Impact of Climate Change on the Hydrology of the Upper Awash River Basin, Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Methods
2.2.1. Downscaling Climate Variables and Simulation Performance
2.2.2. Climate Change and Impact Assessment
Mann–Kendall Trend Test (MK)
Standardized Precipitation Evapotranspiration Index (SPEI)
Streamflow Drought Index (SDI)
2.3. Hydrological Modeling
2.3.1. Soil and Water Assessment Tool (SWAT)
2.3.2. Model Calibration and Validation
3. Results
3.1. GCM Simulation Performance
3.2. Hydrological Model Calibration and Validation
3.3. Changes in Air Temperature
3.4. Changes in Precipitation
3.5. Changes in Streamflow
3.6. Climate Drought Index
3.7. Hydrological Drought Index
4. Discussion
4.1. The Impacts of Climate Change on Precipitation
4.2. The Implication of Climate Change on Streamflow
4.3. The Implication of Climate Change on Meteorological and Hydrological Drought
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Station | GCM Models | Precipitation | Temperature | ||||
---|---|---|---|---|---|---|---|
MRE | COR | NSE | MRE | COR | NSE | ||
Addis Ababa | CMCC_CMS | 1.43 | 0.99 | 0.99 | 0.002 | 0.99 | 0.99 |
CNRM-CM5 | 4.29 | 0.99 | 0.98 | 0.000 | 0.99 | 0.99 | |
GFDL-CM3 | −0.72 | 0.97 | 0.94 | 0.009 | 0.99 | 0.99 | |
GISS-ET-R | −1.36 | 0.99 | 0.98 | −0.350 | 0.97 | 0.95 | |
MPI-ESM-LR | 1.16 | 0.91 | 0.84 | 0.000 | 0.99 | 0.99 | |
Alem Tena | CMCC_CMS | 2.40 | 0.99 | 0.98 | 0.002 | 0.99 | 0.99 |
CNRM-CM5 | 1.81 | 0.97 | 0.95 | −0.004 | 0.99 | 0.99 | |
GFDL-CM3 | 0.47 | 0.99 | 0.97 | −0.007 | 0.99 | 0.99 | |
GISS-ET-R | −0.16 | 0.99 | 0.98 | −0.317 | 0.97 | 0.93 | |
MPI-ESM-LR | 1.81 | 0.89 | 0.80 | 0. 000 | 0.99 | 0.99 | |
Ginchi | CMCC_CMS | 7.18 | 0.99 | 0.98 | 0.002 | 0.99 | 0.99 |
CNRM-CM5 | 8.04 | 0.99 | 0.98 | −1.224 | 0.99 | 0.99 | |
GFDL-CM3 | 5.48 | 0.98 | 0.97 | −0.042 | 0.99 | 0.99 | |
GISS-ET-R | 4.25 | 0.99 | 0.97 | −0.387 | 0.99 | 0.99 | |
MPI-ESM-LR | 8.67 | 0.94 | 0.88 | 0.000 | 0.99 | 0.99 | |
Hombole | CMCC_CMS | 42.20 | 0.99 | 0.71 | 0. 000 | 0.99 | 0.99 |
CNRM-CM5 | 42.21 | 0.99 | 0.71 | 0.002 | 0.99 | 0.99 | |
GFDL-CM3 | 42.20 | 0.99 | 0.71 | 0.137 | 0.99 | 0.99 | |
GISS-ET-R | 42.20 | 0.99 | 0.71 | −0.314 | 0.98 | 0.94 | |
MPI-ESM-LR | 42.16 | 0.99 | 0.71 | 0.010 | 0.99 | 0.99 | |
Mojo | CMCC_CMS | 1.46 | 0.98 | 0.97 | 0.000 | 0.99 | 0.99 |
CNRM-CM5 | 3.45 | 0.99 | 0.98 | 0.006 | 0.99 | 0.99 | |
GFDL-CM3 | −0.26 | 0.97 | 0.94 | 0.024 | 0.66 | 0.32 | |
GISS-ET-R | −1.75 | 0.98 | 0.97 | −0.313 | 0.98 | 0.95 | |
MPI-ESM-LR | 0.90 | 0.91 | 0.83 | 0.010 | 0.99 | 0.99 | |
Tulu Bolo | CMCC_CMS | 8.38 | 0.99 | 0.97 | 0.003 | 0.99 | 0.99 |
CNRM-CM5 | 8.60 | 0.99 | 0.97 | 0.003 | 0.99 | 0.99 | |
GFDL-CM3 | 4.46 | 0.99 | 0.98 | −0.019 | 0.99 | 0.99 | |
GISS-ET-R | 4.78 | 0.98 | 0.97 | −0.351 | 0.94 | 0.83 | |
MPI-ESM-LR | 10.20 | 0.95 | 0.89 | 0.000 | 0.99 | 0.99 |
References
- Serdeczny, O.; Adams, S.; Baarsch, F.; Coumou, D.; Robinson, A.; Hare, W.; Schaeffer, M.; Perrette, M.; Reinhardt, J. Climate change impacts in Sub-Saharan Africa: From physical changes to their social repercussions. Reg. Environ. Chang. 2017, 17, 1585–1600. [Google Scholar] [CrossRef]
- Cooper, R.N.; Houghton, J.T.; McCarthy, J.J.; Metz, B. Climate Change 2001: The Scientific Basis. Foreign Aff. 2002, 81, 208. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers. In Global Warming of 1.5 °C; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2018; pp. 1–24. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2014. [Google Scholar]
- Faramarzi, M.; Abbaspour, K.C.; Vaghefi, S.A.; Farzaneh, M.R.; Zehnder, A.J.; Srinivasan, R.; Yang, H. Modeling impacts of climate change on freshwater availability in Africa. J. Hydrol. 2013, 480, 85–101. [Google Scholar] [CrossRef]
- Schuol, J.; Abbaspour, K.C.; Srinivasan, R.; Yang, H. Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model. J. Hydrol. 2008, 352, 30–49. [Google Scholar] [CrossRef]
- Almazroui, M.; Saeed, F.; Saeed, S.; Islam, M.N.; Ismail, M.; Klutse, N.A.B.; Siddiqui, M.H. Projected Change in Temperature and Precipitation over Africa from CMIP6. Earth Syst. Environ. 2020, 4, 455–475. [Google Scholar] [CrossRef]
