Understanding Dry and Wet Conditions in the Vietnamese Mekong Delta Using Multiple Drought Indices: A Case Study in Ca Mau Province
Abstract
:1. Introduction
2. Methods
2.1. Study Area and Data Collection
2.2. Data Collection and trend analysis
2.3. SPI, ARI, and SPEI Calculation
2.4. Correspondence Analysis (CA)
3. Results
3.1. SPI 3-, SPI 6-, and SPI 9-Month Drought Pattern Analysis
3.2. ARI and SPEI Analysis
3.3. Drought/Wet Occurrence Probabilities using SPI
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Orimoloye, I.R.; Belle, J.A.; Olusola, A.O.; Busayo, E.T.; Ololade, O.O. Spatial Assessment of Drought Disasters, Vulnerability, Severity and Water Shortages: A Potential Drought Disaster Mitigation Strategy. Nat. Hazards 2021, 105, 2735–2754. [Google Scholar] [CrossRef]
- Sivakumar, M.V. Agricultural Drought—WMO Perspectives; World Meteorological Organization: Geneva, Switzerland, 2011; p. 24. [Google Scholar]
- Wilhite, D.A. Drought as a natural hazard: Concepts and definitions. In Drought: A Global Assessment; Wilhite, D.A., Ed.; Routledge: London, UK, 2000; Volume 1, pp. 3–18. [Google Scholar]
- Palmer, W. Meteorological Drought. In Drought: A Global Assessment; Office of Climatology, U.S. Weather Bureau: Washington, DC, USA, 1965; pp. 45–58. [Google Scholar]
- Pandžić, K.; Likso, T.; Curić, O.; Mesić, M.; Pejić, I.; Pasarić, Z. Drought Indices for the Zagreb-Grič Observatory with an Overview of Drought Damage in Agriculture in Croatia. Theor. Appl. Climatol. 2020, 142, 555–567. [Google Scholar] [CrossRef]
- Hayes, M.J.; Alvord, C.; Lowrey, J. Drought indices. Interm. West Clim. Summ. 2007, 3, 2–6. [Google Scholar]
- Heim, R.R., Jr. A Review of Twentieth-Century Drought Indices Used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1166. [Google Scholar] [CrossRef] [Green Version]
- Ortega-Gaucin, D.; Ceballos-Tavares, J.A.; Ordoñez Sánchez, A.; Castellano-Bahena, H.V. Agricultural Drought Risk Assessment: A. Spatial Analysis of Hazard, Exposure, and Vulnerability in Zacatecas, Mexico. Water 2021, 13, 1431. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Glantz, M.H. Understanding: The Drought Phenomenon: The Role of Definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Abbas, S.; Mayo, Z.A. Impact of Temperature and Rainfall on Rice Production in Punjab, Pakistan. Environ. Dev. Sustain. 2021, 23, 1706–1728. [Google Scholar] [CrossRef]
- Ribeiro, A.F.; Russo, A.; Gouveia, C.M.; Páscoa, P. Modelling Drought-Related Yield Losses in Iberia Using Remote Sensing and Multiscalar Indices. Theor. Appl. Climatol. 2019, 136, 203–220. [Google Scholar] [CrossRef]
- Madadgar, S.; AghaKouchak, A.; Farahmand, A.; Davis, S.J. Probabilistic Estimates of Drought Impacts on Agricultural Production. Geophys. Res. Lett. 2017, 44, 7799–7807. [Google Scholar] [CrossRef]
- Wilhite, D.A. Quantification of Agricultural Drought for Effective Drought Mitigation and Preparedness: Key Issues and Challenges; World Meteorological Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Feng, P.; Wang, B.; Li Liu, D.; Yu, Q. Machine Learning-Based Integration of Remotely-Sensed Drought Factors Can Improve the Estimation of Agricultural Drought in South-Eastern Australia. Agric. Syst. 2019, 173, 303–316. [Google Scholar] [CrossRef]
- Yahaya, T.I.; Muhammed, M. Assessing Rainfall Variability Impacts Using Agricultural Index (ARI) on Cassava Growth in Ilorin Area of Kwara State, Nigenia. Int. J. Environ. Policy Issues. Geo-Stud. Forum 2013, 6, 158–170. [Google Scholar]
- Pandžić, K.; Likso, T.; Pejić, I.; Šarčević, H.; Pecina, M.; Šestak, I.; Tomšić, D.; Strelec Mahović, N. Application of the Self-Calibrated Palmer Drought Severity Index and Standardized Precipitation Index for Estimation of Drought Impact on Maize Grain Yield in Pannonian Part of Croatia. Nat. Hazards 2022, 113, 1237–1262. [Google Scholar] [CrossRef]
- National Drought Mitigation Center (NDMC). Types of Drought. Available online: https://drought.unl.edu/Education/DroughtIn-depth/TypesofDrought.aspx (accessed on 9 July 2022).
