Evaluation of the DRAINMOD Model’s Performance Using Different Time Steps in Evapotranspiration Computations
Abstract
:1. Introduction
- Assessed the differences between daily ET₀ computations when the time step changed from daily to hourly, for 12-hectares of farmland located at the lower reaches of the Yangtze River Basin, China, from May 2018 to August 2019.
- Applied the DRAINMOD model to predict the water distribution pattern in the study area under two sets of daily ET₀ values (one computed based on DTS and the other based on HTS).
2. Materials and Methods
2.1. Study Area
2.2. Daily ET₀ Computations
Collection of Weather Data Required for ET₀ Computations
2.3. DRAINMOD Simulations
2.3.1. DRAINMOD Model and Its Applications to Assess Farmland Water Balances under Different Agricultural Drainage Layouts and Practices
2.3.2. Potential Evapotranspiration Considerations in DRAINMOD Alongside the Data Required to Set Up and Run the Model
- Data required to set up and run the DRAINMOD model.
- Data required to calibrate and validate the DRAINMOD model.
2.3.3. Data Required to Set Up and Run the DRAINMOD Model
2.3.4. Data Required for DRAINMOD Calibration and Validation
3. Results
3.1. Calibration and Validation of the DRAINMOD Model
3.2. Differences between Daily ET₀ Values as Estimated Based on DTS and HTS Alongside the Impact of These Differences on DRAINMOD Performance
3.2.1. Daily ET₀ Estimates Based on DTS and HTS
3.2.2. Sensitivity of DRAINMOD Predictions of the Water Balance in the Study Area to the Changes in the Time Step (From Daily to Hourly) in ET₀ Computations
3.2.3. A Discussion on How the Changes in DRAINMOD Predictions of the Water Fate Would Affect Agricultural Water-Use Efficiency Alongside Crop Yield
- Irrigation requirements and agricultural production.
- The adverse impacts on the surrounding environment.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ashraf, M.A. Waterlogging Stress in Plants: A Review. Afr. J. Agric. Res. 2012, 7, 1976–1981. [Google Scholar]
- Munns, R.; Goyal, S.S.; Passioura, J. The Impact of Salinity Stress. PlantStress. 2008. Available online: http://www.plantstress.com (accessed on 25 December 2021).
- Pericherla, S.; Karnena, M.K.; Vara, S. A Review on Impacts of Agricultural Runoff on Freshwater Resources. Int. J. Emerg. Technol. 2020, 11, 829–833. [Google Scholar]
- Valipour, M. Drainage, Waterlogging, and Salinity. Arch. Agron. Soil Sci. 2014, 60, 1625–1640. [Google Scholar] [CrossRef]
- Ghane, E. Agricultural Drainage; Extension Bullefin E3370. 2018. Available online: https://www.canr.msu.edu/agriculture/uploads/files/agriculturaldrainage-2-2-18-web.pdf (accessed on 28 December 2021).