- Engelbrecht, F.; Adegoke, J.; Bopape, M.-J.; Naidoo, M.; Garland, R.; Thatcher, M.; McGregor, J.; Katzfey, J.; Werner, M.; Ichoku, C.; et al. Projections of rapidly rising surface temperatures over Africa under low mitigation. Environ. Res. Lett. 2015, 10, 085004. [Google Scholar] [CrossRef]
- Arnell, N.W.; Brown, S.N.; Gosling, S.; Gottschalk, P.; Hinkel, J.; Huntingford, C.; Lloyd-Hughes, B.; Lowe, J.A.; Nicholls, R.J.; Osborn, T.J.; et al. The impacts of climate change across the globe: A multi-sectoral assessment. Clim. Chang. 2014, 134, 457–474. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, D.F.; Disse, M. Analyzing the future climate change of Upper Blue Nile River basin using statistical downscaling techniques. Hydrol. Earth Syst. Sci. 2018, 22, 2391–2408. [Google Scholar] [CrossRef] [Green Version]
- Gadissa, T.; Nyadawa, M.; Behulu, F.; Mutua, B. The Effect of Climate Change on Loss of Lake Volume: Case of Sedimentation in Central Rift Valley Basin, Ethiopia. Hydrology 2018, 5, 67. [Google Scholar] [CrossRef] [Green Version]
- Jilo, N.B.; Gebremariam, B.; Harka, A.E.; Woldemariam, G.W.; Behulu, F. Evaluation of the Impacts of Climate Change on Sediment Yield from the Logiya Watershed, Lower Awash Basin, Ethiopia. Hydrology 2019, 6, 81. [Google Scholar] [CrossRef] [Green Version]
- Legesse, D.; Abiye, T.A.; Vallet-Coulomb, C.; Abate, H. Streamflow sensitivity to climate and land cover changes: Meki River, Ethiopia. Hydrol. Earth Syst. Sci. 2010, 14, 2277–2287. [Google Scholar] [CrossRef] [Green Version]
- Hailemariam, K. Impact of climate change on the water resources of Awash River Basin, Ethiopia. Clim. Res. 1999, 12, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Abdo, K.S. Assessment of Climate Change Impacts on the Hydrology of Gilgel Abay Catchment in Lake Tana Basin, Ethiopia. Master’s Thesis, International Institute for Geo-Information Science and Earth Observation, Enschede, The Netherlands, 2009. [Google Scholar]
- Zeray, L.; Roehrig, J.; Alamirew, D.; Abiyata, L.; Shala, L. Climate Change Impact on Lake Ziway Watershed Water. Unpublished. Master’s Thesis, Institute for Technology in the Tropics, University of Applied Science, Cologne, Germany, 2006. [Google Scholar]
- Abdo, K.S.; Fiseha, B.M.; Rientjes, T.H.M.; Gieske, A.S.M.; Haile, A.T. Assessment of climate change impacts on the hydrology of Gilgel Abay catchment in Lake Tana Basin, Ethiopia. Hydrol. Process. 2009, 23, 3661–3669. [Google Scholar] [CrossRef]
- Taddese, G.; Sonder, K.; Peden, D. The Water of the Awash River Basin: A Future Challenge to Ethiopia; ILRI: Addis Ababa, Ethiopia, 2009. [Google Scholar]
- Daba, M.; Tadele, K.; Shemalis, A. Evaluating Potential Impacts of Climate Change on Surface Water Resource Availability of Upper Awash Sub-Basin, Ethiopia. Open Water J. 2015, 3, 22. [Google Scholar]
- Daba, M.; You, S. Assessment of Climate Change Impacts on River Flow Regimes in the Upstream of Awash Basin, Ethiopia: Based on IPCC Fifth Assessment Report (AR5) Climate Change Scenarios. Hydrology 2020, 7, 98. [Google Scholar] [CrossRef]
- Taye, M.T.; Dyer, E.; Hirpa, F.A.; Charles, K. Climate Change Impact on Water Resources in the Awash Basin, Ethiopia. Water 2018, 10, 1560. [Google Scholar] [CrossRef] [Green Version]
- Chan, W.C.H.; Thompson, J.R.; Taylor, R.G.; Nay, A.E.; Ayenew, T.; MacDonald, A.M.; Todd, M.C. Uncertainty assessment in river flow projections for Ethiopia’s Upper Awash Basin using multiple GCMs and hydrological models. Hydrol. Sci. J. 2020, 65, 1720–1737. [Google Scholar] [CrossRef]
- Neitsch, S.; Arnold, J.; Kiniry, J.; Williams, J. Soil & Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011; pp. 1–647. [Google Scholar]
- Abbaspour, K.C.; Vaghefi, S.A.; Srinivasan, R. A Guideline for Successful Calibration and Uncertainty Analysis for Soil and Water Assessment: A Review of Papers from the 2016 International SWAT Conference. Water 2017, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, M.; Acharya, S.C.; Shrestha, P.K. Bias correction of climate models for hydrological modelling—Are simple methods still useful? Meteorol. Appl. 2017, 24, 531–539. [Google Scholar] [CrossRef] [Green Version]
- Hughes, D.A.; Mantel, S.; Mohobane, T. An assessment of the skill of downscaled GCM outputs in simulating historical patterns of rainfall variability in South Africa. Hydrol. Res. 2013, 45, 134–147. [Google Scholar] [CrossRef]
