Assessment of a Coastal Aquifer in the Framework of Conjunctive Use of Surface Water and Groundwater—The Case of the River Nestos Western Delta, NE Greece
Abstract
:1. Introduction
2. Location of the Study Area
3. Geological Setting
4. Hydrometeorological Conditions
- The average annual rainfall is 496.80 mm. The minimum and maximum annual rainfall are 227.30 mm and 968.20 mm, respectively, for the same period.
- The peak value of rainfall is observed in November and December. The period of July–September contains the months with the minimum rainfall values.
5. Hydrogeological Setting
- The main groundwater recharge areas of the upper unconfined aquifer system occur mainly from the N-NW portion of the study area from the River Nestos and old riverbeds, as well as from the local irrigation network.
- There were no significant groundwater level fluctuations detected in either the confined or unconfined aquifers during the four periods.
6. Hydrochemical Setting
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rao, S.V.N.; Bhallamudi, M.; Thandaveswara, B.S.; Mishra, G.C. Conjunctive Use of Surface and Groundwater for Coastal and Deltaic Systems. J. Water Resour. Plan. Manag. 2004, 130, 255–267. [Google Scholar] [CrossRef]
- Todd, D.K.; Mays, L.W. Groundwater Hydrology, 3rd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2005. [Google Scholar]
- De Wrachien, D.; Fasso, C.A. Conjunctive use of surface and groundwater: Overview and perspective. Irrig. Drain. 2002, 51, 1–15. [Google Scholar] [CrossRef]
- Sahuquillo, A. Conjunctive use of surface water and groundwater. UNESCO encyclopedia of life-support systems. Groundwater 2002, 3, 206–224. [Google Scholar]
- Zhang, X. Conjunctive surface water and groundwater management under climate change. Front. Environ. Sci. 2015, 3, 59. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Doll, P. Will groundwater ease freshwater stress under climate change? Hydrol. Sci. J. 2009, 54, 665–675. [Google Scholar] [CrossRef]
- Ejaz, M.S.; Peralta, R.C. Maximizing conjunctive use of surface and ground water under surface water quality constraints. Adv. Water Resour. 1995, 18, 67–75. [Google Scholar] [CrossRef]
- Başaǧaoǧlu, H.; Mariňo, M.A. Joint management of surface and ground water supplies. Ground Water 1999, 37, 214–222. [Google Scholar] [CrossRef]
- Azaiez, M.N. A model for conjunctive use of ground and surface water with opportunity costs. Eur. J. Oper. Res. 2002, 143, 611–624. [Google Scholar] [CrossRef]
- Mohan, S.; Jothiprakash, V. Development of priority-based policies for conjunctive use of surface and groundwater. Water Int. 2003, 28, 254–267. [Google Scholar] [CrossRef]
- Pulido-Velazquez, D.; Ahlfeld, D.; Andreu, J.; Sahuquillo, A. Reducing the computational cost of unconfined groundwater flow in conjunctive-use models at basin scale assuming linear behaviour: The case of Adra-Campo de Dalías. J. Hydrol. 2008, 353, 159–174. [Google Scholar] [CrossRef]
- Matrosov, E.S.; Harou, J.J.; Loucks, D.P. A computationally efficient open-source water resource system simulator—Application to London and the Thames Basin. Environ. Modell. Softw. 2011, 26, 1599–1610. [Google Scholar] [CrossRef]