- Wayne Skaggs, R. Drainage Simulation Models. Agric. Drain. 1999, 38, 469–500. [Google Scholar]
- Skaggs, R.W. Drainmod, a Water Management Model for Shallow Water Table Soils; Water Resources Research Institute of the UNC System: Raleigh, NC, USA, 1978. [Google Scholar]
- Skaggs, R.W.; Youssef, M.A.; Chescheir, G.M. Drainmod: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1509–1522. [Google Scholar] [CrossRef]
- Jia, X.; Steele, D.D.; Hopkins, D. Hourly Reference Evapotranspiration Estimates for Alfalfa in North Dakota. In Proceedings of the the World Environmental and Water Resources Congress 2008, Honolulu, HI, USA, 12–16 May 2008. [Google Scholar]
- Perera, K.C.; Western, A.W.; Nawarathna, B.; George, B. Comparison of Hourly and Daily Ref-erence Crop Evapotranspiration Equations across Seasons and Climate Zones in Australia. Agric. Water Manag. 2015, 148, 84–96. [Google Scholar] [CrossRef]
- Bakhtiari, B.; Khalili, A.; Liaghat, A.A.M.; Khanjani, M. Comparison of Daily with Sum-of-Hourly Reference Evapotranspiration in Kerman Reference Weather Station. J. Water Soil (Agric. Sci. Technol.) 2009, 23, 45–56. [Google Scholar]
- Djaman, K.; Irmak, S.; Sall, M.; Sow, A.; Kabenge, I. Comparison of Sum-of-Hourly and Daily Time Step Standardized Asce Penman-Monteith Reference Evapotranspiration. Theor. Appl. Climatol. 2018, 134, 533–543. [Google Scholar] [CrossRef]
- Althoff, D.; Filgueiras, R.; Dias, S.H.B.; Rodrigues, L.N. Impact of Sum-of-Hourly and Daily Timesteps in the Computations of Reference Evapotranspiration across the Brazilian Territory. Agric. Water Manag. 2019, 226, 105785. [Google Scholar] [CrossRef]
- Nolz, R.; Rodný, M. Evaluation and Validation of the Asce Standardized Reference Evapotranspiration Equations for a Subhumid Site in Northeastern Austria. J. Hydrol. Hydromech. 2019, 67, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Djaman, K.; Koudahe, K.; Lombard, K.; O’Neill, M. Sum of Hourly Vs. Daily Penman-Monteith Grass-Reference Evap-otranspiration under Semiarid and Arid Climate. Irrig. Drain Syst. Eng. 2018, 7. [Google Scholar]
- Jia, Z.; Chen, C.; Luo, W.; Zou, J.; Wu, W.; Xu, M.; Tang, Y. Hydraulic Conditions Affect Pollutant Removal Efficiency in Distributed Ditches and Ponds in Agricultural Landscapes. Sci. Total Environ. 2019, 649, 712–721. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.G.; Walter, I.A.; Elliott, R.; Howell, R.; Itenfisu, D.; Jensen, M. Rl Snyder, the Asce Standardized Reference Evapo-Transpiration Equation; Environmental and Water Resources Institute of the American Society of Civil: Reston, FL, USA, 2005. [Google Scholar]
- Allen, R.G.; Pruitt, W.O.; Wright, J.L.; Howell, T.A.; Ventura, F.; Snyder, R.; Itenfisu, D.; Steduto, P.; Berengena, J.; Yrisarry, J.B.; et al. A Recommendation on Standardized Surface Re-sistance for Hourly Calculation of Reference Eto by the Fao56 Penman-Monteith Method. Agric. Water Manag. 2006, 81, 1–22. [Google Scholar] [CrossRef]
- Snyder, R.; Eching, S. Pmhr Penman-Monteith Hourly Etref for Short and Tall Canopies; University of California: Davis, CA, USA, 2006. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-Fao Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Fernandez, G.P.; Chescheir, G.M.; Skaggs, R.W.; Amatya, D.M. Drainmod-Gis: A Lumped Parameter Watershed Scale Drainage and Water Quality Model. Agric. Water Manag. 2006, 81, 77–97. [Google Scholar] [CrossRef]
- Brevé, M.A.; Skaggs, R.W.; Parsons, J.E.; Gilliam, J.W. Drainmod-N, a Nitrogen Model for Artificially Drained Soil. Trans. ASAE 1997, 40, 1067–1075. [Google Scholar] [CrossRef]