- Raju, K.S.; Kumar, D.N. Review of approaches for selection and ensembling of GCMs. J. Water Clim. Chang. 2020, 11, 577–599. [Google Scholar] [CrossRef]
- Changulaa, L.K.; Jarvisa, J. Use of the Multi-Model Ensemble Mean of Global Climate Models for Hydroelectricity Generation Planning in Zambia. In Proceedings of the 38th Annual Conference of the International Association for Impact Assessment, Durban, South Africa, 16–19 May 2018. [Google Scholar]
- Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, G.P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E.; et al. RCP4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Chang. 2011, 109, 77–94. [Google Scholar] [CrossRef] [Green Version]
- Hassan, I.; Kalin, R.M.; White, C.J.; Aladejana, J.A. Selection of CMIP5 GCM Ensemble for the Projection of Spatio-Temporal Changes in Precipitation and Temperature over the Niger Delta, Nigeria. Water 2020, 12, 385. [Google Scholar] [CrossRef] [Green Version]
- Wilby, R.L.; Charles, S.P.; Zorita, E.; Timbal, B.; Whetton, P.; Mearns, L.O. Guidelines for Use of Climate Scenarios Developed from Statistical Downscaling Methods. Analysis 2004, 27, 1–27. [Google Scholar]
- Zhu, Y.; Lin, Z.; Wang, J.; Zhao, Y.; He, F. Impacts of Climate Changes on Water Resources in Yellow River Basin, China. Procedia Eng. 2016, 154, 687–695. [Google Scholar] [CrossRef] [Green Version]
- Wilby, R.; Dawson, C.; Murphy, C.; O’Connor, P.; Hawkins, E. The Statistical DownScaling Model-Decision Centric (SDSM-DC): Conceptual basis and applications. Clim. Res. 2014, 61, 259–276. [Google Scholar] [CrossRef] [Green Version]
- Mearns, M.; Giorgi, L.O.; Whetton, F.; Pabon, P.; Hulme, D.; Lal, M. Guidelines for Use of Climate Scenarios Developed from Regional Climate Model Experiments; Data Distribution Centre of the Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2003. [Google Scholar]
- Teutschbein, C.; Seibert, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol. 2012, 456–457, 12–29. [Google Scholar] [CrossRef]
- Fang, G.H.; Yang, J.; Chen, Y.N.; Zammit, C. Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China. Hydrol. Earth Syst. Sci. 2015, 19, 2547–2559. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Nalbantis, I.; Tsakiris, G. Assessment of Hydrological Drought Revisited. Water Resour. Manag. 2009, 23, 881–897. [Google Scholar] [CrossRef]
- Zeng, X.; Zhao, N.; Sun, H.; Ye, L.; Zhai, J. Changes and Relationships of Climatic and Hydrological Droughts in the Jialing River Basin, China. PLoS ONE 2015, 10, e0141648. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, R.M.; Slack, J.R. A Nonparametric Trend Test for Seasonal Data with Serial Dependence. Water Resour. Res. 1984, 20, 727–732. [Google Scholar] [CrossRef] [Green Version]
- Asfaw, A.; Simane, B.; Hassen, A.; Bantider, A. Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather Clim. Extrem. 2018, 19, 29–41. [Google Scholar] [CrossRef]
- Allen, R.G.; Jensen, M.E.; Wright, J.L.; Burman, R.D. Operational Estimates of Reference Evapotranspiration. Agron. J. 1989, 81, 650–662. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scale. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; American Meteorological Society: Boston, MA, USA, 1993; pp. 179–184. [Google Scholar]
- Singh, V.P.; Guo, H.; Yu, F.X. Parameter estimation for 3-parameter log-logistic distribution (LLD3) by Pome. Stoch. Hydrol. Hydraul. 1993, 7, 163–177. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef] [Green Version]
- Rouholahnejad, E.; Abbaspour, K.C.; Srinivasan, R.; Bacu, V.; Lehmann, A. Water resources of the Black Sea Basin at high spatial and temporal resolution. J. Am. Water Resour. Assoc. 2014, 50, 5866–5885. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Yang, J.; Reichert, P.; Abbaspour, K.C. Bayesian un certainty analysis in distributed hydrologic modeling: A case study in the Thur River basin (Switzerland). Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef] [Green Version]
- Ghoraba, S.M. Hydrological modeling of the Simly Dam watershed (Pakistan) using GIS and SWAT model. Alex. Eng. J. 2015, 54, 583–594. [Google Scholar] [CrossRef] [Green Version]
