Suitability Assessment of Fish Habitat in a Data-Scarce River
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Study Area
2.2. Primary Dataset
2.3. Secondary Dataset
3. Model Study
3.1. Hydrodynamic Model Setup
3.2. Water Quality Model Setup
- = Advective transport
- = Velocity at x = x0
- = Surface area at x = x0
- = Concentration at x = x0
- = Dispersive transport at x = x0
- = Dispersion co-efficient at x = x0
- = Surface area at x = x0
- = Concentration gradient at x = x0
3.3. Spatial and Temporal Analyses
- X* is the unknown value at a location to be determined.
- x is the known point value.
- w is the weight.
3.4. Habitat Suitability Criteria (HSC) in PHABSIM
3.5. Model Validation
4. Results
4.1. Field Test
4.2. Spatial Variations of Dissolved Oxygen
4.3. Temporal Variations of Dissolved Oxygen
4.4. Model Outcome
4.5. Tidal Influence
4.6. Habitat Modeling
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Isiuku, B.O.; Enyoh, C.E. Pollution and health risks assessment of nitrate and phosphate concentrations in water bodies in South Eastern, Nigeria. Environ. Adv. 2020, 2, 100018. [Google Scholar] [CrossRef]
- Jouanneau, S.; Recoules, L.; Durand, M.J.; Boukabache, A.; Picot, V.; Primault, Y.; Lakel, A.; Sengelin, M.; Barillon, B.; Thouand, G. ScienceDirect Methods for assessing biochemical oxygen demand (BOD): A review. Water Res. 2013, 49, 62–82. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Wu, W.; Blanckaert, K.; Ma, J.; Huang, G. Optimization of water quality monitoring network in a large river by combining measurements, a numerical model and matter-element analyses. J. Environ. Manag. 2012, 110, 116–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, M.M.; Ali, M.L.; Proshad, R.; Islam, S.; Rahman, Z.; Kormoker, T. Assessment of Trace Elements in the Demersal Fishes of a Coastal River in Bangladesh: A Public Health Concern. Thalassas 2020, 36, 641–655. [Google Scholar] [CrossRef]
- Webb, J.H.; Gibbins, C.N.; Moir, H.; Soulsby, C. Flow requirements of spawning atlantic salmon in an upland stream: Implications for water-resource management. Water Environ. J. 2001, 15, 1–8. [Google Scholar] [CrossRef]
- Crisp, D.T.; Carling, P.A. Observations on siting, dimensions and structure of salmonid redds. J. Fish Biol. 1989, 34, 119–134. [Google Scholar] [CrossRef]
- Freeman, M.C.; Bowen, Z.H.; Bovee, K.E.N.D.; Irwin, E.R. Flow and Habitat Effects on Juvenile Fish Abundance in Natural and Altered Flow Regimes. Ecol. Appl. 2001, 11, 179–190. [Google Scholar] [CrossRef]
- Moir, H.J.; Gibbins, C.N.; Soulsby, C.; Webb, J. Linking channel geomorphic characteristics to spatial patterns of spawning activity and discharge use by Atlantic salmon (Salmo salar L.). Geomorphology 2004, 60, 21–35. [Google Scholar] [CrossRef]
- Acreman, E. Evaluation of the river Wey restoration project using the Physical HABitat SIMuation (PHABSIM) model. In Proceedings of the 31st MAFF Conference of River and Coastal Engineers, London, UK, 3–5 July 1996; Keele Universit: Keele, UK, 1996. [Google Scholar]
