B.; Borga, M.; Brázdil, R.; Claps, P.; Kiss, A.; Kjeldsen, T.R.; Kriaučiūnienė, J.; Kundzewicz, Z.W.; Lang, M.; et al. Understanding Flood Regime Changes in Europe: A State-of-the-Art Assessment. Hydrol. Earth Syst. Sci. 2014, 18, 2735–2772. [Google Scholar] [CrossRef] [Green Version]
- Harder, P.; Pomeroy, J.W.; Westbrook, C.J. Hydrological Resilience of a Canadian Rockies Headwaters Basin Subject to Changing Climate, Extreme Weather, and Forest Management: Hydrological Resilience of a Canadian Rockies Basin Subject to Change. Hydrol. Process. 2015, 29, 3905–3924. [Google Scholar] [CrossRef]
- Harry, I.; Assmann, T.; Rietze, J.; Trautner, J. Der Hochmoorlaufkäfer Carabus Ménétriesi Im Vor-Alpinen Moor-Und Hügelland Bayerns. Angew. Carabidol. 2005, 4, 53–64. [Google Scholar]
- freshideen.com. Geniales Haus Design Bietet Schtz Vor Überschwemmung. Available online: https://freshideen.com/architektur/geniales-haus-design.html (accessed on 27 January 2021).
- Helmrich, A.M.; Chester, M.V.; Hayes, S.; Markolf, S.A.; Desha, C.; Grimm, N.B. Using Biomimicry to Support Resilient Infrastructure Design. Earths Future 2020, 8. [Google Scholar] [CrossRef]
- Izmaiłow, B.; Kamykowska, M.; Krzemień, K. The Geomorphological Effects of Flash Floods in Mountain River Channels. The Case of the River Wilsznia (Western Carpathian Mountains). Pr. Geogr. 2006, 116, 89–102. [Google Scholar]
- Thomas, K. Dezentrale Und Naturnahe Retentionsmaßnahmen Als Beitrag Zum Hochwasserschutz in Mesoskaligen Einzugsgebieten Der Mittelgebirge; Universität Trier: Trier, Germany, 2006. [Google Scholar]
- Ley, R. Der Einfluss Kleiner Naturnaher Retentionsmaßnahmen in Der Fläche Auf Den Hochwasserabfluss-Kleinrückhaltebecken-; Diplomarbeit, Universität Trier, FB VI, Physische Geographie: Trier, Germany, 2006. [Google Scholar]
- List, G.; Laszlo, S.; Coomes, O.T. Mitigating Risk for Floodplain Agriculture in Amazonia: A Role for Index-Based Flood Insurance. Clim. Dev. 2020, 12, 649–663. [Google Scholar] [CrossRef]
- Mascarenhas, F.; Miguez, M.; Magalhães, L. Multifunctional Landscapes for Urban Flood Control in Developing Countries. In Proceedings of the Transactions of the Second International Conference on Sustainable Development and Planning, Bologna, Italy, 12–14 September 2005; WIT Press: Southampton, UK, 2005; Volume 2, pp. 1579–1588. [Google Scholar]
- Ministry of Land Infrastructure Transport and Tourism Water and Disaster Management Bureau (Japan), “MLIT”. Available online: https://www.mlit.go.jp/en/mizukokudo/index.html (accessed on 13 January 2021).