- Hallouz, F.; Meddi, M.; Mahé, G.; Alirahmani, S.; Keddar, A. Modeling of discharge and sediment transport through the SWAT model in the basin of Harraza (Northwest of Algeria). Water Sci. 2018, 32, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Schuol, J.; Abbaspour, K. Using monthly weather statistics to generate daily data in a SWAT model application to West Africa. Ecol. Model. 2007, 201, 301–311. [Google Scholar] [CrossRef]
- Wang, D.; Hejazi, M.; Cai, X.; Valocchi, A. Climate change impact on meteorological, agricultural, and hydrological drought in central Illinois. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Soil & Water Assessment Tool Theoretical Documentation Version 2012; Texas Water Resources Institute: College Station, TX, USA, 2011; p. 1068. [Google Scholar] [CrossRef]
- Abbaspour, K.C. Calibration and Uncertainty Programs; Swiss Federal Institute of Aquatic Science and Technology (Eawag): Dübendorf, Switzerland, 2012; p. 106. [Google Scholar]
- Abbaspour, K.C.; Van Genuchten, M.T.; Schulin, R.; Schläppi, E. A sequential uncertainty domain inverse procedure for estimating subsurface flow and transport parameters. Water Resour. Res. 1997, 33, 1879–1892. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Khalid, K.; Ali, M.F.; Rahman, N.F.A.; Mispan, M.R.; Haron, S.H.; Othman, Z.; Bachok, M.F. Sensitivity Analysis in Watershed Model Using SUFI-2 Algorithm. Procedia Eng. 2016, 162, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Ang, R.; Oeurng, C. Simulating streamflow in an ungauged catchment of Tonlesap Lake Basin in Cambodia using Soil and Water Assessment Tool (SWAT) model. Water Sci. 2018, 32, 89–101. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.; Laizé, C.; Green, A.; Acreman, M.; Kingston, D. Climate change uncertainty in environmental flows for the Mekong River. Hydrol. Sci. J. 2014, 59, 935–954. [Google Scholar] [CrossRef] [Green Version]
- Conway, D. The Climate and Hydrology of the Upper Blue Nile River. Geogr. J. 2000, 166, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Cheung, W.H.; Senay, G.B.; Singh, A. Trends and spatial distribution of annual and seasonal rainfall in Ethiopia. Int. J. Clim. 2008, 28, 1723–1734. [Google Scholar] [CrossRef]
- Seleshi, Y.; Zanke, U. Recent changes in rainfall and rainy days in Ethiopia. Int. J. Clim. 2004, 24, 973–983. [Google Scholar] [CrossRef]
- Shang, H.; Yan, J.; Gebremichael, M.; Ayalew, S.M. Trend analysis of extreme precipitation in the Northwestern Highlands of Ethiopia with a case study of Debre Markos. Hydrol. Earth Syst. Sci. 2011, 15, 1937–1944. [Google Scholar] [CrossRef] [Green Version]
- Gebremicael, T.; Mohamed, Y.; Betrie, G.; van der Zaag, P.; Teferi, E. Trend analysis of runoff and sediment fluxes in the Upper Blue Nile basin: A combined analysis of statistical tests, physically-based models and landuse maps. J. Hydrol. 2013, 482, 57–68. [Google Scholar] [CrossRef]
- Viste, E.; Korecha, D.; Sorteberg, A. Recent drought and precipitation tendencies in Ethiopia. Theor. Appl. Clim. 2013, 112, 535–551. [Google Scholar] [CrossRef] [Green Version]
- Mengistu, D.; Bewket, W.; Lal, R. Recent spatiotemporal temperature and rainfall variability and trends over the Upper Blue Nile River Basin, Ethiopia. Int. J. Clim. 2014, 34, 2278–2292. [Google Scholar] [CrossRef]
- Gummadi, S.; Rao, K.P.C.; Seid, J.; Legesse, G.; Kadiyala, M.D.M.; Takele, R.; Amede, T.; Whitbread, A. Spatio-temporal variability and trends of precipitation and extreme rainfall events in Ethiopia in 1980–2010. Theor. Appl. Clim. 2018, 134, 1315–1328. [Google Scholar] [CrossRef] [Green Version]
- Taffesse, A.S.; Dorosh, P.; Gemessa, S.A. 3 Crop Production in Ethiopia: Regional Patterns and Trends. In Food and Agriculture in Ethiopia; University of Pennsylvania Press: Addis Ababa, Ethiopia, 2012. [Google Scholar]
- NCEA. Climate Change Profile Ethiopia; NCEA: Addis Ababa, Ethiopia, 2015. [Google Scholar]
- Bukantis, A.; Rimkus, E. Climate variability and change in Ethiopia: Summary of findings. Usaid 2015, 15, 100–104. [Google Scholar]
- AWBA. Awash Basin Water Allocation Strategic Plan; AWBA: Addis Abab, Ethiopia, 2017. [Google Scholar]
- Thompson, J.R.; Gosling, S.N.; Zaherpour, J.; Laizé, C.L.R. Increasing Risk of Ecological Change to Major Rivers of the World with Global Warming. Earth’s Future 2021, 9, e2021EF002048. [Google Scholar] [CrossRef]