- Shan, C.; Guo, H.; Dong, Z.; Liu, L.; Lu, D.; Hu, J.; Feng, Y. Study on the river habitat quality in Luanhe based on the eco-hydrodynamic model. Ecol. Indic. 2022, 142, 109262. [Google Scholar] [CrossRef]
- Strevens, A.P. Impacts of groundwater abstraction on the trout fishery of the River Piddle, Dorset; and an approach to their alleviation. Hydrol. Process. 1999, 13, 487–496. [Google Scholar] [CrossRef]
- Johnson, I.W.; Elliott, C.R.N.; Gustard, A. Modelling the effect of groundwater abstraction on salmonid habitat availability in the river Allen, Dorset, England. Regul. Rivers Res. Manag. 1995, 10, 229–238. [Google Scholar] [CrossRef]
- Gibbins, C.N.; Acornley, R.M. Salmonid habitat modelling studies and their contribution to the development of an ecologically acceptable release policy for Kielder Reservoir, North-east England. Regul. Rivers Res. Manag. 2000, 16, 203–224. [Google Scholar] [CrossRef]
- Stamou, A.I. Improving the numerical modeling of river water quality by using high order difference schemes. Water Res. 1992, 26, 1563–1570. [Google Scholar] [CrossRef]
- Thongtha, K. Numerical Simulations of Water Quality Measurement Model in an Opened-Closed Reservoir with Contaminant. Int. J. Differ. Equ. 2018, 2018, 1343541. Available online: https://www.hindawi.com/journals/ijde/2018/1343541/ (accessed on 29 July 2022). [CrossRef]
- Ma, Y.; Tie, Z.; Zhou, M.; Wang, N.; Cao, X.; Xie, Y. Accurate Determination of Low-level Chemical Oxygen Demand Using a Multistep Chemical Oxidation Digestion Process for Treating Drinking Water Samples. Anal. Methods 2016, 8, 3839–3846. [Google Scholar] [CrossRef]
- Beyhan, M. Hydrodynamic and Water Quality Modeling of Lake Egirdir. CLEAN Soil Air Water 2014, 42, 1573–1582. [Google Scholar] [CrossRef]
- Delft3D. 3D/2D Modelling Suite for Integral Water Solutions; Delft3D: Delft, The Netherlands, 2020. [Google Scholar]
- Deltares. D-Water Quality; Deltares: Delft, The Netherlands, 2014. [Google Scholar]
- Bovee KD Development and Application of Habitat Suitability Criteria for Use in the Instream Flow Incremental Methodology. US Fish Wildl. Serv. 1998, 2, 1535. [CrossRef]
- Tharme, R.E. A global perspective on environmental flow assessment: Emerging trends in the development and application of environmental flow methodologies for rivers. River Res. Appl. 2003, 19, 397–441. [Google Scholar] [CrossRef]
- Boavida, I.; Santos, J.M.; Katopodis, C.; Ferreira, M.T.; Pinheiro, A. Uncertainty in predicting the fish-response to two-dimensional habitat modeling using field data. RIVER Res. Appl. 2012, 2, 1535. [Google Scholar] [CrossRef]
- Luo, P.; He, B.; Takara, K.; Xiong, Y.E.; Nover, D. Historical assessment of Chinese and Japanese flood management policies and implications for managing future floods. Environ. Sci. Policy 2015, 48, 265–277. [Google Scholar] [CrossRef]
