Long-Term Hydrological Regime Monitoring of a Mediterranean Agro-Ecological Wetland Using Landsat Imagery: Correlation with the Water Renewal Rate of a Shallow Lake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Remote Sensing Images: Dataset, Processing and Determination of Flooded Area and Water Volume
2.3. Flow Measurements and Determination of Water Residence Times of the Lake
2.4. Meteorological Data
2.5. Statistical Analyses
3. Results
3.1. Mathematical Adjustment: Calibration and Validation
3.2. Visual Assessment of Wetland Flood Cycles
3.3. Quantitative Seasonal and Annual Analysis of Flood Dynamics in Rice Fields
3.4. Lake Inflows
3.5. Water Residence Times of the Lake
3.6. Natural vs. Agricultural Cycle of the Wetland
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palmer, T.A.; Montagna, P.A.; Pollack, J.B.; Kalke, R.D.; DeYoe, H.R. The Role of Freshwater Inflow in Lagoons, Rivers, and Bays. Hydrobiologia 2011, 667, 49–67. [Google Scholar] [CrossRef]
- Langer, T.A.; Cooper, M.J.; Reisinger, L.S.; Reisinger, A.J.; Uzarski, D.G. Water Depth and Lake-Wide Water Level Fluctuation Influence on α- and β-Diversity of Coastal Wetland Fish Communities. J. Great Lakes Res. 2018, 44, 70–76. [Google Scholar] [CrossRef]
- Raymond, P.A.; Hartmann, J.; Lauerwald, R.; Sobek, S.; McDonald, C.; Hoover, M.; Butman, D.; Striegl, R.; Mayorga, E.; Humborg, C. Global Carbon Dioxide Emissions from Inland Waters. Nature 2013, 503, 355–359. [Google Scholar] [CrossRef] [Green Version]
- Moss, B. Fresh Waters, Climate Change and UK Nature Conservation. Freshw. Rev. 2014, 7, 25–75. [Google Scholar] [CrossRef]
- Shaltout, K.; El-Bana, M.; Galal, T. Coastal Lakes as Hot Spots for Plant Diversity in Egypt. In Egyptian Coastal Lakes and Wetlands: Part II; Springer: Cham, Switzerland, 2017; pp. 129–146. [Google Scholar]
- Were, D.; Kansiime, F.; Fetahi, T.; Cooper, A.; Jjuuko, C. Carbon Sequestration by Wetlands: A Critical Review of Enhancement Measures for Climate Change Mitigation. Earth Syst. Environ. 2019, 3, 327–340. [Google Scholar] [CrossRef]
- Carter, V.; Gammon, P.T.; Garrett, M.K. Ecotone Dynamics and Boundary Determination in the Great Dismal Swamp. Ecol. Appl. 1994, 4, 189–203. [Google Scholar] [CrossRef]
- Chapman, L.J.; Chapman, C.A.; Chandler, M. Wetland Ecotones as Refugia for Endangered Fishes. Biol. Conserv. 1996, 78, 263–270. [Google Scholar] [CrossRef]
- Davidson, N.C. How Much Wetland Has the World Lost? Long-Term and Recent Trends in Global Wetland Area. Mar. Freshw. Res. 2014, 65, 934–941. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, B.; Yin, K.; Li, X.; Kia, K.; Zhu, L. Impacts of Human Activities on the Evolution of Estuarine Wetland in the Yangtze Delta from 2000 to 2010. Environ. Earth Sci. 2015, 73, 435–447. [Google Scholar] [CrossRef]
- Gabler, C.A.; Osland, M.J.; Grace, J.B.; Stagg, C.L.; Day, R.H.; Hartley, S.B.; Enwright, N.M.; From, A.S.; McCoy, M.L.; McLeod, J.L. Macroclimatic Change Expected to Transform Coastal Wetland Ecosystems This Century. Nat. Clim. Chang. 2017, 7, 142–147. [Google Scholar] [CrossRef]