- Shi, F.; Zhao, C.; Sun, D.; Peng, D.; Han, M. Conjunctive use of surface and groundwater in central Asia area: A case study of the Tailan River Basin. Stoch. Environ. Res. Risk Assess. 2012, 26, 961–970. [Google Scholar] [CrossRef]
- Bejranonda, W.; Koch, M.; Koontanakulvong, S. Surface water and groundwater dynamic interaction models as guiding tools for optimal conjunctive water use policies in the central plain of Thailand. Environ. Earth Sci. 2013, 70, 2079–2086. [Google Scholar] [CrossRef]
- Khan, M.; Voss, C.; Yu, W.; Michael, H. Water resources management in the Ganges Basin: A comparison of three strategies for conjunctive use of groundwater and surface water. Water Resour. Manag. 2014, 28, 1235–1250. [Google Scholar] [CrossRef]
- The World Bank, Water for Food Team. Conjunctive Use of Groundwater and Surface Water; Agricultural and Rural Development Notes, Issue 6; The World Bank: Washington, DC, USA, 2006. [Google Scholar]
- Safavi, H.R.; Rezaei, F. Conjunctive use of surface and ground water using fuzzy neural network and genetic algorithm. Iran. J. Sci. Technol.-Trans. Civ. Eng. 2015, 39, 365–377. [Google Scholar]
- Zhang, L.; Zhang, J.; Wu, Z. Advance on conjunctive operation of surface water and groundwater. Desalination Water Treat. 2013, 52, 1956–1964. [Google Scholar] [CrossRef]
- Zhou, Y.; Herath, H.M.P.S.D. Evaluation of alternative conceptual models for groundwater modelling. Geosci. Front. 2017, 8, 437–443. [Google Scholar] [CrossRef]
- Anderson, M.P.; Woessner, W.W. Applied Groundwater Modeling—Simulation of Flow and Advective Transport; Academic Press Inc.: San Diego, CA, USA, 1992; 381p. [Google Scholar]
- Izady, A.; Davary, K.; Alizadeh, A.; Ziaei, A.N.; Alipoor, A.; Joodavi, A.; Brusseau, M.L. A framework toward developing a groundwater conceptual model. Arab. J. Geosci. 2014, 7, 3611–3631. [Google Scholar] [CrossRef]
- Betancur, T.; Palacio, C.A.; Escobar, J.F. Conceptual Models in Hydrogeology. Methodology and Results. In Hydrogeology—A Global Perspective; Kazemi, G.A., Ed.; InTechOpen: London, UK, 2012; 232p, ISBN 978-953-51-0048-5. [Google Scholar]
- Betancur, T. Una Aproximación al Conocimiento de un Sistema Acuífero Tropical. Caso de Estudio: Bajo Cauca Antioqueño. Ph.D. Thesis, Universidad de Antioquia, Medellín, Colombia, 2008; 221p. [Google Scholar]
- Singhal, V.; Goyal, R. Development of conceptual groundwater flow model for Pali Area, India. Afr. J. Environ. Sci. Technol. 2011, 5, 1085–1092. [Google Scholar] [CrossRef]
- Watkins, D.W.; McKinney, D.C.; Maidment, D.R. Use of geographic information systems in ground-water flow modeling. J. Water Resour. Plann. Manag. 1996, 122, 88–96. [Google Scholar] [CrossRef]
- Gkiougkis, I.; Pouliaris, C.; Pliakas, F.-K.; Diamantis, I.; Kallioras, A. Conceptual and Mathematical Modeling of a Coastal Aquifer in Eastern Delta of R. Nestos (N. Greece). Hydrology 2021, 8, 23. [Google Scholar] [CrossRef]
- Bear, J.; Beljin, M.S.; Ross, R.R. Fundamentals of Ground-Water Modeling; Ground Water Issue; EPA/540/S-92/005; United States Environmental Protection Agency, Office of Solid Waste and Emergency, Response Office of Research and Development: Washington, DC, USA, 1992.