- Baker, E.A.; Coon, T.G.; Baker, E.A.; Coon, T.G. Development and Evaluation of Alternative Habitat Suitability Criteria for Brook Trout. Trans. Am. Fish. Soc. 2016, 8487, 1573–1582. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, C.Y.; Wu, J.; Du, H.; Wei, Q.W.; Kang, M. Physical habitat assessment of a remaining high- biodiversity reach of the upper yangtze river. Appl. Ecol. Environ. Res. 2016, 14, 129–143. [Google Scholar] [CrossRef]
- Santos, J.M.; Boavida, I.; Branco, P. Structural microhabitat use by endemic cyprinids in a Mediterranean-type river: Implications for restoration practices. Aquat. Conserv. Mar. Freshw. Ecosyst. 2018, 28, 26–36. [Google Scholar] [CrossRef]
- Hearne, J.; Johnson, I.; Armitage, P. Determination of ecologically acceptable flows in rivers with seasonal changes in the density of macrophyte. Regul. Rivers Res. Manag. 2002, 9, 177–184. [Google Scholar] [CrossRef]
- Hatfield, T.; Bruce, J. Predicting Salmonid Habitat–Flow Relationships for Streams from Western North America. N. Am. J. Fish. Manag. 2000, 20, 1029–1032. [Google Scholar] [CrossRef]
- Beland, K.F.; Jordan, R.M.; Meister, A.L. Water Depth and Velocity Preferences of Spawning Atlantic Salmon in Maine Rivers. N. Am. J. Fish. Manag. 1982, 2, 11–13. [Google Scholar] [CrossRef]
- Gore, J.A.; Crawford, D.J.; Addison, D.S. An analysis of artificial riffles and enhancement of benthic community diversity by physical habitat simulation (PHABSIM) and direct observation. Regul. Rivers Res. Manag. 1998, 14, 69–77. [Google Scholar] [CrossRef]
- ADB. Institutional Strengthening of Chittagong Port Authority in Environmental Managemen; ADB: Dhaka, Bangladesh, 2004. [Google Scholar]
- Uddin, M.J.; Parveen, Z. Status of heavy metals in water and sediments of canals and rivers around the Dhaka city of Bangladesh and their subsequent transfer to crops. Adv. Plants Agric. Res. 2016, 5, 593–601. [Google Scholar] [CrossRef]
- Samad, R.B. Urbanization and Urban Growth Dynamics: A Study on Chittagong City. J. Bangladesh Inst. Plan. 2016, 8, 167–174. [Google Scholar]
- Akter, A.; Tanim, A.H. Salinity Distribution in River Network of a Partially Mixed Estuary. J. Waterw. Port Coast. Ocean Eng. 2021, 147, 1–16. [Google Scholar] [CrossRef]
- Tabrez, S.; Zughaibi, T.A.; Javed, M. Water quality index, Labeo rohita, and Eichhornia crassipes: Suitable bio-indicators of river water pollution. Saudi J. Biol. Sci. 2022, 29, 75–82. [Google Scholar] [CrossRef] [PubMed]
- APHA, Standard methods for the examination of water and wastewater. J. Tuberc. Res. 1999, 4, 111–121. [CrossRef] [Green Version]
- Bajpai, P. Environmental Impact 15.1; Biermanns Handbook of Pulp and Paper; Elsvier: Amsterdam, The Netherlands, 2018; pp. 325–348. ISBN 9780128142387. [Google Scholar]
- Mckenzie, S.W. Five-day biochemical oxygen demand 7.0. US Geol. Surv. 2003, 7, 1–21. [Google Scholar]
- Hok-Shing, L. The Application of Numerical Modelling in Managing Our Water Environment; Environmental Protection Officer, Environmental Protection Department, 2007. Available online: https://www.science.gov.hk/paper/EPD_HSLee.pdf (accessed on 29 July 2022).