- Chen, H.W.; Lin, H.C.; Chuang, Y.H.; Sun, C.T.; Chen, W.Y.; Kao, C.Y. Effects of Environmental Factors on Benthic Species in a Coastal Wetland by Redundancy Analysis. Ocean Coast. Manag. 2019, 169, 37–49. [Google Scholar] [CrossRef]
- Leberger, R.; Geijzendorffer, I.R.; Gaget, E.; Gwelmami, A.; Galewski, T.; Pereira, H.M.; Guerra, C.A. Mediterranean Wetland Conservation in the Context of Climate and Land Cover Change. Reg. Environ. Chang. 2020, 20, 67. [Google Scholar] [CrossRef]
- Cuttelod, A.; García, N.; Malak, D.A.; Temple, H.J.; Stuart, S.N. The Mediterranean: A biodiversity hotspot under threat. In Wildlife in a Changing World: An Analysis of the 2008 IUCN Red List of Threatened Species; Vié, J.-C., Hilton-Taylor, C., Stuart, S.N., Eds.; IUCN: Gland, Switzerland, 2009. [Google Scholar]
- Knapp, A.K.; Hoover, D.L.; Wilcox, K.R.; Avolio, M.L.; Koerner, S.E.; La Pierre, K.J.; Loik, M.E.; Luo, Y.; Sala, O.E.; Smith, M.D. Characterizing Differences in Precipitation Regimes of Extreme Wet and Dry Years: Implications for Climate Change Experiments. Glob. Chang. Biol. 2015, 21, 2624–2633. [Google Scholar] [CrossRef] [Green Version]
- Escribano Francés, G.; Quevauviller, P.; San Martín González, E.; Vargas Amelin, E. Climate Change Policy and Water Resources in the EU and Spain. A Closer Look into the Water Framework Directive. Environ. Sci. Policy 2017, 69, 1–12. [Google Scholar] [CrossRef]
- LeRoy, N.; Allan, J.; Bain, M.; Karr, J.; Prestegaard, K.; Richter, B.; Sparks, R.; Stromberg, J. The Natural Flow Regime. BioScience 1997, 47, 769–784. [Google Scholar]
- Liu, Q.; Liu, J.; Liu, H.; Liang, L.; Cai, Y.; Wang, X.; Li, C. Vegetation Dynamics under Water-Level Fluctuations: Implications for Wetland Restoration. J. Hydrol. 2020, 581, 124418. [Google Scholar] [CrossRef]
- Zhao, S.; Fang, J. Impact of Impoldering and Lake Restoration on Land-Cover Changes in Dongting Lake Area, Central Yangtze. Ambio 2004, 33, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.L.; Fujii, R. Plant Community, Primary Productivity, and Environmental Conditions Following Wetland Re-Establishment in the Sacramento-San Joaquin Delta, California. Wetl. Ecol. Manag. 2010, 18, 1–16. [Google Scholar] [CrossRef]
- Yang, L.; Wang, L.; Yu, D.; Yao, R.; Li, C.; He, Q.; Wang, S.; Wang, L. Four Decades of Wetland Changes in Dongting Lake Using Landsat Observations during 1978–2018. J. Hydrol. 2020, 587, 124954. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, B.; Pollino, C.A.; Cuddy, S.M.; Merrin, L.E.; Huang, C. Estimate of Flood Inundation and Retention on Wetlands Using Remote Sensing and GIS: Spatial modelling of flood inundation and retention on wetlends. Ecohydrol. 2014, 7, 1412–1420. [Google Scholar] [CrossRef]
- Casanova, M.T.; Brock, M.A. How Do Depth, Duration and Frequency of Flooding Influence the Establishment of Wetland Plant Communities? Plant Ecol. 2000, 147, 237–250. [Google Scholar] [CrossRef]
