Numerical and Physical Modeling of Ponte Liscione (Guardialfiera, Molise) Dam Spillways and Stilling Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Liscione Dam
2.2. Experimental Investigation
- -
- The model tank (mimicking the prototype reservoir) dimensions made it possible to include the surface spillway and to ensure a constant water level in the tank up to the maximum tested flow rate, as occurs in reality, due to the large size of the artificial basin. A preliminary investigation demonstrated that a tank with dimensions shown in Figure 4, i.e., approximately 150 × 210 m, was sufficient to guarantee the above requirement;
- -
- The physical model downstream section was set considering the area wherein the river protection interventions were planned to take place. In addition, the model includes the river portion downstream of the stilling basin characterized by an irregular planimetric geometry. Based on these requirements, the downstream closure section of the model was set after the first river bend, as highlighted in Figure 4.
2.3. Numerical Simulations
- (1)
- At 0.14 m upstream from the chute, within the surface spillway volume;
- (2)
- At 1.639 m downstream from the chute (see Figure 9).
3. Results
Model #1: Surface Spillway
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muir, M.J.; Luce, C.H.; Gurrieri, J.T.; Matyjasik, M.; Bruggink, J.L.; Weems, S.L.; Hurja, J.C.; Marr, D.B.; Leahy, S.D. Effects of climate change on hydrology, water resources, and soil [Chapter 4]. In Climate Change Vulnerability and Adaptation in the Intermountain Region [Part 1]; Halofsky, J., Peterson, D., Ho, J.J., Little Natalie, J., Joyce Linda, A., Eds.; Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2018; pp. 60–88. [Google Scholar]
- Savage, B.M.; Johnson, M.C. Flow over ogee spillway: Physical and numerical model case study. J. Hydraul. Eng. 2001, 127, 640–649. [Google Scholar] [CrossRef]
- Ghafourian, A.; Jahromi, H.M.; Bajestan, M.S. Hydraulic of siphon spillway by physical and computational fluid dynamics. World Appl. Sci. J. 2011, 14, 1240–1245. [Google Scholar]
- Begam, S.; Sen, D.; Dey, S. Moraine dam breach and glacial lake outburst flood generation by physical and numerical models. J. Hydrol. 2018, 563, 694–710. [Google Scholar] [CrossRef]
- Castellino, M.; Sammarco, P.; Romano, A.; Martinelli, L.; Ruol, P.; Franco, L.; De Girolamo, P. Large impulsive forces on recurved parapets under non-breaking waves. A numerical study. Coast. Eng. 2018, 136, 1–15. [Google Scholar] [CrossRef]
- Olsen, N.R.B.; Kjellesvig, H.M. Three-dimensional numerical flow modelling for estimation of spillway capacity. J. Hydraul. Res. 1998, 36, 775–784. [Google Scholar] [CrossRef]
- Damarnegara, S.; Wardoyo, W.; Perkins, R.; Vincens, E. Computational fluid dynamics (CFD) simulation on the hydraulics of a spillway. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020. [Google Scholar]
- Chatila, J.; Tabbara, M. Computational modeling of flow over an ogee spillway. Comput. Struct. 2004, 82, 1805. [Google Scholar] [CrossRef]
- Cook, C.B.; Richmond, M.C.; Serkowski, J.A. The Dalles Dam, Columbia River: Spillway Improvement CFD Study; Technical Report PNNL-14768, 969745; Pacific Northwest National Laboratory: Richland, WA, USA, 2006. [Google Scholar]
- Ho, D.K.H.; Riddette, K.M. Application of computational fluid dynamics to evaluate hydraulic performance of spillways in Australia. Austral. J. Civ. Eng. 2010, 6, 81–104. [Google Scholar] [CrossRef]
- Maghrebi, M.; Alizadeh, S.; Lotfi, R. Numerical simulation of flow over rectangular broad crested weir (real case study). In Proceedings of the First International Conference on Dams & Hydropowers, Tehran, Iran, 8–13 February 2012. [Google Scholar]
- Gadhe, V.; Patil, R.; Bhosekar, V.V. Performance assessment of upgraded spillway—Case study. J. Hydraul. Eng. 2021, 27, 327–335. [Google Scholar] [CrossRef]