- Rientjes, T.S.; Haile, T.H.M.; Kebede, A.T.; Mannaerts, E.; Habib, C.M.M.; Steenhuis, E. Changes in land cover, rainfall and stream flow in Upper Gilgel Abbay catchment, Blue Nile basin—Ethiopia. Hydrol. Earth Syst. Sci. 2011, 15, 1979–1989. [Google Scholar] [CrossRef] [Green Version]
- Mera, G.A. Drought and its impacts in Ethiopia. Weather Clim. Extrem. 2018, 22, 24–35. [Google Scholar] [CrossRef]
- Gebru, S.Y. The Role of Reservoirs in Drought Mitigation in Ethiopia, Awash River Basin. Master’s Thesis, Department of Hydraulic and Environmental Engineering, Norwegian University of Science and Technology, Trondheim, Norway, 2016. [Google Scholar]
Model Name | Institution and Country | Resolution (Degree) |
---|---|---|
CMCC-CMS | Centro Euro-Mediterraneo sui Cambiamenti Climatici, Italy | 1.9 × 1.9 |
CNRM-CM5 | Centre National de Recherches Météorologiques, France | 1.4 × 1.4 |
GFDL-CM3 | Geophysical Fluid Dynamics Laboratory, USA | 2.0 × 2.5 |
GISS-E2-R | NASA/GISS (Goddard Institute for Space Studies), USA | 2.0 × 2.5 |
MPI-ESM-LR | Max Planck Institute, Germany | 1.9 × 1.9 |
SPEI Value | Classification |
---|---|
≥2 | Extremely wet |
1.5–2.0 | Very wet |
1.0–1.5 | Modestly wet |
(−1)–1.0 | Near normal |
(−1.0)–(−1.5) | Modestly dry |
(−1.5)–(−2.0) | Severely dry |
≤(−2.0) | Extremely dry |
Data Type | Resolution | Source |
---|---|---|
DEM | 30 m | USGS; https://earthexplorer.usgs.gov/ (accessed on 20 October 2020). |
Soil | 250 m | ISRIC World Soil Information, Africa Soil Profiles Database; https://www.isric.org/projects/africa-soilgrids-soil-nutrient-maps-sub-saharan-africa−250-m-resolution (accessed on 10 October 2019). |
Land use | 20 m | European Space Agency “Prototype land cover map of Africa v1.0 based on 1 year of Sentinel−2A observations from December 2015 to December 2016”; http://2016africalandcover20m.esrin.esa.int/download.php?token=ce02f3bc0602d8dc365e7349065faed2 (accessed on 2 October 2017). |
Climate | Observed | National Meteorological Agency of Ethiopia |
Simulated (GCM) | IPCC Data Distribution center; http://www.ipcc-data.org/sim/gcm_monthly/AR5/Reference-Archive.html (accessed on 4 July 2017). | |
Discharge | Observed | Ministry of Irrigation, Energy, and Water Resource of Ethiopia and Global Runoff Data Centre http://grdc.bafg.de (accessed on 10 July 2017). |
Parameter Name | Definition of Parameters | Mini Mum | Maxi Mum | Fitted Value | |
---|---|---|---|---|---|
1 | R__CN2.mgt | Runoff curve number | −0.2 | 0.2 | −0.08671 |
2 | R__SLSUBBSN.hru | Average slope length | −0.8 | 0.8 | −0.66387 |
3 | R__GW_DELAY.gw | Groundwater delay (days) | −0.2 | 0.2 | 0.149467 |
4 | R__CH_N2.rte | Manning’s “n” value for the main channel | −0.2 | 0.2 | 0.107811 |
5 | R__ESCO.hru | Soil evaporation compensation factor | −0.7 | 0.7 | −0.69561 |
6 | R__RCHRG_DP.gw | Deep aquifer percolation fraction | −0.1 | 0.1 | −0.0863 |
7 | R__SOL_K(..).sol | Saturated hydraulic conductivity | −0.1 | 0.1 | −0.10273 |
8 | R__GW_REVAP.gw | Groundwater “revap” coefficient | −2 | 2 | −1.06996 |
9 | R__ALPHA_BF.gw | Baseflow alpha factor | −2 | 2 | −1.28959 |
10 | R__OV_N.hru | Manning’s “n” value for overland flow | −0.3 | 0.3 | −0.20556 |
11 | R__SOL_BD(..).sol | Moist bulk density | 0 | 0.2 | 0.143441 |
12 | R__REVAPMN.gw | Threshold depth of water in the shallow aquifer for “revap” to occur (mm) | 0 | 0.2 | 0.165369 |
13 | R__SOL_AWC (..).sol | Available water capacity of the soil layer | 0 | 0.9 | 0.930784 |
14 | R__ALPHA_BNK.rte | Baseflow alpha factor for bank storage | −0.3 | 0.3 | −0.18111 |
15 | R__HRU_SLP.hru | Average slope steepness | 0 | 1 | 1.012475 |
16 | R__GWQMN.gw | Threshold depth of water in the shallow aquifer required for return flow to occur (mm) | −0.2 | 0.2 | −0.2127 |
Stations | Calibration | Validation | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
P-Factor | R-Factor | R2 | NS | PBIAS | p-Factor | r-Factor | R2 | NS | PBIAS | |
Ginchi | 0.25 | 0.93 | 0.40 | 0.40 | −17.90 | 0.29 | 0.87 | 0.51 | 0.50 | −10.60 |
Asigori | 0.87 | 1.05 | 0.62 | 0.62 | −3.90 | 0.58 | 1.31 | 0.66 | 0.64 | −27.60 |
Holeta | 0.78 | 1.15 | 0.60 | 0.59 | −4.90 | 0.76 | 1.16 | 0.58 | 0.58 | 3.30 |
Akaki | 0.73 | 0.52 | 0.43 | 0.40 | 21.50 | 0.59 | 0.54 | 0.49 | 0.49 | −4.00 |
Kuntrie | 0.70 | 0.79 | 0.83 | 0.81 | −12.90 | 0.75 | 1.01 | 0.83 | 0.81 | 15.30 |