- Wilcox, D.A. Implications of Hydrologic Variability on the Succession of Plants in Great Lakes Wetlands. Aquat. Ecosyst. Health 2004, 7, 223–231. [Google Scholar] [CrossRef]
- Wang, G.; Wang, M.; Yuan, Y.; Lu, X.; Jiang, M. Effects of Sediment Load on the Seed Bank and Vegetation of Calamagrostis Angustifolia Wetland Community in the National Natural Wetland Reserve of Lake Xingkai, China. Ecol. Eng. 2014, 63, 27–33. [Google Scholar] [CrossRef]
- Dronova, I.; Gong, P.; Wang, L. Object-Based Analysis and Change Detection of Major Wetland Cover Types and Their Classification Uncertainty during the Low Water Period at Poyang Lake, China. Remote Sens. Environ. 2011, 115, 3220–3236. [Google Scholar] [CrossRef]
- Huang, C.; Peng, Y.; Lang, M.; Yeo, I.-Y.; McCarty, G. Wetland Inundation Mapping and Change Monitoring Using Landsat and Airborne LiDAR Data. Remote Sens. Environ. 2014, 141, 231–242. [Google Scholar] [CrossRef]
- Lang, M.W.; Bourgeau-Chavez, L.; Tiner, R.W.; Klemas, V.V. Advances in Remotely Sensed Data and Techniques for Wetland Mapping and Monitoring. In Remote Sensing of Wetlands: Applications and Advances; Tiner, R., Lang, M., Klemas, V., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 79–116. [Google Scholar] [CrossRef]
- Caballero, I.; Navarro, G.; Ruiz, J. Multi-Platform Assessment of Turbidity Plumes during Dredging Operations in a Major Estuarine System. Int. J. Appl. Earth Obs. 2018, 68, 31–41. [Google Scholar] [CrossRef]
- Sebastiá-Frasquet, M.-T.; Aguilar-Maldonado, J.A.; Santamaría-Del-Ángel, E.; Estornell, J. Sentinel 2 Analysis of Turbidity Patterns in a Coastal Lagoon. Remote Sens. 2019, 11, 2926. [Google Scholar] [CrossRef] [Green Version]
- Xia, H.; Zhao, J.; Qin, Y.; Yang, J.; Cui, Y.; Song, H.; Ma, L.; Jin, N.; Meng, Q. Changes in Water Surface Area during 1989–2017 in the Huai River Basin Using Landsat Data and Google Earth Engine. Remote Sens. 2019, 11, 1824. [Google Scholar] [CrossRef] [Green Version]
- USGS. Landsat Missions. Available online: https://www.usgs.gov/core-science-systems/nli/landsat/ (accessed on 4 October 2021).
- Jin, H.; Huang, C.; Lang, M.W.; Yeo, I.-Y.; Stehman, S.V. Monitoring of Wetland Inundation Dynamics in the Delmarva Peninsula Using Landsat Time-Series Imagery from 1985 to 2011. Remote Sens. Environ. 2017, 190, 26–41. [Google Scholar] [CrossRef] [Green Version]
- Na, X.; Zang, S.; Wu, C.; Tian, Y.; Li, W. Hydrological Regime Monitoring and Mapping of the Zhalong Wetland through Integrating Time Series Radarsat-2 and Landsat Imagery. Remote Sens. 2018, 10, 702. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, B.P.; Raval, S.; Timms, W. Evaluation of Rainfall and Wetland Water Area Variability at Thirlmere Lakes Using Landsat Time-Series Data. Int. J. Environ. Sci. Technol. 2016, 13, 1781–1792. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Jia, M.; Chen, N.; Wang, W. Long-Term Surface Water Dynamics Analysis Based on Landsat Imagery and the Google Earth Engine Platform: A Case Study in the Middle Yangtze River Basin. Remote Sens. 2018, 10, 1635. [Google Scholar] [CrossRef] [Green Version]