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Ertsen, M.W.; Svoboda, M.D.; Hafeez, M. Propagation of Drought: From Meteorological Drought to Agricultural and Hydrological Drought. Adv. Meteorol. 2016, 2016, 6547209. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). International Meteorological Vocabulary; WMO-No. 182; Secretariat of the World Meteorological Organization: Geneva, Switzerland, 1992; ISBN 978-92-63-02182-3. [Google Scholar]
- Milanovic, M.; Gocic, M.L.; Trajkovic, S. Analysis of Meteorological and Agricultural Droughts in Serbia. Facta Univ. Ser. Archit. Civ. Eng. 2015, 12, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized Precipitation Evapotranspiration Index (SPEI) Revisited: Parameter Fitting, Evapotranspiration Models, Tools, Datasets and Drought Monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zhu, Y.; Xu, R.; Liu, J. Drought Severity Change in China during 1961–2012 Indicated by SPI and SPEI. Nat. Hazards 2015, 75, 2437–2451. [Google Scholar] [CrossRef]
- Ca Mau Web Portal. Ca Mau Overview. Available online: https://www.camau.gov.vn/wps/portal/gioi-thieu/tongquan/dieukientunhien (accessed on 17 September 2022).
- Xuan, N.V.; Giang, N.N.L.; Ty, T.V.; Kumar, P.; Downes, N.K.; Nam, N.D.G.; Ngan, N.V.C.; Thinh, L.V.; Duy, D.V.; Avtar, R. Impacts of Dike Systems on Hydrological Regime in Vietnamese Mekong Delta. Water Supply 2022. [Google Scholar] [CrossRef]
- Van Ty, T.; Minh, H.V.T.; Avtar, R.; Kumar, P.; Van Hiep, H.; Kurasaki, M. Spatiotemporal Variations in Groundwater Levels and the Impact on Land Subsidence in CanTho, Vietnam. Groundw. Sustain. Dev. 2021, 15, 100680. [Google Scholar] [CrossRef]
- Minh, H.V.T.; Lavane, K.; Ty, T.V.; Downes, N.K.; Hong, T.T.K.; Kumar, P. Evaluation of the Impact of Drought and Saline Water Intrusion on Rice Yields in the Mekong Delta, Vietnam. Water 2022, 14, 3499. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. Drought Monitoring with Multiple Time Scales; Applied Climatology, American Meteorological Society: Dallas, TX, USA, 1995; pp. 233–236. [Google Scholar]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; Volume 17, pp. 179–183. [Google Scholar]
- Agnew, C. Using the SPI to Identify Drought. In Proceedings of the Drought Network News (1994-2001); National Drought Mitigation Center: UK, 2000; Volume 12, p. 8. [Google Scholar]
- Soleimani, H.; Ahmadi, H.; Zehtabian, G. Comparison of Temporal and Spatial Trend of SPI, DI and CZI as Important Drought Indices to Map Using IDW Method in Taleghan Watershed. Ann. Biol. Res. 2013, 4, 46–55. [Google Scholar]
- Ty, V.T.; Hoai, T.T.D.; Minh, V.T.H. Mapping Meteorological Drought in the Mekong Delta under Climate Change. Can Univ. J. Sci. 2015, 2025, 1980–2012. [Google Scholar]
- Hồng, N.V.; Thơ, P.T.A.; Giai, N.S. Khả Năng Sử Dụng Chỉ Số SPI Trong Đánh Giá Ảnh Hưởng Của Điều Kiện Khô Hạn Đến Năng Suất Lúa ở Vùng Cần Thơ-Hậu Giang. Tạp Chí Khoa Học Biến Đổi Khí Hậu 2018, 5, 36–42. [Google Scholar]
- Cheval, S. The Standardized Precipitation Index—An Overview. Romanian J. Meteorol. 2015, 12, 17–64. [Google Scholar]
- Meleha, A.M.; Hassan, A.; El-Bialy, M.A.; El-Mansoury, M.A. Effect of Planting Dates and Planting Methods on Water Relations of Wheat. Int. J. Agron. 2020, 2020, 8864143. [Google Scholar] [CrossRef]