- Zeng, X.; Wang, D.; Wu, J.; Chen, X. Reliability Analysis of the Groundwater Conceptual Model. Hum. Ecol. Risk Assess. Int. J. 2013, 19, 515–525. [Google Scholar] [CrossRef]
- Poeter, E.; Anderson, D. Multimodel ranking and inference in ground water modeling. Ground Water 2005, 43, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Rojas, R.; Feyen, L.; Dassargues, A. Conceptual model uncertainty in groundwater modeling: Combining generalized likelihood uncertainty estimation and Bayesian model averaging. Water Resour. Res. 2008, 44, W12418. [Google Scholar] [CrossRef]
- Delimani, P. Geological Changes of the Coastline in the Thrace Region and Impact on the Land Use of the Coastal Zone. Ph.D. Thesis, Department of Civil Engineering, Democritus University of Thrace, Xanthi, Greece, 2000. (In Greek). [Google Scholar]
- Gkiougkis, I. Investigation of Marine Intrusion in Coastal Aquifers in Deltaic Environment. The Case of Nestos River Delta. Ph.D. Thesis, Department of Civil Engineering, Democritus University of Thrace, Xanthi, Greece, 2018. (In Greek). [Google Scholar]
- Institute of Geological and Mineral Exploration—IGME. Geological Map of Greece, 1:50,000, Chrisoupolis Sheet; IGME: Athens, Greece, 1982. [Google Scholar]
- Diamantis, I.; Petalas, C.; Tzevelekis, T.; Pliakas, F. Investigation of water supply potential for coastal settlements in Thrace by coastal aquifers. In Technical Report to the East Macedonia and Thrace Region; Greece, 1994; Volume 4, 393p. (In Greek) [Google Scholar]
- Piper, A.M. A graphic procedure in the geochemical interpretation of water-analyses. Eos Trans. Am. Geophys. Union 1944, 25, 914–928. [Google Scholar] [CrossRef]
- Kampas, G.; Diamantis, I.; Panagopoulos, A.; Pliakas, F.-K. Groundwater conceptual model development in the River Nestos Western Delta, NE Greece. In Proceedings of the 12th International Hydrogeological Conference, Nicosia, Cyprus, 20–22 March 2022; pp. 112–114. [Google Scholar]
Ca2+ (mg/L) | Mg2+ (mg/L) | SO42− (mg/L) | HCO3− (mg/L) | NO3− (mg/L) | Cl− (mg/L) | EC (μS/cm) | pH | Temp. (°C) | Na+ (mg/L) | Fe2+ (mg/L) | Mn2+ (mg/L) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
min | 24.28 | 6.80 | 0.00 | 53.47 | 0.00 | 5.84 | 335.00 | 6.87 | 14.80 | 7.06 | 0.00 | 0.00 |
max | 176.90 | 43.35 | 151.55 | 620.84 | 61.66 | 514.73 | 2390.00 | 7.46 | 24.30 | 364.72 | 853.60 | 2740.20 |
aver | 99.86 | 20.33 | 49.22 | 387.65 | 9.75 | 71.14 | 924.95 | 7.15 | 17.86 | 77.03 | 59.64 | 1011.41 |
SD | 37.82 | 10.87 | 49.44 | 139.86 | 15.85 | 126.93 | 527.01 | 0.15 | 2.11 | 94.55 | 182.40 | 759.57 |