- Bhagwat, T.; Klein, I.; Huth, J.; Leinenkugel, P. Volumetric Analysis of Reservoirs in Drought-Prone Areas Using Remote Sensing Products. Remote Sens. 2019, 11, 1974. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, M.; van der Kamp, G. Simple Equations to Represent the Volume–Area–Depth Relations of Shallow Wetlands in Small Topographic Depressions. J. Hydrol. 2000, 237, 74–85. [Google Scholar] [CrossRef]
- Minke, A.G.; Westbrook, C.J.; van der Kamp, G. Simplified Volume-Area-Depth Method for Estimating Water Storage of Prairie Potholes. Wetlands 2010, 30, 541–551. [Google Scholar] [CrossRef]
- Shen, X.; Wang, D.; Mao, K.; Anagnostou, E.; Hong, Y. Inundation Extent Mapping by Synthetic Aperture Radar: A Review. Remote Sens. 2019, 11, 879. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.K.; Hossain, F.; Pavelsky, T.; Parkins, G.M.; Yelton, S.; Rodgers, M.; Little, S.; Haldar, D.; Ghafoor, S.; Khan, R.H.; et al. Understanding Volumetric Water Storage in Monsoonal Wetlands of Northeastern Bangladesh. Water Resour. Res. 2020, 56, e2020WR027989. [Google Scholar] [CrossRef]
- Cao, N.; Lee, H.; Jung, H.C.; Yu, H. Estimation of Water Level Changes of Large-Scale Amazon Wetlands Using ALOS2 ScanSAR Differential Interferometry. Remote Sens. 2018, 10, 966. [Google Scholar] [CrossRef] [Green Version]
- Schlaffer, S.; Chini, M.; Pöppl, R.; Hostache, R.; Matgen, P. Monitoring of Inundation Dynamics in the North-American Prairie Pothole Region Using Sentinel-1 Time Series. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 6588–6591. [Google Scholar]
- Bolin, B.; Rodhe, H. A Note on the Concepts of Age Distribution and Transit Time in Natural Reservoirs. Tellus 1973, 25, 58–62. [Google Scholar] [CrossRef]
- Strasškraba, M.; Hocking, G. The Effect of Theoretical Retention Time on the Hydrodynamics of Deep River Valley Reservoirs. Int. Rev. Hydrobiol. 2002, 87, 61–83. [Google Scholar] [CrossRef]
- Lucas, L.V.; Thompson, J.K.; Brown, L.R. Why Are Diverse Relationships Observed between Phytoplankton Biomass and Transport Time? Limnol. Oceanogr. 2009, 54, 381–390. [Google Scholar] [CrossRef]
- Moss, B. Ecology of Freshwaters. Man and Medium, Past to Future; John Wiley & Sons: Hoboken, NJ, USA, 1998. [Google Scholar]
- Beklioglu, M.; Romo, S.; Kagalou, I.; Quintana, X.; Bécares, E. State of the Art in the Functioning of Shallow Mediterranean Lakes: Workshop Conclusions. Hydrobiologia 2007, 584, 317–326. [Google Scholar] [CrossRef]
- Mooij, W.M.; Janse, J.; Domis, L.D.S.; Hülsmann, S.; Ibelings, B.W. Predicting the effect of climate change on temperate shallow lakes with the ecosystem model PCLake. In Shallow Lakes in a Changing World; Springer: Dodrecht, The Netherlands, 2007; pp. 443–454. [Google Scholar]
- Gallagher, B.; Shimada, K.; Gonzalez, F., Jr.; Stroup, E. Tides and Currents in Fanning Atoll Lagoon. Pac. Sci. 1971, 25, 191–205. Available online: https://scholarspace.manoa.hawaii.edu/bitstream/10125/4223/vol25n2-191-205.pdf (accessed on 10 September 2021).