- O’Connell, P.E.; Ewen, J.; O’Donnell, G.; Quinn, P. Is There a Link between Agricultural Land-Use Management and Flooding? Hydrol. Earth Syst. Sci. 2007, 11, 96–107. [Google Scholar] [CrossRef] [Green Version]
- Piana, P.; Faccini, F.; Luino, F.; Paliaga, G.; Sacchini, A.; Watkins, C. Geomorphological Landscape Research and Flood Management in a Heavily Modified Tyrrhenian Catchment. Sustainability 2019, 11, 4594. [Google Scholar] [CrossRef] [Green Version]
- Radecki-Pawlik, A.; Plesiński, K.; Radecki-Pawlik, B.; Kuboń, P.; Manson, R. Hydrodynamic Parameters in a Flood Impacted Boulder Block Ramp: Krzczonówka Mountain Stream, Polish Carpathians. J. Mt. Sci. 2018, 15, 2335–2346. [Google Scholar] [CrossRef]
- Radulescu, D.; Ion, M.B.; Dumitrache, R.; Barbu, C.E. Flood Risk Management Objectives and Romanian Catalogue of Potential Measures for Flood Prevention, Protection and Mitigation. E3S Web Conf. 2016, 7, 23001. [Google Scholar] [CrossRef] [Green Version]
- Ran, J.; Nedovic-Budic, Z. Integrating Spatial Planning and Flood Risk Management: A New Conceptual Framework for the Spatially Integrated Policy Infrastructure. Comput. Environ. Urban Syst. 2016, 57, 68–79. [Google Scholar] [CrossRef] [Green Version]
- Rawat, P.K.; Tiwari, P.C.; Pant, C.C. Geo-Hydrological Database Modeling for Integrated Multiple Hazards and Risk Assessment in Lesser Himalaya: A GIS-Based Case Study. Nat. Hazards 2012, 62, 1233–1260. [Google Scholar] [CrossRef]
- Richert, E.; Bianchin, S.; Heilmeier, H.; Merta, M.; Seidler, C. Flood Prevention and Nature Conservation in the Weisseritz Area (Eastern Erzgebirge, Saxony, Germany), Interdisciplinary Evaluation of Land Use Scenarios. In Proceedings of the Flood Prevention and Nature Conservation—Interdisciplinary Evaluation of Land Use Scenarios for an Agricultural Landscape; Střelcová, K., Mátyás, C., Kleidon, A., Lapin, M., Matejka, F., Blaženec, M., Škvarenina, J., Holécy, J., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 137–141. [Google Scholar]
- Rieger, W. Prozessorientierte Modellierung dezentraler Hochwasserschutzmaßnahmen; Mitteilungen/Universität der Bundeswehr: München, Germany; Institut für Wasserwesen: München, Germany; Shaker: Aachen, Germany, 2012; ISBN 978-3-8440-1209-5. [Google Scholar]
- Ruiz-Villanueva, V.; Díez-Herrero, A.; Bodoque, J.M.; Ballesteros Cánovas, J.A.; Stoffel, M. Characterisation of Flash Floods in Small Ungauged Mountain Basins of Central Spain Using an Integrated Approach. CATENA 2013, 110, 32–43. [Google Scholar] [CrossRef]
- Salazar, S.; Francés, F.; Komma, J.; Blöschl, G.; Blume, T.; Francke, T.; Bronstert, A. Efficiency of Non-Structural Flood Mitigation Measures:“Room for the River” and “Retaining Water in the Landscape”. In Proceedings of the Flood Risk Management: Research and Practice, Oxford, UK, 30 September–2 October 2008; Samuels, P., Ed.; Taylor & Francis Group: London, UK; Oxford, UK, 2009; pp. 723–731. [Google Scholar]
- Schindler, S.; O’Neill, F.H.; Biró, M.; Damm, C.; Gasso, V.; Kanka, R.; van der Sluis, T.; Krug, A.; Lauwaars, S.G.; Sebesvari, Z.; et al. Multifunctional Floodplain Management and Biodiversity Effects: A Knowledge Synthesis for Six European Countries. Biodivers. Conserv. 2016, 25, 1349–1382. [Google Scholar] [CrossRef]
- Sieker, F.; Wilcke, D.; van der Ploeg, R. Innovativer Ansatz Eines Vorbeugenden Hochwasserschutzes Durch Dezentrale Maßnahmen Im Bereich Der Siedlungswasserwirtschaft Sowie Der Landwirtschaft Im Einzugsgebiet Der Lausitzer Neiße; Hannover University, Deutsche Bundesstiftung Umwelt: Hannover Osnabrück, Germany, 2002. [Google Scholar]
- Smith, P.; Nkem, J.; Calvin, K.; Campbell, D.; Cherubini, F.; Grassi, G.; Korotkov, V.; Hoang, A.; Lwasa, S.; McElwee, P.; et al. Interlinkages between Desertification, Land Degradation, Food Security and Greenhouse Gas Fluxes: Synergies, Trade-Offs and Integrated Response Options; Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; The Intergovernmental Panel on Climate Change IPCC: Geneva, Switzerland, 2019; p. 122. [Google Scholar]
- Pharo, P.; Oppenheim, J. Growing Better: Ten Critical Transitions to Transform Food and Land Use. Food and Land Use Coalition London FOLU, Report. 2019. Available online: https://www.foodandlandusecoalition.org/wp-content/uploads/2019/09/FOLU-GrowingBetter-GlobalReport.pdf (accessed on 19 August 2021).