Hombole | 0.72 | 0.85 | 0.69 | 0.69 | −4.90 | 0.73 | 0.90 | 0.78 | 0.78 | −7.00 |
Ginchi | Addis Ababa | Alem Tena | Hombole | Mojo | Tulu Bolo | ||
---|---|---|---|---|---|---|---|
Tmax (Change in °C) | Baseline (1983–2014) | 23.12 | 23.49 | 28.29 | 26.43 | 28.68 | 24.78 |
Ensemble mean | 1.73 | 1.71 | 1.16 | 1.66 | 1.41 | 1.36 | |
CMCC CMS | 1.57 | 1.54 | 1.03 | 1.53 | 1.24 | 1.2 | |
CNRM CM5 | 1.29 | 1.26 | 0.6 | 1.09 | 0.96 | 0.92 | |
GFDL CM3 | 1.87 | 1.88 | 1.37 | 1.86 | 1.58 | 1.51 | |
GISS E2 R | 1.51 | 1.58 | 1 | 1.5 | 1.21 | 1.21 | |
MPI ESM LR | 1.9 | 1.82 | 1.31 | 1.8 | 1.52 | 1.52 | |
Tmin (Change in °C) | Baseline (1983–2014) | 9.31 | 9.82 | 12.96 | 7.43 | 11.69 | 9.39 |
Ensemble mean | 1.2 | 0.79 | 1.16 | 2.53 | 1.36 | 1.05 | |
CMCC CMS | 1.43 | 0.99 | 1.41 | 3.08 | 1.67 | 1.25 | |
CNRM CM5 | 1.14 | 0.63 | 1.03 | 2.71 | 1.31 | 0.96 | |
GFDL CM3 | 1.88 | 1.37 | 1.81 | 3.47 | 2.07 | 1.73 | |
GISS E2 R | 1.37 | 0.85 | 1.27 | 2.94 | 1.53 | 1.18 | |
MPI ESM LR | 1.37 | 0.89 | 1.31 | 2.98 | 1.57 | 1.2 |
Variable | GCMs | Addis Ababa | Alem Tena | Ginchi | Hombole | Mojo | Tulu Bolo | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S | Z | S | Z | S | Z | S | Z | S | Z | S | Z | ||
Tmax | Baseline (1983–2014) | 0.02 | 2.81 | 0.03 | 3.61 | 0.08 | 1.82 | 0.06 | 2.50 | 0.08 | 4.32 | 0.04 | 1.17 |
Ensemble mean | 0.02 | 6.15 | 0.02 | 6.17 | 0.02 | 6.32 | 0.02 | 6.18 | 0.02 | 6.16 | 0.02 | 6.38 | |
CMCC CMS | 0.03 | 8.78 | 0.03 | 8.80 | 0.03 | 8.87 | 0.03 | 8.79 | 0.03 | 8.78 | 0.03 | 8.87 | |
CNRM CM5 | 0.02 | 5.75 | 0.02 | 5.77 | 0.02 | 6.83 | 0.02 | 5.77 | 0.02 | 5.75 | 0.02 | 6.82 | |
GFDL CM3 | 0.01 | 4.14 | 0.01 | 4.21 | 0.01 | 3.88 | 0.01 | 4.22 | 0.01 | 4.17 | 0.01 | 4.16 | |
GISS E2 R | 0.01 | 4.99 | 0.01 | 4.95 | 0.01 | 4.96 | 0.01 | 5.01 | 0.01 | 4.99 | 0.01 | 4.95 | |
MPI ESM LR | 0.03 | 7.11 | 0.03 | 7.13 | 0.03 | 7.08 | 0.03 | 7.12 | 0.03 | 7.10 | 0.03 | 7.09 | |
Tmin | Baseline (1983–2014) | 0.08 | 5.56 | 0.05 | 1.38 | 0.03 | 2.55 | 0.02 | 1.46 | 0.02 | 7.30 | 0.02 | 1.08 |
Ensemble mean | 0.03 | 8.60 | 0.02 | 8.17 | 0.03 | 8.39 | 0.02 | 8.17 | 0.02 | 8.17 | 0.02 | 8.25 | |
CMCC CMS | 0.03 | 8.92 | 0.03 | 8.93 | 0.03 | 9.07 | 0.03 | 8.93 | 0.03 | 8.92 | 0.03 | 9.06 | |
CNRM CM5 | 0.02 | 9.14 | 0.02 | 9.15 | 0.02 | 9.46 | 0.02 | 9.15 | 0.02 | 9.14 | 0.02 | 9.48 | |
GFDL CM3 | 0.04 | 8.83 | 0.04 | 8.83 | 0.04 | 8.82 | 0.04 | 8.83 | 0.04 | 8.83 | 0.01 | 6.61 | |
GISS E2 R | 0.04 | 8.83 | 0.01 | 6.65 | 0.02 | 7.30 | 0.01 | 6.65 | 0.01 | 6.66 | 0.04 | 8.83 | |
MPI ESM LR | 0.02 | 7.28 | 0.02 | 7.29 | 0.02 | 7.30 | 0.02 | 7.29 | 0.02 | 7.28 | 0.02 | 7.28 |
GCMs | Ginchi | Addis Ababa | Alem Tena | Hombole | Mojo | Tulu Bolo | |
---|---|---|---|---|---|---|---|
PCP (change in percent) | Baseline | 1094.29 | 1029.61 | 782.18 | 600.58 | 885.88 | 1024.78 |
Ensemble Mean | 6.91 | 1.79 | 3.20 | 45.50 | 4.76 | 9.43 | |
CMCC CMS | 5.51 | 0.08 | 2.09 | 46.28 | 2.97 | 11.25 | |
CNRM CM5 | 11.57 | 11.54 | 9.34 | 56.61 | 13.37 | 15.45 | |
GFDL CM3 | 15.63 | 6.47 | 10.00 | 48.17 | 10.77 | 9.20 | |
GISS E2 R | −10.79 | −14.91 | −13.35 | 24.65 | −11.39 | −9.49 | |
MPI ESM LR | 19.46 | 11.98 | 14.42 | 60.48 | 14.54 | 25.33 |
Stations | Seasons | Baseline | CMCC CMS | CNRM CM5 | GFDL CM3 | GISS E2 R | MPI ESM LR | Ensemble Mean | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S | Z | S | Z | S | Z | S | Z | S | Z | S | Z | S | Z | ||
Ginchi | Spr | −1.03 | −1.49 | −0.02 | −0.16 | −0.11 | −0.92 | 0.16 | 0.93 | −0.16 | −1.45 | −0.3 | −1.93 | −0.12 | −2.17 |
Sum | −0.38 | −0.75 | 0.18 | 1.75 | 0.13 | 1.34 | −0.03 | −0.12 | −0.23 | −0.69 | 0.30 | 3.33 | −0.05 | −0.48 | |
Aut | −0.79 | −1.69 | −0.01 | −0.15 | −0.02 | −0.19 | −0.02 | −0.19 | 0.25 | 2.11 | 0.25 | 2.60 | 0.02 | 0.46 | |
Win | −0.61 | −1.53 | −0.01 | −0.05 | 0.04 | 0.69 | 0.38 | 3.63 | 0.02 | 0.53 | −0.03 | −0.63 | 0.02 | 0.46 | |
Ann | −0.86 | −2.61 | 0.02 | 0.5 | −0.02 | −0.25 | 0.18 | 1.94 | −0.01 | −0.08 | 0.06 | 0.81 | −0.01 | −0.01 | |
Addis Ababa | Spr | −0.88 | −1.51 | 0.06 | 0.44 | −0.15 | −0.63 | 0.13 | 0.84 | −0.15 | −1.57 | −0.29 | −1.65 | −0.13 | −1.81 |
Sum | 0.11 | 0.29 | 0.10 | 0.51 | 0.15 | 1.71 | −0.04 | −0.14 | −0.22 | −0.65 | 0.21 | 1.45 | −0.1 | −1.12 | |
Aut | −0.32 | −0.96 | 0.08 | 1.06 | 0.05 | 0.41 | 0.01 | 0.13 | 0.21 | 2.21 | 0.11 | 0.75 | 0.05 | 0.92 | |