- Smith, S.; Jokiel, P. Water Composition and Biogeochemical Gradients in the Canton Atoll Lagoon. In An Environmental Survey of Canton Atoll Lagoon; Naval Undersea Research and Development Center: San Diego, CA, USA, 1976; pp. 15–53. [Google Scholar]
- Pilotti, M.; Simoncelli, S.; Valerio, G. A Simple Approach to the Evaluation of the Actual Water Renewal Time of Natural Stratified Lakes. Water Resour. Res. 2014, 50, 2830–2849. [Google Scholar] [CrossRef]
- Bezzegh, M.; LeRoy, H.; Steiner, K. Tritium distribution, mixing and age structure of water masses in lake of Lucerne. Swiss J. Hydrol. 1978, 39, 201–225. [Google Scholar]
- Michel, R.L.; Kraemer, T.F. Use of Isotopic Data to Estimate Water Residence Times of the Finger Lakes, New York. J. Hydrol. 1995, 164, 1–18. [Google Scholar] [CrossRef]
- Aeschbach-Hertig, W.; Holzner, C.P.; Hofer, M.; Simona, M.; Barbieri, A.; Kipfer, R. A Time Series of Environmental Tracer Data from Deep Meromictic Lake Lugano, Switzerland. Limnol. Oceanogr. 2007, 52, 257–273. [Google Scholar] [CrossRef] [Green Version]
- García-Oliva, M.; Pérez-Ruzafa, Á.; Umgiesser, G.; McKiver, W.; Ghezzo, M.; De Pascalis, F.; Marcos, C. Assessing the Hydrodynamic Response of the Mar Menor Lagoon to Dredging Inlets Interventions through Numerical Modelling. Water 2018, 10, 959. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Mu, Z.; Wang, H.; Zhao, F.; Li, Y.; Lin, L. Water Residence Time in a Typical Tributary Bay of the Three Gorges Reservoir. Water 2019, 11, 1585. [Google Scholar] [CrossRef] [Green Version]
- Huguet, J.-R.; Brenon, I.; Coulombier, T. Characterisation of the Water Renewal in a Macro-Tidal Marina Using Several Transport Timescales. Water 2019, 11, 2050. [Google Scholar] [CrossRef] [Green Version]
- Alonso, M.J.C.; Barbero, R.E.; Henar, T.V. Seguimiento Por Teledetección de La Superficie Inundada En Otoño-Invierno En La Zona de Cultivo de Arroz En La Albufera de Valencia. In Proceedings of the XI Congreso Nacional de Teledetección, Puerto de la Cruz, Tenerife, 21–23 September 2005; pp. 21–23. Available online: http://dns2.aet.org.es/congresos/xi/ten89.pdf (accessed on 10 September 2021). (In Spanish).
- Cavallo, C.; Papa, M.N.; Gargiulo, M.; Palau-Salvador, G.; Vezza, P.; Ruello, G. Continuous Monitoring of the Flooding Dynamics in the Albufera Wetland (Spain) by Landsat-8 and Sentinel-2 Datasets. Remote Sens. 2021, 13, 3525. [Google Scholar] [CrossRef]
- Soria, J.; Vicente, E.; Miracle, M. The Influence of Flash Floods on the Limnology of the Albufera of Valencia Lagoon (Spain). In SIL Proceedings 1922–2010; Informa UK Limited: Stuttgart, Germany, 2000; Volume 27, pp. 2232–2235. [Google Scholar] [CrossRef]
- Romo, S.; Soria, J.; Fernández, F.; Ouahid, Y.; Barón-Solá, Á. Water Residence Time and the Dynamics of Toxic Cyanobacteria. Freshw. Biol. 2013, 58, 513–522. [Google Scholar] [CrossRef]
- Sòria-Perpinyà, X.; Miracle, M.R.; Soria, J.; Delegido, J.; Vicente, E. Remote sensing application for the study of rapid flushing to remediate eutrophication in shallow lagoons (Albufera of Valencia). Hydrobiologia 2019, 829, 125–132. [Google Scholar] [CrossRef]
- Soria, J.; Vera-Herrera, L.; Calvo, S.; Romo, S.; Vicente, E.; Sahuquillo, M.; Sòria-Perpinyà, X. Residence Time Analysis in the Albufera of Valencia, a Mediterranean Coastal Lagoon, Spain. Hydrology 2021, 8, 37. [Google Scholar] [CrossRef]
- Generalitat Valenciana Parc Natural de L´Albufera. Available online: http://parquesnaturales.gva.es/ (accessed on 10 January 2021).