- Ramana, G.V.; Suresh Kumar, R.; Balakrishna, P. Restoration of Ecological Balance Through Regression Analysis in Kothapally Agricultural Fields; Springer: Cham, Switerland, 2019; pp. 817–830. [Google Scholar]
- Sayari, N.; Bannayan, M.; Alizadeh, A.; Farid, A. Using Drought Indices to Assess Climate Change Impacts on Drought Conditions in the Northeast of Iran (Case Study: Kashafrood Basin). Meteorol. Appl. 2013, 20, 115–127. [Google Scholar] [CrossRef]
- Ghazalli, M.Z.; Nieuwolt, S. The Use of an Agricultural Rainfall Index in Malaysia. Int. J. Biometeorol. 1982, 26, 277–283. [Google Scholar] [CrossRef]
- Paymard, P.; Yaghoubi, F.; Nouri, M.; Bannayan, M. Projecting Climate Change Impacts on Rainfed Wheat Yield, Water Demand, and Water Use Efficiency in Northeast Iran. Theor. Appl. Climatol. 2019, 138, 1361–1373. [Google Scholar] [CrossRef]
- Nieuwolt, S. Estimating the Agricultural Risks of Tropical Rainfall. Agric. For. Meteorol. 1989, 45, 251–263. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56. Fao Rome 1998, 300, D05109. [Google Scholar]
- Saha, S.; Moorthi, S.; Pan, H.-L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D. The NCEP Climate Forecast System Reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1058. [Google Scholar] [CrossRef] [Green Version]
- Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Abbasi, A.; Khalili, K.; Behmanesh, J.; Shirzad, A. Drought Monitoring and Prediction Using SPEI Index and Gene Expression Programming Model in the West of Urmia Lake. Theor. Appl. Climatol. 2019, 138, 553–567. [Google Scholar] [CrossRef]
- Greenacre, M.J. Theory and Applications of Correspondence Analysis; Academic Press: London, UK, 1984. [Google Scholar]
- Abdi, H.; Williams, L.J. Principal Component Analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Greenacre, M.J. Correspondence Analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 613–619. [Google Scholar] [CrossRef]
- Fellenberg, K.; Hauser, N.C.; Brors, B.; Neutzner, A.; Hoheisel, J.D.; Vingron, M. Correspondence Analysis Applied to Microarray Data. Proc. Natl. Acad. Sci. USA 2001, 98, 10781–10786. [Google Scholar] [CrossRef] [Green Version]
- Pandžić, K. Principal Component Analysis of Precipitation in the Adriatic-Pannonian Area of Yugoslavia. J. Climatol. 1988, 8, 357–370. [Google Scholar] [CrossRef]
- Cakir, H.I.; Khorram, S.; Nelson, S.A. Correspondence Analysis for Detecting Land Cover Change. Remote Sens. Environ. 2006, 102, 306–317. [Google Scholar] [CrossRef]
- Greenacre, M. Correspondence Analysis in Medical Research. Stat. Methods Med. Res. 1992, 1, 97–117. [Google Scholar] [CrossRef]
- Emad, A.M.S.; Eethar, M.A.-O. Assessment of Water Quality of Euphrates River Using Cluster Analysis. J. Environ. Prot. 2012, 3, 25650. [Google Scholar]
- Ngu, N.D. El Niño 2015/2016 and Its Impact on Vietnam. J. Clim. Chang. Sci. 2017, 1, 29–35. [Google Scholar]
- Seung Kyu, L.; Truong An, D. Evaluating Drought Events under Influence of El-Nino Phenomenon: A Case Study of Mekong Delta Area, Vietnam. J. Agrometeorol. 2018, 20, 275–279. [Google Scholar] [CrossRef]
- Ca Mau Web Portal. Keeping the Forest in the Dry Season. Available online: https://www.camau.gov.vn/wps/portal (accessed on 20 September 2022).