Win | −0.11 | −0.72 | 0.01 | 0.20 | −0.01 | −0.09 | 0.30 | 3.85 | 0.02 | 0.66 | −0.01 | −0.55 | 0.02 | 0.62 | |
Ann | −0.39 | −1.46 | 0.05 | 0.93 | 0.01 | 0.11 | 0.16 | 2.19 | −0.03 | −0.26 | −0.03 | −0.37 | −0.14 | −0.33 | |
Alem Tena | Spr | −0.69 | −0.88 | 0.03 | 0.29 | −0.02 | −0.16 | 0.08 | 0.80 | −0.13 | −1.69 | −0.27 | −1.48 | −0.09 | −1.79 |
Sum | −0.23 | −0.34 | 0.09 | 0.66 | 0.05 | 0.86 | −0.01 | −0.09 | −0.16 | −0.66 | 0.17 | 1.67 | −0.08 | −1.04 | |
Aut | 0.27 | 0.78 | 0.07 | 1.03 | 0.02 | 0.37 | 0.02 | 0.37 | 0.16 | 2.17 | 0.06 | 0.74 | 0.02 | 0.75 | |
Win | −0.04 | −0.52 | 0.01 | 0.26 | 0.00 | 0.03 | 0.31 | 3.85 | 0.01 | 0.59 | 0.00 | −0.37 | 0.03 | 1.10 | |
Ann | −0.13 | −0.54 | 0.05 | 1.13 | 0.01 | 0.16 | 0.13 | 2.32 | −0.03 | −0.33 | −0.02 | −0.23 | −0.04 | −0.08 | |
Hombole | Spr | −0.34 | −1.01 | 0.03 | 0.36 | 0.00 | −0.05 | 0.16 | 1.00 | −0.10 | −1.50 | −0.25 | −1.53 | −0.07 | −1.58 |
Sum | −2.24 | −1.25 | 0.11 | 0.54 | 0.06 | 0.9 | 0.00 | 0.03 | −0.21 | −0.71 | 0.20 | 1.64 | −0.1 | −0.93 | |
Aut | 0.00 | −0.05 | 0.05 | 1.07 | 0.02 | 0.5 | 0.02 | 0.50 | 0.13 | 2.21 | 0.10 | 0.93 | 0.02 | 0.86 | |
Win | 0.00 | −1.60 | 0.01 | 0.15 | −0.04 | −0.5 | 0.30 | 3.91 | 0.03 | 1.10 | −0.01 | −0.72 | 0.01 | 0.25 | |
Ann | −0.83 | −1.45 | 0.04 | 0.87 | 0.00 | 0.03 | 0.17 | 2.69 | −0.03 | −0.35 | −0.02 | −0.34 | −0.07 | −0.16 | |
Mojo | Spr | 0.75 | 0.92 | 0.02 | 0.29 | −0.10 | −0.63 | 0.11 | 0.70 | −0.09 | −1.41 | −0.21 | −1.62 | −0.08 | −1.73 |
Sum | 1.49 | 1.51 | 0.13 | 0.75 | 0.17 | 2.02 | −0.02 | −0.12 | −0.23 | −0.66 | 0.22 | 1.66 | −0.08 | −0.78 | |
Aut | 0.52 | 1.18 | 0.07 | 1.06 | 0.04 | 0.31 | 0.00 | −0.07 | 0.17 | 2.18 | 0.11 | 0.85 | 0.03 | 0.92 | |
Win | −0.06 | −0.70 | 0.01 | 0.33 | 0.00 | −0.05 | 0.23 | 3.94 | 0.01 | 0.67 | 0.00 | −0.17 | 0.02 | 1.03 | |
Ann | 0.56 | 1.66 | 0.05 | 1.09 | 0.03 | 0.56 | 0.12 | 1.84 | −0.02 | −0.31 | 0.01 | 0.18 | −0.08 | −0.18 | |
Tulu Bolo | Spr | 0.00 | 0.02 | −0.01 | −0.12 | −0.11 | −1.11 | 0.31 | 1.62 | −0.12 | −1.45 | −0.2 | −1.91 | −0.06 | −1.12 |
Sum | 0.76 | 1.01 | 0.21 | 1.54 | 0.15 | 1.31 | −0.08 | −0.24 | −0.29 | −0.67 | 0.38 | 3.31 | −0.02 | −0.27 | |
Aut | 0.7 | 1.36 | 0.00 | −0.1 | −0.04 | −0.63 | −0.04 | −0.63 | 0.12 | 1.89 | 0.24 | 2.58 | 0.03 | 0.90 | |
Win | −0.13 | −0.91 | 0.00 | 0.07 | 0.02 | 0.71 | 0.22 | 3.83 | 0.01 | 0.44 | −0.01 | −0.49 | 0.01 | 0.63 | |
Ann | 0.35 | 0.67 | 0.04 | 1.29 | 0.00 | −0.03 | 0.17 | 2.48 | −0.03 | −0.25 | 0.11 | 2.55 | 0.24 | 0.54 |
Ginchi | Asigori | Holeta | Akaki | Kuntrie | Hombole | ||
---|---|---|---|---|---|---|---|
QMEAN | Baseline | 5.0 | 6.7 | 3.5 | 22.9 | 27.8 | 55.2 |
CMCC CMS | 128.1 | −26.6 | 25.9 | −11.4 | −37.8 | 17.5 | |
CNRM CM5 | 128.1 | 59.0 | 54.3 | 3.3 | 29.0 | −55.2 | |
GFDL CM3 | 172.2 | 19.6 | 39.5 | −6.0 | 16.7 | 15.7 | |
GISS E2 R | 95.9 | −13.8 | 20.0 | −26.0 | −1.1 | 6.4 | |
MPI ESM LR | 198.3 | 19.1 | 42.7 | 2.4 | 16.1 | 33.8 | |
Ensemble mean | 152.4 | 10.2 | 36.2 | −8.6 | 4.5 | 1.4 | |
Q5 | Baseline | 24.8 | 33.9 | 16.3 | 110.3 | 124.1 | 250.5 |
CMCC CMS | 39.3 | −39.7 | 12.6 | −31.4 | −48.9 | −8.0 | |
CNRM CM5 | 39.3 | −15.1 | 6.3 | −35.9 | 9.5 | −61.9 | |
GFDL CM3 | 84.3 | −5.2 | 24.8 | −30.8 | 6.1 | −3.3 | |
GISS E2 R | 60.1 | −13.9 | 39.4 | −24.2 | 14.8 | 17.3 | |
MPI ESM LR | 78.6 | −9.2 | 7.6 | −27.8 | 1.8 | 3.9 | |
Ensemble mean | 53.6 | −25.1 | −2.2 | −40.8 | −13.5 | −21.4 | |
Q90 | Baseline | 0.0 | 0.0 | 0.2 | 1.7 | 1.1 | 3.3 |
CMCC CMS | - | - | 218.8 | −100.0 | 158.5 | −0.9 | |
CNRM CM5 | - | - | 275.0 | −100.0 | 55.7 | −36.8 | |
GFDL CM3 | - | - | 125.0 | −98.9 | −1.9 | −100.0 | |
GISS E2 R | - | - | 93.8 | −100.0 | −34.0 | −42.6 | |
MPI ESM LR | - | - | 68.8 | −100.0 | 138.7 | −28.0 | |
Ensemble mean | - | - | 312.5 | −79.3 | 126.4 | −27.1 |
Stations | Seasons | Baseline | CMCC CMS | CNRM CM5 | GFDL CM3 | GISS E2 R | MPI ESMLR | Ensemble Mean | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S | Z | S | Z | S | Z | S | Z | S | Z | S | Z | S | Z | ||
Ginchi | Spr | 0.00 | −0.65 | −0.09 | −0.01 | 0.09 | 1.24 | 0.34 | 3.26 | −0.04 | −0.76 | −0.01 | −0.21 | 0.00 | 0.01 |
Sum | −0.04 | −0.08 | 0.00 | −0.48 | 0.01 | 0.06 | 1.10 | 2.76 | −0.22 | −0.54 | 0.35 | 1.87 | −0.01 | −0.75 | |
Aut | −0.65 | −1.97 | −0.01 | 0.65 | 0.15 | 0.88 | 0.10 | 0.33 | −0.24 | −0.53 | 0.63 | 3.09 | 0.00 | 0.35 | |