- Smith, P.; Calvin, K.; Nkem, J.; Campbell, D.; Cherubini, F.; Grassi, G.; Korotkov, V.; Le Hoang, A.; Lwasa, S.; McElwee, P.; et al. Which Practices Co-deliver Food Security, Climate Change Mitigation and Adaptation, and Combat Land Degradation and Desertification? Glob. Chang. Biol. 2020, 26, 1532–1575. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.; Ge, Z.; Zhou, X.; Li, S.; Li, X.; Tang, J. Conversion of Coastal Wetlands, Riparian Wetlands, and Peatlands Increases Greenhouse Gas Emissions: A Global Meta-Analysis. Glob. Chang. Biol. 2020, 26, 1638–1653. [Google Scholar] [CrossRef]
- Teschemacher, S.; Neumayer, M.; Disse, M.; Rieger, W. Retentionspotenzial von Aufforstungsmaßnahmen in Einem Voralpinen Einzugsgebiet. LWF Wissen 2017, 82, 11–18. [Google Scholar]
- Thigpen, J. Strategy for a Flood Resistant Southern Tier Central Region. Municipal Land Use Strategies for Improving Flood Resilience. Guidance for Protecting Health, Safety, and Welfare; Southern Tier Central Regional Planning & Development Board: New York, NY, USA, 2017; p. 56. [Google Scholar]
- Wajih, S.A. Adaptive Agriculture in Flood Affected Areas. LEISA Mag. 2008, 24, 24–25. [Google Scholar]
- Wells, J.A.; Wilson, K.A.; Abram, N.K.; Nunn, M.; Gaveau, D.L.A.; Runting, R.K.; Tarniati, N.; Mengersen, K.L.; Meijaard, E. Rising Floodwaters: Mapping Impacts and Perceptions of Flooding in Indonesian Borneo. Environ. Res. Lett. 2016, 11, 064016. [Google Scholar] [CrossRef] [Green Version]
- Van Steenbergen, F. Six Ways to Increase Productivity of Flood-Based Farming Systems. Available online: https://wle.cgiar.org/solutions/six-ways-increase-productivity-flood-based-farming-systems (accessed on 12 January 2021).
- Yong, T.; Bingshun, H.; Minghua, C.; Qing, L.; Qingrui, C. Characteristics of Mountain Flood Disasters in 2013. China Water Resour. 2014, 2014, 6. [Google Scholar]
- Zhao, G.; Pang, B.; Xu, Z.; Yue, J.; Tu, T. Mapping Flood Susceptibility in Mountainous Areas on a National Scale in China. Sci. Total Environ. 2018, 615, 1133–1142. [Google Scholar] [CrossRef] [PubMed]
- Avon Wildlife Trust. North Somerset Levels and Moors Partnership Project. Available online: https://oppla.eu/casestudy/19191 (accessed on 10 September 2021).
- Förster, S.; Kuhlmann, B.; Lindenschmidt, K.-E.; Bronstert, A. Assessing Flood Risk for a Rural Detention Area. Nat. Hazards Earth Syst. Sci. 2008, 8, 311–322. [Google Scholar] [CrossRef]
- Liquete, C.; Udias, A.; Conte, G.; Grizzetti, B.; Masi, F. Integrated Valuation of a Nature-Based Solution for Water Pollution Control. Highlighting Hidden Benefits. Ecosyst. Serv. 2016, 22, 392–401. [Google Scholar] [CrossRef]
- McLean, L.; Beevers, L.; Pender, G.; Haynes, H.; Wilkinson, M. Natural Flood Management in the UK: Developing a Conceptual Management Tool. In Proceedings of the 35th IAHR World Congress, Chengdu, China, 8–13 September 2013; Tsinghua University Press: Beijing, China, 2013; p. 12. [Google Scholar]
- Somarakis, G.; Stagakis, S.; Chrysoulakis, N. (Eds.) ThinkNature/Nature-Based Solutions Handbook; ThinkNature project funded by the EU Horizon 2020 research and innovation programme under grant agreement No. 730338. Foundation for Research and Technology – Hellas, FORTH. 2019. Available online: https://doi.org/10.26225/JERV-W202 (accessed on 19 August 2021). [CrossRef]