- Ca Mau Web Portal. Responding to Climate Change. Available online: https://daibieunhandan.vn/dia-phuong/ung-pho-voi-bien-doi-khi-hau-i263547/ (accessed on 19 September 2022).
Drought Levels | SPI/SPEI Values | Drought Levels | SPI/SPEI Values |
---|---|---|---|
Normal | 0–0.24 | Normal | (−0.24)–0 |
Very slightly wet condition | 0.25–0.49 | Very slight drought | (−0.49)–(−0.25) |
Slightly wet condition | 0.5–0.99 | Slight drought | (−0.99)–(−0.5) |
Moderately wet condition | 1–1.44 | Moderate drought | (−1.44)–(−1) |
Severely wet condition | 1.5–1.99 | Severe drought | (−1.99)–(−1.5) |
Extremely wet condition | >2 | Extreme drought | <(−2) |
Characteristics | SPI 3-Month | SPI 6-Month | SPI 9-Month |
---|---|---|---|
Number of SPI −0.25 | 151 | 176 | 190 |
The first longest duration/occurrence times of drought (month) | 19/Intensity (1) | 29/1 | 41/1 |
Time occurrence first longest duration | 1982–1983 | 1981–1983 | 1980–1984 |
Number of SPI 0.25 | 182 | 183 | 178 |
The first longest duration of wet condition | 28/1 | 34/1 | 35/1 |
Time occurrence first long duration (month) | 1998–2001 | 1998–2002 | 1998–2001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minh, H.V.T.; Kumar, P.; Van Ty, T.; Duy, D.V.; Han, T.G.; Lavane, K.; Avtar, R. Understanding Dry and Wet Conditions in the Vietnamese Mekong Delta Using Multiple Drought Indices: A Case Study in Ca Mau Province. Hydrology 2022, 9, 213. https://doi.org/10.3390/hydrology9120213
Minh HVT, Kumar P, Van Ty T, Duy DV, Han TG, Lavane K, Avtar R. Understanding Dry and Wet Conditions in the Vietnamese Mekong Delta Using Multiple Drought Indices: A Case Study in Ca Mau Province. Hydrology. 2022; 9(12):213. https://doi.org/10.3390/hydrology9120213
Chicago/Turabian StyleMinh, Huynh Vuong Thu, Pankaj Kumar, Tran Van Ty, Dinh Van Duy, Tran Gia Han, Kim Lavane, and Ram Avtar. 2022. "Understanding Dry and Wet Conditions in the Vietnamese Mekong Delta Using Multiple Drought Indices: A Case Study in Ca Mau Province" Hydrology 9, no. 12: 213. https://doi.org/10.3390/hydrology9120213
APA StyleMinh, H. V. T., Kumar, P., Van Ty, T., Duy, D. V., Han, T. G., Lavane, K., & Avtar, R. (2022). Understanding Dry and Wet Conditions in the Vietnamese Mekong Delta Using Multiple Drought Indices: A Case Study in Ca Mau Province. Hydrology, 9(12), 213. https://doi.org/10.3390/hydrology9120213