Win | 0.00 | −1.83 | 0.01 | 1.42 | 0.10 | 2.29 | 0.27 | 3.36 | 0.04 | 1.04 | 0.06 | 0.77 | 0.01 | 2.75 | |
Ann | −0.18 | −1.44 | 0.01 | 0.73 | 1.35 | 1.08 | 0.63 | 2.96 | −1.33 | −0.50 | 0.36 | 2.60 | 0.05 | 0.44 | |
Holeta | Spr | 0.01 | 0.53 | 0.00 | 0.15 | −0.01 | −0.76 | 0.01 | 2.38 | 0.00 | −1.88 | 0.00 | −0.98 | −0.01 | −1.82 |
Sum | −0.05 | −0.08 | 0.00 | −0.11 | 0.01 | 0.77 | 0.04 | 1.88 | −0.02 | −0.66 | 0.02 | 2.00 | −0.01 | −0.86 | |
Aut | −0.06 | −0.83 | 0.01 | 1.90 | 0.02 | 2.00 | 0.01 | 0.99 | 0.00 | 0.39 | 0.01 | 1.73 | 0.01 | 1.49 | |
Win | 0.00 | −0.76 | 0.00 | 1.83 | 0.00 | 0.79 | 0.00 | 3.60 | 0.00 | 0.33 | 0.00 | 0.28 | 0.00 | 0.36 | |
Ann | −0.08 | −0.68 | 0.02 | 0.36 | 0.04 | 0.69 | 0.21 | 2.39 | −0.08 | −0.87 | 0.08 | 1.35 | −0.01 | −0.22 | |
Asigori | Spr | −0.05 | −1.63 | 0.00 | 0.09 | 0.00 | −0.31 | 0.03 | 4.62 | 0.00 | −1.55 | 0.00 | 0.93 | 0.00 | 0.67 |
Sum | −0.22 | −0.30 | 0.01 | 0.79 | 0.01 | 1.09 | 0.05 | 1.69 | −0.02 | −0.45 | 0.04 | 2.70 | 0.00 | 0.28 | |
Aut | −0.16 | −0.91 | 0.01 | 2.10 | 0.02 | 2.31 | 0.00 | 0.62 | 0.00 | −0.19 | 0.02 | 3.96 | 0.01 | 2.55 | |
Win | −0.01 | −1.25 | 0.00 | 2.55 | 0.00 | 1.70 | 0.00 | 3.54 | 0.00 | −0.92 | 0.00 | 4.76 | 0.01 | 3.40 | |
Ann | −0.23 | −1.44 | 0.05 | 1.19 | 0.12 | 1.48 | 0.30 | 2.56 | −0.04 | −0.32 | 0.22 | 3.64 | 0.08 | 1.52 | |
Akaki | Spr | 0.16 | 0.40 | 0.03 | 0.77 | −0.03 | −0.50 | 0.08 | 3.76 | −0.05 | −2.04 | −0.01 | −0.34 | −0.01 | −0.75 |
Sum | 1.27 | 1.09 | 0.01 | 0.24 | 0.04 | 1.79 | 0.07 | 1.05 | −0.05 | −0.57 | 0.10 | 2.02 | 0.00 | −0.02 | |
Aut | 0.13 | 0.20 | 0.02 | 1.29 | 0.04 | 1.41 | 0.02 | 1.10 | 0.02 | 0.54 | 0.03 | 0.89 | 0.02 | 1.48 | |
Win | 0.02 | 0.49 | 0.00 | 0.37 | 0.00 | −0.10 | 0.05 | 3.72 | 0.01 | 0.98 | 0.00 | −0.25 | 0.01 | 0.80 | |
Ann | 0.24 | 0.59 | 0.12 | 0.76 | 0.21 | 0.85 | 0.83 | 3.14 | −0.16 | −0.57 | 0.29 | 1.28 | 0.11 | 0.78 | |
Hombole | Spr | −0.39 | −0.60 | 0.00 | 0.01 | −0.01 | −0.45 | 0.19 | 3.89 | −0.06 | −1.72 | −0.07 | −1.54 | −0.06 | −2.15 |
Sum | 0.68 | 0.42 | 0.02 | 0.11 | 0.07 | 1.19 | 0.40 | 1.82 | −0.15 | −0.46 | 0.31 | 2.89 | −0.08 | −0.81 | |
Aut | 0.02 | 0.04 | 0.12 | 1.88 | 0.05 | 1.59 | 0.08 | 0.87 | −0.01 | −0.04 | 0.24 | 2.86 | 0.05 | 0.98 | |
Win | 0.00 | 0.00 | 0.01 | 0.69 | 0.01 | 2.15 | 0.08 | 4.06 | 0.00 | 0.39 | 0.01 | 0.46 | 0.02 | 1.04 | |
Ann | 0.25 | 0.28 | 0.24 | 0.63 | 0.52 | 1.49 | 2.57 | 2.61 | −0.84 | −0.65 | 1.75 | 3.04 | −0.03 | −0.07 | |
Kuntrie | Spr | 0.07 | 1.17 | 0.00 | 0.47 | 0.00 | −0.14 | 0.04 | 4.74 | 0.00 | −1.08 | −0.01 | −0.92 | 0.00 | −0.48 |
Sum | 2.07 | 2.90 | −0.02 | −0.53 | −0.02 | −0.39 | 0.26 | 2.43 | −0.12 | −0.82 | 0.14 | 2.36 | −0.05 | −1.08 | |
Aut | 0.54 | 1.56 | 0.03 | 1.89 | 0.09 | 2.23 | 0.05 | 1.01 | −0.03 | −0.33 | 0.11 | 3.30 | 0.03 | 1.32 | |
Win | 0.03 | 1.81 | 0.00 | 1.40 | 0.01 | 2.41 | 0.02 | 3.91 | 0.00 | −0.39 | 0.01 | 1.83 | 0.00 | 1.33 | |
Ann | 0.69 | 2.46 | 0.07 | 0.59 | 0.26 | 1.00 | 1.33 | 2.78 | −0.52 | −0.73 | 0.77 | 3.14 | 0.05 | 0.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emiru, N.C.; Recha, J.W.; Thompson, J.R.; Belay, A.; Aynekulu, E.; Manyevere, A.; Demissie, T.D.; Osano, P.M.; Hussein, J.; Molla, M.B.; et al. Impact of Climate Change on the Hydrology of the Upper Awash River Basin, Ethiopia. Hydrology 2022, 9, 3. https://doi.org/10.3390/hydrology9010003
Emiru NC, Recha JW, Thompson JR, Belay A, Aynekulu E, Manyevere A, Demissie TD, Osano PM, Hussein J, Molla MB, et al. Impact of Climate Change on the Hydrology of the Upper Awash River Basin, Ethiopia. Hydrology. 2022; 9(1):3. https://doi.org/10.3390/hydrology9010003
Chicago/Turabian StyleEmiru, Nega Chalie, John Walker Recha, Julian R. Thompson, Abrham Belay, Ermias Aynekulu, Alen Manyevere, Teferi D. Demissie, Philip M. Osano, Jabir Hussein, Mikias Biazen Molla, and et al. 2022. "Impact of Climate Change on the Hydrology of the Upper Awash River Basin, Ethiopia" Hydrology 9, no. 1: 3. https://doi.org/10.3390/hydrology9010003
APA StyleEmiru, N. C., Recha, J. W., Thompson, J. R., Belay, A., Aynekulu, E., Manyevere, A., Demissie, T. D., Osano, P. M., Hussein, J., Molla, M. B., Mengistu, G. M., & Solomon, D. (2022). Impact of Climate Change on the Hydrology of the Upper Awash River Basin, Ethiopia. Hydrology, 9(1), 3. https://doi.org/10.3390/hydrology9010003