- Sayers, P.; Galloway, G.; Penning-Rowsell, E.; Yuanyuan, L.; Fuxin, S.; Yiwei, C.; Kang, W.; Le Quesne, T.; Wang, L.; Guan, Y. Strategic Flood Management: Ten ‘Golden Rules’ to Guide a Sound Approach. Int. J. River Basin Manag. 2015, 13, 137–151. [Google Scholar] [CrossRef]
- Sieker, F.; Wilcke, D.; Reich, M.; Rüter, S.; Jasper, J.; Salzmann, M.; Schmidt, W.; Zacharias, S.; Nitzsche, O. Vorbeugender Hochwasserschutz Durch Wasserrückhalt in Der Fläche Unter Besonderer Berücksichtigung Naturschutzfachlicher Aspekte–Am Beispiel Des Flusseinzugsgebietes Der Mulde in Sachsen; Institut für Wasserwirtschaft, Hydrologie und landwirtschaftlichen Wasserbau der Leibniz Universität Hannover, Deutsche Bundesstiftung Umwelt: Hannover, Germany, 2007. [Google Scholar]
- Gabalda, V.; Hunter, K.; Florence, C.; Salagnac, J.-L.; Golz, S.; ten Veldhuis, M.-C.; Diez, J.; Monnot, J.V. Flood Resilience Technologies; Deliverable of the EU-FP7 Research Project SMARTeST—Smart Resilience Technology, Systems and Tools. 2013. Available online: https://www.floodguidance.co.uk/wp-content/uploads/2017/10/D2.3-final-July13.pdf (accessed on 19 August 2021).
- Thieken, A.H.; Kienzler, S.; Kreibich, H.; Kuhlicke, C.; Kunz, M.; Mühr, B.; Müller, M.; Otto, A.; Petrow, T.; Pisi, S.; et al. Review of the Flood Risk Management System in Germany after the Major Flood in 2013. Ecol. Soc. 2016, 21, art51. [Google Scholar] [CrossRef]
- Evers, M.; Arndt, P.; Mußbach, J.; Tischbierick, M. Instrument(s) for Integrated Flood Risk Management. Presentation at Leuphana Universität Lüneburg. 2011. Available online: https://docplayer.org/4073526-Instrument-s-for-integrated-flood-risk-management.html (accessed on 19 August 2021).
- Tussig, K.; Bräunig, A.; Siemer, B.; Schmidt, W.; Worm, W. Dezentraler Hochwasserschutz Im Ländlichen Raum (2.Auflage); Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie, Dresden, Germany. 2016. Available online: https://publikationen.sachsen.de/bdb/artikel/13555 (accessed on 19 August 2021).
- Fa, J.E.; Watson, J.E.; Leiper, I.; Potapov, P.; Evans, T.D.; Burgess, N.D.; Molnár, Z.; Fernández-Llamazares, Á.; Duncan, T.; Wang, S.; et al. Importance of Indigenous Peoples’ Lands for the Conservation of Intact Forest Landscapes. Front. Ecol. Environ. 2020, 18, 135–140. [Google Scholar] [CrossRef]
- Garnett, S.T.; Burgess, N.D.; Fa, J.E.; Fernández-Llamazares, Á.; Molnár, Z.; Robinson, C.J.; Watson, J.E.M.; Zander, K.K.; Austin, B.; Brondizio, E.S.; et al. A Spatial Overview of the Global Importance of Indigenous Lands for Conservation. Nat. Sustain. 2018, 1, 369–374. [Google Scholar] [CrossRef]
- Guida, R.J.; Swanson, T.L.; Remo, J.W.F.; Kiss, T. Strategic Floodplain Reconnection for the Lower Tisza River, Hungary: Opportunities for Flood-Height Reduction and Floodplain-Wetland Reconnection. J. Hydrol. 2015, 521, 274–285. [Google Scholar] [CrossRef]
- Mes, J.; Reichart, N. Dike monitoring: Improving insight in actual strength of embankments. Water Matters Knowl. J. Water Prof. 2015, 2, 1. Available online: https://www.h2o-watermatters.com/includes/partials/printArticle.php?ed=201511&art=01_Artikel (accessed on 19 August 2021).