- Chakraborty, A.; Sain, M.M.; Kortschot, M.T.; Ghosh, S.B. Modeling energy consumption for the generation of microfibres from bleached kraft pulp fibres in a PFI mill. BioResources 2007, 2, 210–222. [Google Scholar] [CrossRef]
Station ID | Station Name | Constituent | Field Observed | Delft 3D Simulation | Spatial Analysis |
---|---|---|---|---|---|
#54 | Mohra | BOD5 (mg/L) | 3.6 | 4.2 | 3.9 |
COD (mg/L) | 416 | 409 | 425 | ||
DO (mg/L) | 6.44 | 5.8 | 4.8 | ||
#48 | Halda-Karnafuli colfluence | BOD5 (mg/L) | 5.1 | 4.4 | 5.5 |
COD (mg/L) | 352 | 405 | 390 | ||
DO (mg/L) | 6.12 | 5.9 | 5.5 | ||
#89 | Estuary | BOD5 (mg/L) | 6.1 | 5 | 6.5 |
COD (mg/L) | 400 | 320 | 386 | ||
DO (mg/L) | 3.6 | 4 | 3.0 |
Performance Statistics | ||
---|---|---|
1 | Efficiency Index (EI.) | 0.97 |
2 | Standard deviation of observed data, sx | 192.81 |
Standard deviation of model predicted data, sy | 188.25 | |
3 | Root Mean Square Error (RMSE) | 32.08 |
4 | Mean Absolute Error (MAE) | 15.97 |
5 | Ratio Mean Square Error Method (RMSEM) | 0.24 |
6 | Mean Percentage Error (MPE) | 2.86 |
7 | Mean Absolute Percentage Error (MAPE) | 12.38 |
8 | Correlation Coefficient (R) | 0.98 |
9 | Coefficient of Determination (R2) | 0.97 |
Station | Station ID | pH | Electroconductivity μS/cm | TDS (mg/L) | |||
---|---|---|---|---|---|---|---|
Kalurghat Halda Mohona | 48 | Upper | 7.89 ± 0.19 | Upper | 0.54 ± 0.60 | Upper | 274.27 ± 244.72 |
Middle | 7.51 ± 0.97 | Middle | 0.5 ± 0.33 | Middle | 181.2 ± 35.75 | ||
Lower | 8.19 ± 0.46 | Lower | 0.14 ± 0.03 | Lower | 222.16 ± 57.81 | ||
Kalurghat Bridge | 49 | Upper | 7.58 ± 0.86 | Upper | 0.74 ± 0.42 | Upper | 363.40 ± 342.60 |
Middle | 8.45 ± 0.90 | Middle | 0.48 ± 0.34 | Middle | 338.2 ± 17.22 | ||
Lower | 7.28 ± 1.80 | Lower | 0.31 ± 0.09 | Lower | 264.53 ± 11.75 | ||
Kalurghat Heavy Industrial Area | 51 | Upper | 7.64 ± 0.69 | Upper | 0.62 ± 0.84 | Upper | 674.53 ± 852.60 |
Middle | 8.14 ± 0.71 | Middle | 0.54 ± 0.17 | Middle | 300.2 ± 76.98 | ||
Lower | 7.88 ± 0.3 | Lower | 0.3 ± 0.19 | Lower | 4186.43 ± 6749.43 | ||
Mohra | 54 | Upper | 7.79 ± 0.81 | Upper | 0.84 ± 0.99 | Upper | 744.03 ± 905.41 |
Middle | 8.31 ± 0.99 | Middle | 0.79 ± 0.70 | Middle | 518.63 ± 333.73 | ||
Lower | 8.1 ± 0.68 | Lower | 0.9 ± 0.82 | Lower | 437 ± 268.49 | ||
Baxir Hut | 59 | Upper | 7.61 ± 0.32 | Upper | 1.32 ± 1.32 | Upper | 1327.83 ± 984.74 |
Middle | 8.10 ± 0.86 | Middle | 2.63 ± 2.77 | Middle | 713.16 ± 172.26 | ||
Lower | 6.67 ± 1.35 | Lower | 3.23 ± 3.31 | Lower | 1186.4 ± 1146.39 | ||
Chaktai Wapda Ferri Ghat | 60 | Upper | 7.41 ± 0.19 | Upper | 3.62 ± 1.11 | Upper | 2812.20 ± 2442.41 |
Middle | 6.54 ± 1.79 | Middle | 4.49 ± 3.31 | Middle | 1711.86 ± 654.67 | ||
Lower | 7.32 ± 0.15 | Lower | 6.06 ± 4.07 | Lower | 3221.5 ± 1903.15 | ||
Khal (near new bridge) | 61 | Upper | 6.90 ± 1.21 | Upper | 4.60 ± 0.48 | Upper | 2181.77 ± 803.40 |