- Demeke, G.K.; Asfaw, D.H.; Shiferaw, Y.S. 3D Hydrodynamic Modelling Enhances the Design of Tendaho Dam Spillway, Ethiopia. Water 2019, 11, 82. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Andreasson, P.; Teng, P.; Xie, Q. The Past and Present of Discharge Capacity Modeling for Spillways—A Swedish Perspective. Fluids 2019, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Badas, M.G.; Rossi, R.; Garau, M. May a Standard VOF Numerical Simulation Adequately Complete Spillway Laboratory Measurements in an Operational Context? The Case of Sa Stria Dam. Water 2020, 12, 1606. [Google Scholar] [CrossRef]
- Rong, T.Z.; Peng, L.; Feng, P. Three-Dimensional Numerical Simulation of Dam Discharge and Flood Routing in Wudu Reservoir Youtong. Water 2019, 11, 2157. [Google Scholar] [CrossRef] [Green Version]
- Han, M.; Chen, M. Three-dimension visualization research of flood routing simulation. Comput. Appl. 2005, 25, 1906–1907. [Google Scholar]
- Heller, V. Scale effects in physical hydraulic engineering models. J. Hydraul. Res. 2011, 49, 293–306. [Google Scholar] [CrossRef]
- Castellino, M.; Moroni, M.; Cimorelli, C.; Di Risio, M.; De Girolamo, P. Riverbed Protection Downstream of an Undersized Stilling Basin by Means of Antifer Artificial Blocks. Water 2021, 13, 619. [Google Scholar] [CrossRef]
- Li, S.; Cain, S.; Wosnik, M.; Miller, C.; Kocahan, H.; Wyckoff, R. Numerical modeling of probable maximum flood flowing through a system of spillways. J. Hydraul. Eng. 2011, 137, 66–74. [Google Scholar] [CrossRef]
- Moroni, M.; Lorino, S.; Cicci, A.; Bravi, M. Design and Bench-Scale Hydrodynamic Testing of Thin-Layer Wavy Photobioreactors. Water 2018, 11, 1521. [Google Scholar] [CrossRef]
Reservoir | Total volume (millions of m3) | Useful storage (millions of m3) | Dead storage capacity (millions of m3) | Reservoir maximum surface (km2) | Surface of the catchment area (km2) |
173.0 | 137.0 | 11.0 | 7.45 | 1043 | |
Dam | Management upper storage elevation (m a.s.l.) | Maximum allowed water elevation (m a.s.l.) | Dam crest (m a.s.l.) | Management minimum operating level (m a.s.l.) | Minimum foundation height (m a.s.l.) |
125.5 | 129.0 | 131.5 | 92.0 | 71.5 |
Discharge inlet to the reservoir (m3/s) | 1050 | 1800 | 2300 | 2650 |
Discharge at the spillways (m3/s) | 830 | 1450 | 1850 | 2250 |
Return period (y) | 30 | 200 | 500 | 1000 |
Model # | Model Description | Resolution | Minimum Size (mm) | Maximum Size (mm) | Number of Elements |
---|---|---|---|---|---|
1 | Surface spillway | Low | 10 | 20 | 259,148 |
High | 5 | 12 | 887,386 | ||
2 | The whole dam | Low | 10 | 20 | 485,258 |
Medium | 8 | 16 | 879,883 | ||
High | 5 | 12 | 1,024,524 |
Height of the Free Surface Inside the Upstream Tank (m) | Expected Discharge (m3/s) | Turbulence Model | Grid Resolution |
---|---|---|---|
0.21327 | 304 | k-omega | Low |
0.22357 | 424 | k-omega | Low |
0.22937 | 530 | k-omega | Low |
0.24077 | 830 | k-omega | Low |
0.24077 | 830 | k-omega | High |
0.25697 | 1450 | k-omega | Low |
0.25697 | 1450 | k-omega | High |
0.26237 | 1650 | k-omega | Low |
0.26237 | 1650 | k-eps | Low |
0.26747 | 1850 | k-omega | Low |
0.27897 | 2250 | k-omega | Low |
Height of the Free Surface Inside the Upstream Tank (m) | Expected Discharge (m3/s) | Sill #2 |
---|---|---|
0.24077 | 830 | yes |
0.25697 | 1450 | yes |
0.25697 | 1450 | no |
0.26237 | 1650 | yes |
0.26237 | 1650 | no |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moroni, M.; Castellino, M.; De Girolamo, P. Numerical and Physical Modeling of Ponte Liscione (Guardialfiera, Molise) Dam Spillways and Stilling Basin. Hydrology 2022, 9, 214. https://doi.org/10.3390/hydrology9120214
Moroni M, Castellino M, De Girolamo P. Numerical and Physical Modeling of Ponte Liscione (Guardialfiera, Molise) Dam Spillways and Stilling Basin. Hydrology. 2022; 9(12):214. https://doi.org/10.3390/hydrology9120214
Chicago/Turabian StyleMoroni, Monica, Myrta Castellino, and Paolo De Girolamo. 2022. "Numerical and Physical Modeling of Ponte Liscione (Guardialfiera, Molise) Dam Spillways and Stilling Basin" Hydrology 9, no. 12: 214. https://doi.org/10.3390/hydrology9120214
APA StyleMoroni, M., Castellino, M., & De Girolamo, P. (2022). Numerical and Physical Modeling of Ponte Liscione (Guardialfiera, Molise) Dam Spillways and Stilling Basin. Hydrology, 9(12), 214. https://doi.org/10.3390/hydrology9120214