- Kousky, C.; Olmstead, S.M.; Walls, M.A.; Macauley, M. Strategically Placing Green Infrastructure: Cost-Effective Land Conservation in the Floodplain. Environ. Sci. Technol. 2013, 47, 3563–3570. [Google Scholar] [CrossRef]
- Rouquette, J.R.; Posthumus, H.; Morris, J.; Hess, T.M.; Dawson, Q.L.; Gowing, D.J.G. Synergies and Trade-Offs in the Management of Lowland Rural Floodplains: An Ecosystem Services Approach. Hydrol. Sci. J. 2011, 56, 1566–1581. [Google Scholar] [CrossRef]
- Shaw, R. Critical Issues of Community Based Flood Mitigation: Examples from Bangladesh and Vietnam. J. Sci. Cult. 2006, 72, 62. [Google Scholar]
- Simm, J.; Meadowcroft, I. Performance of Flood Risk Management Measures-COMRISK Subproject 4. In Die Küste; HENRY Hydraulic Engineering Repository—Ein Service der Bundesanstalt für Wasserbau; Boyens: Heide, Holstein, Germany, 2005; pp. 47–56. [Google Scholar]
- United Nations; UNISDR; UNDP; IUCN. Making Disaster Risk Reduction Gender Sensitive: Policy and Practical Guidelines; UNISDR, UNDP: New York, NY, USA; IUCN: Gland, Switzerland; Geneva, Switzerland, June 2009; p. 163. Available online: https://www.unisdr.org/files/9922_MakingDisasterRiskReductionGenderSe.pdf (accessed on 19 August 2021).
- Walker, W.S.; Gorelik, S.R.; Baccini, A.; Aragon-Osejo, J.L.; Josse, C.; Meyer, C.; Macedo, M.N.; Augusto, C.; Rios, S.; Katan, T.; et al. The Role of Forest Conversion, Degradation, and Disturbance in the Carbon Dynamics of Amazon Indigenous Territories and Protected Areas. Proc. Natl. Acad. Sci. USA 2020, 117, 3015–3025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
List of Variables | Modalities |
---|---|
Continents [Subregions] 1 | Global *, [East, South, West, and North] Asia, Australia, [East] Africa, [North, South, and Central] America, [Central, East, South, West, and North] Europe, Missing |
Period of Year | 1981_1999, 2000_2009, 2010_2015, 2016_2021, Missing |
Measure Block 2 | Non-structural, Nature-based, or Natural (NAT); Structural, Technical, or Engineered (ENG); Instrumental (Governance (GOV), Land use & land management (LULM), Urban and rural planning (URP)) |
Measures 2 [wording in literature analysis] | NAT: Environmental and ecological preservation or [Nature conservation], Water catchment area restoration (rewetting, rewilding, temporal flooding of areas) or [Watershed restoration], Terrestrial ecosystem and habitat restoration (drylands, wetlands) or [Ecosystem restoration], River restoration (Living River Strategy, Room for the River), Sponge vegetation restoration (replanting woods, bushes, reed zones); ENG: Water catchment area modifications (terracing, relocation of embankments) or [Watershed modifications], River modifications (grand ox, dredging, channeling, BioGrout, walls, dams, levee, sleeper, protection from log jam), Soft flood water retention (polder, swale), Constructed water retention (water retention basin, reservoir, or pond), Water retention slowdowns and drainage systems (weirs, sluice, bypasses, throttle, sewer tunnel, siphon, pumping systems) or [Water drainage Systems], Mobile embankments ** (sandbags, TubeBarrier, Water-Gate); URP: Flood-adapted infrastructure (bridges, railway dams, pedestrian dams, vehicles, boats), Flood-adapted architecture & dry or wet building (stilt house, architrave block house, water shutter, adobe walls, fences); LULM: Diverse and heterogenous land management (land use planning, zoning, subdivision ordinance, land acquisition), Managed retreat (e.g., translocation of settlement), [Flood-adapted] Lifestyle and livelihood (up-and-downhill migration, agriculture, aquaculture, fishery, water retention), Flood-based farming (paludiculture, (rain) water resource management, inundation canals, depression agriculture) or [Flood-based Agriculture], Extensification (land use or land cover transformation, ecological practice, or conversions), Water and soil protection (rotating, intercropping, catch