Middle | 7.02 ± 0.45 | Middle | 5.84 ± 4.24 | Middle | 2923.2 ± 3254.69 | ||
Lower | 7.38 ± 0.11 | Lower | 7.56 ± 4.32 | Lower | 2572.65 ± 915.69 | ||
Karnaphuli New Fish Market | 62 | Upper | 6.54 ± 1.76 | Upper | 5.43 ± 0.29 | Upper | 4624.83 ± 575.50 |
Middle | 7.13 ± 0.45 | Middle | 7.64 ± 4.00 | Middle | 5104.5 ± 2170.7 | ||
Lower | 7.61 ± 0.17 | Lower | 7.6 ± 4.1 | Lower | 26,581.87 ± 41193.51 | ||
Firingi Bazar Ghat | 67 | Upper | 6.41 ± 1.78 | Upper | 7.53 ± 1.46 | Upper | 5521.07 ± 2267.21 |
Middle | 7.77 ± 0.69 | Middle | 13.49 ± 10.51 | Middle | 20,414.4 ± 27625.08 | ||
Lower | 7.45 ± 0.18 | Lower | 11.84 ± 4.82 | Lower | 7362.93 ± 3010.71 | ||
Old Custom Mosque | 70 | Upper | 7.38 ± 0.13 | Upper | 10.72 ± 3.54 | Upper | 5284.77 ± 1827.41 |
Middle | 7.55 ± 0.27 | Middle | 13.71 ± 6.19 | Middle | 5722.2 ± 1050.02 | ||
Lower | 7.46 ± 0.19 | Lower | 18.71 ± 9.07 | Lower | 7631.26 ± 3413.40 | ||
Majir Ghat | 71 | Upper | 7.37 ± 0.22 | Upper | 11.74 ± 3.97 | Upper | 9571.77 ± 4970.81 |
Middle | 7.61 ± 0.96 | Middle | 20.23 ± 14.16 | Middle | 6571.63 ± 5804.96 | ||
Lower | 7.27 ± 0.115 | Lower | 23.66 ± 7.69 | Lower | 13,318.53 ± 8341.90 | ||
Saltgola Bus Stop | 74 | Upper | 6.81 ± 1.17 | Upper | 17.40 ± 7.45 | Upper | 7230.43 ± 6705.51 |
Middle | 7.10 ± 0.19 | Middle | 23.25 ± 13.27 | Middle | 14,573.67 ± 5878.52 | ||
Lower | 7.27 ± 0.27 | Lower | 26.35 ± 4.03 | Lower | 14,770.2 ± 8124.04 | ||
Navy Officers Colony Point | 76 | Upper | 6.94 ± 1.15 | Upper | 19.87 ± 8.63 | Upper | 16,407.10 ± 8646.90 |
Middle | 7.39 ± 0.73 | Middle | 23.6 ± 12.55 | Middle | 16,525.43 ± 9026.642 | ||
Lower | 7.43 ± 0.17 | Lower | 28.45 ± 4.03 | Lower | 17,749.8 ± 10063.04 | ||
Karnafuli Estuaries | 89 | Upper | 7.30 ± 1.02 | Upper | 20.03 ± 8.82 | Upper | 15,475.07 ± 6236.96 |
Middle | 6.46 ± 1.69 | Middle | 26.16 ± 9.36 | Middle | 19,120.1 ± 7652.73 | ||
Lower | 6.66 ± 0.19 | Lower | 28.25 ± 4.31 | Lower | 17,250.13 ± 8114.56 |
Station | BOD (mg/L) | COD (mg/L) | DO/E-9 (mg/L) | Nitrate/100 (mg/L) | Phosphate/100 (mg/L) |
---|---|---|---|---|---|
Upstream non-industrial zone | 5 | 360 | 5 | 100 | 70 |
Kalurghat industrial zone | 4.5 | 440 | 3 | 300 | 150 |
Downstream industrial zone | 6.5 | 300 | 5 | 900 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akter, A.; Toukir, M.R.; Dayem, A. Suitability Assessment of Fish Habitat in a Data-Scarce River. Hydrology 2022, 9, 173. https://doi.org/10.3390/hydrology9100173
Akter A, Toukir MR, Dayem A. Suitability Assessment of Fish Habitat in a Data-Scarce River. Hydrology. 2022; 9(10):173. https://doi.org/10.3390/hydrology9100173
Chicago/Turabian StyleAkter, Aysha, Md. Redwoan Toukir, and Ahammed Dayem. 2022. "Suitability Assessment of Fish Habitat in a Data-Scarce River" Hydrology 9, no. 10: 173. https://doi.org/10.3390/hydrology9100173
APA StyleAkter, A., Toukir, M. R., & Dayem, A. (2022). Suitability Assessment of Fish Habitat in a Data-Scarce River. Hydrology, 9(10), 173. https://doi.org/10.3390/hydrology9100173