- Soria, J.M. Past, Present and Future of La Albufera of Valencia Natural Park. Limnetica 2006, 25, 135–142. [Google Scholar]
- Jégou, A.; Sanchis-Ibor, C. The Opaque Lagoon. Water Management and Governance in l’Albufera de València Wetland (Spain). Limnetica 2019, 38, 503–515. [Google Scholar] [CrossRef]
- Vicente, E.; Miracle, M.R. The Coastal Lagoon Albufera de Valencia: An Ecosystem under Stress. Limnetica 1992, 8, 87–100. Available online: http://www.limnetica.com/documentos/limnetica/limnetica-8-1-p-87.pdf (accessed on 10 September 2021).
- Romo, S.; Villena, M.; Sahuquillo, M.; Soria, J.M.; Gimenez, M.; Alfonso, T.; Vicente, E.; Miracle, M.R. Response of a Shallow Mediterranean Lake to Nutrient Diversion: Does It Follow Similar Patterns as in Northern Shallow Lakes? Freshw. Biol. 2005, 50, 1706–1717. [Google Scholar] [CrossRef]
- Roselló, V.M. Els Espais Albuferencs Del País Valencià. Acta Geol. Hisp. 1979, 14, 487–493. [Google Scholar]
- Miracle, M.R.; Sahuquillo, M. Changes of Life-History Traits and Size in Daphnia Magna during a Clear-Water Phase in a Hypertrophic Lagoon (Albufera of Valencia, Spain). Int. Ver. Für Theor. Und Angew. Limnol. Verh. 2002, 28, 1203–1208. [Google Scholar] [CrossRef]
- Fisher, H.B. Transport Models for Inland and Coastal Waters; Academic Press: London, UK, 1981. [Google Scholar]
- Soria, J.M.; Vicente, E. Estudio de los aportes hídricos al parque natural de la Albufera de Valencia. Limnetica 2002, 21, 105–115. [Google Scholar]
- AVAMET Meteorological Historical Database. Available online: https://www.avamet.org/ (accessed on 10 March 2021).
- Hammer, Ø.; Harper, D.A.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electr. 2001, 4, 9. [Google Scholar]
- Lu, S.; Ouyang, N.; Wu, B.; Wei, Y.; Tesemma, Z. Lake Water Volume Calculation with Time Series Remote-Sensing Images. Int. J. Remote Sens. 2013, 34, 7962–7973. [Google Scholar] [CrossRef]
- Serra, P.; Moré, G.; Pons, X. Monitoring Winter Flooding of Rice Fields on the Coastal Wetland of Ebre Delta with Multitemporal Remote Sensing Images. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2007), Barcelona, Spain, 23–28 July 2007; pp. 2495–2498. [Google Scholar]
- Moré, G.; Serra, P.; Pons, X. Multitemporal Flooding Dynamics of Rice Fields by Means of Discriminant Analysis of Radiometrically Corrected Remote Sensing Imagery. Int. J. Remote Sens. 2011, 32, 1983–2011. [Google Scholar] [CrossRef]
- Chen, C.; Son, N.; Chen, C.; Chang, L.; Chiang, S. Rice Crop Mapping Using Sentinel-1A Phenological Metrics. In Proceedings of the International International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016 XXIII ISPRS Congress, Prague, Czech Republic, 12–19 July 2016; Volume XLI-B8, pp. 863–865. [Google Scholar]