crop, mulch, green manure); GOV: Official frameworks (building code, guidelines, directives, laws, legislative instruments, plans, projects, programs), Cooperative society (participation, communication, organisation, goninggumi, family & friends, microfincancing, rituals) or [Societal Cooperation], Emergency preparation (rescue, flood emergency reservoir), Evacuation system (location of evacuation areas and evacuation routes), Compensation system (state or index-based insurance, flood-prone ID), Analysis of management practices ** (failures and successes), Inclusion of knowledge (also indigenous, local, ecological) & provision of education (i.e., marks) or [Knowledge Transfer Systems], Media and telecommunication (TV, radio, internet, phones) or [Tele-Media-Communications], Warning system (yells, movements, instruments, EFAS, GloFAS, GFDS, WeSenseIT), Hydro-geo-information (mapping, forecasting, database, remote sensing, modelling, future risk analysis) |
General Flood Mitigation Effect | Positive, Potentially positive, Negative |
Spatial Setting | Urban, Rural, Lowland, Mountain, RuralLowland, RuralLowlandMountain, RuralMountain, UrbanLowland, UrbanRural, UrbanMountain, UrbanRuralLowland, UrbanRuralMountain, UrbanRuralLowlandMountain, Missing |
Spatial Effect Range [Distances] 3 | Local [<100 km], Regional [100 km to 250 km], and Supraregional [>250 km], LocalRegional, RegionalSupraregional, LocalRegionalSupraregional, Missing |
Effect on Flooding | Increasing, Directly Reducing, Indirectly Reducing, Increasing to Directly Reducing 4, Missing |
Technical Feasibility | Easy, Complex, EasyComplex 5, Missing |
Environmental Effect | Friendly, Damaging, FriendlyDamaging 6, Missing |
Economic Effect | Cost-effective, Costly, CheapCostly 7, Missing |
Societal Effect | Enhancing, Weakening, Missing |
Flood Severity 8 | HQ10, HQ50, HQ100, overHQ100, HQ100overHQ100, HQ10HQ50, HQ10HQ50HQ100, HQ10HQ50HQ100overHQ100, HQ50HQ100, Missing |
Effect on Peak Discharge | Delaying, Reducing, DelayingReducing, Missing |
Delay of Peak Discharge | 13 min, 15 min, 30 min, 180 min, 2400 min, 4800 min, Missing |
Reduction of Peak Discharge | 0%_24%, 25%_49%, 50%_74%, 75%_100%, over100%, Missing |
Phases | Characteristics | Additional Characteristics | |
---|---|---|---|
Modalities | Natural water retention (e.g., Sponge vegetation) (#1); Technical flood defense (e.g., Levee) (#2); Land use regulation (e.g., Zoning) (#3); Building codes (e.g., Flood-prone ID) (#4); Building retrofitting (e.g., Water shutter) (5); Insurance (e.g., Refunding) (#6); Training or exercises (e.g., Workshop) (#7); Early warning systems (e.g., EFAS) (#8); Emergency measures (e.g., Evacuation, sandbag wall) (#9); Relief (e.g., First aid, food, clothes) (#10); Rehabilitation (e.g., Clean up, viable infrastructure) (#11); Reconstruction (e.g., Damaged levees) (#12); Event documentation (e.g., Marks, resource demand) (#13); Data analysis, modeling and mapping (e.g., Flood risk maps) (#14); Risk assessment and evaluation of measures (e.g., Failures and successes) (#15); | Ecosystematic integral or Ecologically integrated (socio-ecological); Cost-effective; Social, accepted, communicative, participative, collective; (eco) Sustainable, long-term; Complementary/not enough/combination/mixture; Holistic/monitoring; Multifunctional; Strategic, smart, systematic, organized; Resilient; Decentralized/autonomous; Adaptive; Flexible, agile; Heterogenic/diverse; Transformable; Modular; Robust; Redundant; Climate fair; Feasible | Proactive; Innovative; Traditional/technical; Natural; Non-Structural; Structural; Preventive; Resistance; Protective; Prepared; Central; Maintenance/modernization; Private; Mobile; Coevolutionary; |
Sources for Interviewee Pool | Number of Interviewees | Link to Project Data Bases | Filters | Notes |
---|---|---|---|---|
Google Search | 121 | Google.com | “flood” “research” “university” | 16 November 2020 |