Ca2+ (mg/L) | Mg2+ (mg/L) | SO42− (mg/L) | HCO3− (mg/L) | NO3− (mg/L) | Cl− (mg/L) | EC (μS/cm) | pH | Temp. (°C) | Na+ (mg/L) | Fe2+ (mg/L) | Mn2+ (mg/L) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
min | 0.41 | 0.73 | 0.00 | 240.09 | 0.00 | 4.11 | 388.00 | 6.80 | 17.30 | 16.64 | 0.00 | 6.65 |
max | 120.25 | 52.20 | 97.22 | 644.43 | 140.50 | 484.15 | 2590.00 | 8.20 | 22.50 | 331.85 | 234.60 | 1544.40 |
aver | 45.79 | 13.25 | 16.99 | 386.50 | 10.80 | 88.32 | 907.70 | 7.42 | 19.59 | 127.10 | 53.02 | 476.15 |
SD | 36.46 | 11.71 | 26.83 | 99.05 | 32.07 | 107.84 | 497.55 | 0.38 | 1.37 | 99.99 | 74.10 | 456.60 |
Ca2+ (mg/L) | Mg2+ (mg/L) | SO42− (mg/L) | HCO3− (mg/L) | NO3− (mg/L) | Cl− (mg/L) | EC (μS/cm) | pH | Temp. (°C) | Na+ (mg/L) | Fe2+ (mg/L) | Mn2+ (mg/L) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
min | 21.12 | 6.05 | 0.00 | 124.01 | 0.00 | 4.78 | 320.00 | 7.13 | 17.00 | 6.72 | 12.02 | 9.64 |
max | 145.80 | 40.75 | 163.05 | 595.88 | 44.68 | 461.37 | 2080.00 | 8.37 | 26.30 | 278.12 | 338.50 | 1856.00 |
aver | 90.58 | 20.07 | 51.24 | 363.28 | 9.48 | 60.04 | 820.43 | 7.45 | 18.91 | 65.29 | 66.27 | 756.34 |
SD | 29.94 | 11.37 | 41.95 | 113.22 | 12.09 | 118.23 | 449.42 | 0.25 | 1.91 | 76.02 | 87.53 | 506.95 |
Ca2+ (mg/L) | Mg2+ (mg/L) | SO42− (mg/L) | HCO3− (mg/L) | NO3− (mg/L) | Cl− (mg/L) | EC (μS/cm) | pH | Temp. (°C) | Na+ (mg/L) | Fe2+ (mg/L) | Mn2+ (mg/L) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
min | 1.66 | 0.77 | 5.00 | 200.70 | 0.00 | 4.05 | 394.00 | 7.14 | 17.10 | 13.65 | 11.28 | 9.12 |
max | 174.20 | 54.00 | 125.77 | 698.01 | 126.00 | 573.89 | 2700.00 | 8.36 | 20.70 | 481.63 | 545.60 | 1135.00 |
aver | 56.22 | 13.47 | 25.70 | 397.99 | 9.96 | 102.95 | 936.71 | 7.68 | 19.09 | 135.31 | 67.49 | 408.14 |
SD | 47.97 | 11.95 | 35.69 | 115.64 | 29.37 | 150.92 | 589.89 | 0.33 | 1.02 | 126.84 | 119.21 | 343.00 |
Ca2+ (mg/L) | Mg2+ (mg/L) | SO42− (mg/L) | HCO3− (mg/L) | NO3− (mg/L) | Cl− (mg/L) | EC (μS/cm) | pH | Temp. (°C) | Na+ (mg/L) | Fe2+ (mg/L) | Mn2+ (mg/L) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | 60.70 | 7.40 | 19.22 | 204.88 | 4.96 | 12.05 | 389.00 | 7.65 | 21.20 | 13.24 | 11.60 | 23.82 |
T2 | 65.60 | 8.95 | 7.76 | 227.88 | 2.83 | 11.21 | 432.00 | 7.59 | 20.70 | 14.42 | 13.40 | 144.90 |
T3 | 53.85 | 6.45 | 6.13 | 189.08 | 4.29 | 7.99 | 362.00 | 7.64 | 20.70 | 10.40 | 11.69 | 68.67 |
T4 | 56.55 | 6.40 | 9.22 | 187.43 | 2.25 | 5.68 | 337.00 | 7.42 | 20.40 | 6.57 | 53.58 | 47.46 |
Ca2+ (mg/L) | Mg2+ (mg/L) | SO42− (mg/L) | HCO3− (mg/L) | NO3− (mg/L) | Cl− (mg/L) | EC (μS/cm) | pH | Temp. (°C) | Na+ (mg/L) | Fe2+ (mg/L) | Mn2+ (mg/L) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | 66.05 | 9.05 | 18.85 | 250.08 | 5.02 | 14.93 | 462.00 | 7.91 | 17.10 | 15.89 | 19.39 | <6.52 |