- Wei, P.; Chai, D.; Lin, T.; Tang, C.; Du, M.; Huang, J. Large-Scale Rice Mapping under Different Years Based on Time-Series Sentinel-1 Images Using Deep Semantic Segmentation Model. ISPRS J. Photogramm. Remote Sens. 2021, 174, 198–214. [Google Scholar] [CrossRef]
- Gao, X.; Xu, L.; Zhang, C. Estimating Renewal Timescales with Residence Time and Connectivity in an Urban Man-Made Lake in China. Environ. Sci. Pollut. Res. 2016, 23, 13973–13983. [Google Scholar] [CrossRef]
- Cucco, A.; Umgiesser, G. Modeling the Venice Lagoon Residence Time. Ecol. Model. 2006, 193, 34–51. [Google Scholar] [CrossRef]
Code | Canals | Water Origin | Average Lake Inflow (m3 s−1) | ||
---|---|---|---|---|---|
2010 | 2011 | 2016–2017 | |||
A2 | Carrera del Saler | Irrigation and SWTP * | 1.567 | 1.896 | 1.670 |
A6 | Ravisanxo | Irrigation and waste | 0.416 | 0.220 | 0.141 |
A10 | Barranc Poyo | Spring and waste | 0.439 | 0.411 | 0.130 |
A47 | Alqueresia | Irrigation, waste and SWTP | 0.594 | 0.803 | 0.511 |
A50 | Campets | Jucar River and irrigation | 0.458 | 0.224 | 0.374 |
A64 | Overa | Jucar River and irrigation | 1.523 | 1.584 | 1.715 |
A54 | Dreta | Jucar River, springs and irrigation | 0.699 | 0.509 | 0.747 |
A55 | Reina Vella | Jucar River and irrigation | 0.380 | 0.421 | 0.571 |
A56 | Reina Nova | Jucar River and irrigation | −0.100 | 0.403 | 0.631 |
Hydrological Cycle Phases | Residence Time (Day) during 2006–2017 | |||
---|---|---|---|---|
Mean | SE | Maximum | Minimum | |
Rice field drainage (February–March) | 113.4 | 41.6 | 829.5 | 10.4 |
Soil treatment and rice sowing (April–June) | 152.9 | 46.5 | 653.2 | 17.6 |
Rice growth and harvesting (July–September) | 222.2 | 71.4 | 823.1 | 6.7 |
Winter flooding (October–January) | 214.0 | 77.9 | 852.3 | 22.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vera-Herrera, L.; Soria, J.; Pérez, J.; Romo, S. Long-Term Hydrological Regime Monitoring of a Mediterranean Agro-Ecological Wetland Using Landsat Imagery: Correlation with the Water Renewal Rate of a Shallow Lake. Hydrology 2021, 8, 172. https://doi.org/10.3390/hydrology8040172
Vera-Herrera L, Soria J, Pérez J, Romo S. Long-Term Hydrological Regime Monitoring of a Mediterranean Agro-Ecological Wetland Using Landsat Imagery: Correlation with the Water Renewal Rate of a Shallow Lake. Hydrology. 2021; 8(4):172. https://doi.org/10.3390/hydrology8040172
Chicago/Turabian StyleVera-Herrera, Lucía, Juan Soria, Javier Pérez, and Susana Romo. 2021. "Long-Term Hydrological Regime Monitoring of a Mediterranean Agro-Ecological Wetland Using Landsat Imagery: Correlation with the Water Renewal Rate of a Shallow Lake" Hydrology 8, no. 4: 172. https://doi.org/10.3390/hydrology8040172
APA StyleVera-Herrera, L., Soria, J., Pérez, J., & Romo, S. (2021). Long-Term Hydrological Regime Monitoring of a Mediterranean Agro-Ecological Wetland Using Landsat Imagery: Correlation with the Water Renewal Rate of a Shallow Lake. Hydrology, 8(4), 172. https://doi.org/10.3390/hydrology8040172