World Bank | 20 | projects.worldbank.org/en/projects-operations/ | “flood” Europe after 1999 * | 24 projects, some shared the same leader |
EU-LIFE | 27 | ec.europa.eu/environment/life/project/Projects/ | flood | |
RECONNECT | 7 | - | - | |
PHUSICOS | 22 | - | - |
Variables | SDS-1 | SDS-2 | SDS-3 |
---|---|---|---|
Proportion of publication | 21% | 17% | 62% |
First publication found | 2005 | 2007 | 1981 |
Publication hotspot | 2006–2008, 2011/12, 2016/17 | 2007, 2016, 2018/19 | 1995, 2007/09, 2015–2017, 2019/20 |
Geographical focus | Central Europe | Asia | Global (Europe, America, Asia) |
Proportion of studied natural measures | 39% | 20% | 25% |
Proportion of studied engineered measures | 23% | 15% | 25% |
Proportion of studied instrumental measures | 38% | 65% | 50% |
Explained data variability by the first three dimensions | 85.5% | 93.2% | 90.9% |
Variables | Engineered Solutions | Natural Solutions | Instrumental Solutions |
---|---|---|---|
General Effect | Negative * | Potentially positive + | Potentially positive # |
Spatial Effect Range | Local + Regional + | Local * + Regional * + | Local # + Regional # Supraregional # + |
Effect on Flooding | Directly reducing # + Directly Increasing + | Directly reducing + | Indirectly reducing # + |
Technical Feasibility | Easy # Complex * | Easy * Complex * | not significant |
Environmental Effect | Damaging * + Friendly # + | Friendly * # + Damaging # + | not significant |
Economic Effect | Costly + Cheap # | Costly + Cheap * | Costly * |
Societal Effect | Enhancing * # | Enhancing + | |
Flood Severity | HQ50 + | HQ10 * + HQ50 * + HQ100 * + | HQ10 * HQ50 * HQ100 * + |
Effect on Peak Discharge | Delaying # + Reducing * + | Delaying * # + Reducing * # + | not significant |
Delay of peak discharge | 15 min + 30 min + 180 min + 4800 min + | 15 min * + 30 min + 180 min + 4800 min + | not significant |
Reduction of Peak Discharge | −0% to −49% * + −50% to −74% * + >100% + | −0% to −74% + −25% to −49% # −75% to −100% * + >100% + | not significant |
Literature Review | Expert Survey | |
---|---|---|
Scale | Local to (supra-)regional | Local > regional >> Supraregional |
Technical feasibility | Easy to Complex | Not available |
Functionality | Low and negative (Structural) High and positive (Non-Structural) | Low and Flood reduction (Structural) > High and Multiple Benefits (Non-Structural) |
Efficiency/Applicability | High >> Low | Average, Well, and Totally Applicable |
Phase with knowledge available/High Priority | Disaster Risk Reduction and Risk Analysis | Disaster Risk Reduction and Risk Analysis |
Knowledge missing/Low Priority | Building Codes and Event Documentation, Recovery (Phases) | Building Retrofitting, Training or Excises and Insurance, Recovery (Phases) |
Recommendation | Socio/-ecological, Cost-Effective, Sustainable/Long-term, Complementary | Ecologically integrated, Social, Adaptive, Sustainable/Long-term, Resilient |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conitz, F.; Zingraff-Hamed, A.; Lupp, G.; Pauleit, S. Non-Structural Flood Management in European Rural Mountain Areas—Are Scientists Supporting Implementation? Hydrology 2021, 8, 167. https://doi.org/10.3390/hydrology8040167
Conitz F, Zingraff-Hamed A, Lupp G, Pauleit S. Non-Structural Flood Management in European Rural Mountain Areas—Are Scientists Supporting Implementation? Hydrology. 2021; 8(4):167. https://doi.org/10.3390/hydrology8040167
Chicago/Turabian StyleConitz, Felix, Aude Zingraff-Hamed, Gerd Lupp, and Stephan Pauleit. 2021. "Non-Structural Flood Management in European Rural Mountain Areas—Are Scientists Supporting Implementation?" Hydrology 8, no. 4: 167. https://doi.org/10.3390/hydrology8040167
APA StyleConitz, F., Zingraff-Hamed, A., Lupp, G., & Pauleit, S. (2021). Non-Structural Flood Management in European Rural Mountain Areas—Are Scientists Supporting Implementation? Hydrology, 8(4), 167. https://doi.org/10.3390/hydrology8040167