T2 | 70.30 | 10.60 | 22.85 | 265.39 | 2.99 | 13.97 | 499.00 | 7.89 | 18.30 | 19.87 | <10.00 | 9.99 |
T3 | 62.80 | 8.25 | 21.58 | 248.17 | 5.43 | 9.93 | 426.00 | 7.90 | 17.60 | 12.91 | <10.00 | 6.77 |
T4 | 59.10 | 7.00 | 8.13 | 201.29 | 2.37 | 5.16 | 355.00 | 7.81 | 16.40 | 8.15 | 19.51 | 7.58 |
Ca2+ (mg/L) | Mg2+ (mg/L) | SO42− (mg/L) | HCO3− (mg/L) | NO3− (mg/L) | Cl− (mg/L) | EC (μS/cm) | pH | Temp. (°C) | Na+ (mg/L) | Fe2+ (mg/L) | Mn2+ (mg/L) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Nestos 1 | 72.90 | 7.45 | <5.00 | 234.61 | 3.07 | 5.78 | 397.00 | 7.41 | 18.4 | 4.45 | <10.00 | 19.95 |
Nestos 2 | 49.40 | 5.15 | <5.00 | 160.39 | 2.18 | 4.69 | 291.00 | 7.86 | 20.4 | 5.10 | <10.00 | 10.42 |
Nestos 3 | 53.20 | 5.60 | <5.00 | 164.43 | 2.18 | 4.90 | 302.00 | 7.88 | 21.0 | 5.20 | 30.20 | 18.20 |
Ca2+ (mg/L) | Mg2+ (mg/L) | SO42− (mg/L) | HCO3− (mg/L) | NO3− (mg/L) | Cl− (mg/L) | EC (μS/cm) | pH | Temp. (°C) | Na+ (mg/L) | Fe2+ (mg/L) | Mn2+ (mg/L) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Nestos 1 | 61.60 | 6.45 | <5.00 | 187.00 | 2.84 | 4.84 | 351.00 | 7.67 | 17.00 | 5.36 | 11.62 | 9.79 |
Nestos 2 | 50.20 | 5.65 | <5.00 | 175.00 | 2.17 | 5.08 | 305.00 | 8.16 | 18.10 | 6.16 | <10.00 | <6.52 |
Nestos 3 | 51.45 | 5.70 | 5.22 | 177.00 | 2.29 | 4.21 | 307.00 | 8.22 | 19.10 | 6.36 | 14.33 | 12.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kampas, G.; Gkiougkis, I.; Panagopoulos, A.; Pliakas, F.-K.; Diamantis, I. Assessment of a Coastal Aquifer in the Framework of Conjunctive Use of Surface Water and Groundwater—The Case of the River Nestos Western Delta, NE Greece. Hydrology 2022, 9, 172. https://doi.org/10.3390/hydrology9100172
Kampas G, Gkiougkis I, Panagopoulos A, Pliakas F-K, Diamantis I. Assessment of a Coastal Aquifer in the Framework of Conjunctive Use of Surface Water and Groundwater—The Case of the River Nestos Western Delta, NE Greece. Hydrology. 2022; 9(10):172. https://doi.org/10.3390/hydrology9100172
Chicago/Turabian StyleKampas, George, Ioannis Gkiougkis, Andreas Panagopoulos, Fotios-Konstantinos Pliakas, and Ioannis Diamantis. 2022. "Assessment of a Coastal Aquifer in the Framework of Conjunctive Use of Surface Water and Groundwater—The Case of the River Nestos Western Delta, NE Greece" Hydrology 9, no. 10: 172. https://doi.org/10.3390/hydrology9100172
APA StyleKampas, G., Gkiougkis, I., Panagopoulos, A., Pliakas, F. -K., & Diamantis, I. (2022). Assessment of a Coastal Aquifer in the Framework of Conjunctive Use of Surface Water and Groundwater—The Case of the River Nestos Western Delta, NE Greece. Hydrology, 9(10), 172. https://doi.org/10.3390/hydrology9100172