- Youssef, M.A.; Skaggs, R.W.; Chescheir, G.M.; Gilliam, J.W. The Nitrogen Simulation Model, Drainmod-N Ii. Trans. ASAE 2005, 48, 611–626. [Google Scholar] [CrossRef]
- Askar, M.H. Drainmod-P: A Model for Simulating Phosphorus Dynamics and Transport in Artificially Drained Agricultural Lands; North Carolina State University: Raleigh, NC, USA, 2019. [Google Scholar]
- Askar, M.H.; Youssef, M.A.; Vadas, P.A.; Hesterberg, D.L.; Amoozegar, A.; Chescheir, G.M.; Skaggs, R.W. Drainmod-P: A Model for Simulating Phosphorus Dynamics and Transport in Drained Agricultural Lands. I. Model Development. Trans. ASABE 2021, 64, 1835–1848. [Google Scholar] [CrossRef]
- Luo, W.; Skaggs, R.W.; Chescheir, G.M. Drainmod Modifications for Cold Conditions. Trans. ASAE 2000, 43, 1569. [Google Scholar] [CrossRef]
- Kladivko, E.J.; Frankenberger, J.R.; Jaynes, D.B.; Meek, D.W.; Jenkinson, B.J.; Fausey, N.R. Nitrate Leaching to Subsurface Drains as Affected by Drain Spacing and Changes in Crop Production System. J. Environ. Qual. 2004, 33, 1803–1813. [Google Scholar] [CrossRef]
- Jafari-Talukolaee, M.; Shahnazari, A.; Ahmadi, M.Z.; Darzi-Naftchali, A. Drain Discharge and Salt Load in Response to Subsurface Drain Depth and Spacing in Paddy Fields. J. Irrig. Drain. Eng. 2015, 141, 04015017. [Google Scholar] [CrossRef]
- Nangia, V.; Gowda, P.H.; Mulla, D.J.; Sands, G.R. Modeling Impacts of Tile Drain Spacing and Depth on Nitrate-Nitrogen Losses. Vadose Zone J. 2010, 9, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Youssef, M.A.; Abdelbaki, A.M.; Negm, L.M.; Skaggs, R.W.; Thorp, K.R.; Jaynes, D. B Drainmod-Simulated Performance of Controlled Drainage across the Us Midwest. Agric. Water Manag. 2018, 197, 54–66. [Google Scholar] [CrossRef]
- Wesström, I.; Joel, A.; Messing, I. Controlled Drainage and Subirrigation—A Water Management Option to Reduce Non-Point Source Pollution from Agricultural Land. Agric. Ecosyst. Environ. 2014, 198, 74–82. [Google Scholar] [CrossRef]
- Sands, G.R.; Song, I.; Busman, L.M.; Hansen, B.J. The Effects of Subsurface Drainage Depth and Intensity on Nitrate Loads in the Northern Cornbelt. Trans. ASABE 2008, 51, 937–946. [Google Scholar] [CrossRef]
- Klt, K. Plant Growth and Yield as Affected by Wet Soil Conditions Due to Flooding or Over-Irrigation. 2004. Available online: http://irrigationtoolbox.com/ReferenceDocuments/Extension/Nebraska/g1904.pdf (accessed on 28 December 2021).
- Farooq, M.; Wahid, A.; Kobayashi, N.S.M.A.; Fujita, D.B.S.M.A.; Basra, S.M.A. Plant Drought Stress: Effects, Mechanisms and Management. In Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2009; pp. 153–188. [Google Scholar]
- Ritter, W.F.; Shirmohammadi, A. Agricultural Nonpoint Source Pollution: Watershed Management and Hydrology; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
Regarding soil water characteristics | Suction (KPa) | 0 | 1.91 | 10.2 | 60.3 | 200 | 407 | 813 | 1000 |
Volumetric water content (cm3/cm3) | 0.52 | 0.48 | 0.46 | 0.38 | 0.31 | 0.27 | 0.23 | 0.21 | |
Regarding soil drainage property | Groundwater table (cm-surface) | 0 | 6 | 15 | 40 | 75 | 90 | 120 | 150 |
Volume drained (cm) | 0 | 0.04 | 0.25 | 1.09 | 1.9 | 2.4 | 3.6 | 5.2 | |
Upward flux (cm/h) | 0.5 | 0.5 | 0.22 | 0.16 | 0.08 | 0.06 | 0.04 | 0.03 |
R2 | NSE | |
---|---|---|
Calibration | 0.89 | 0.84 |
Validation | 0.93 | 0.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awad, A.; El-Rawy, M.; Abdalhi, M.; Al-Ansari, N. Evaluation of the DRAINMOD Model’s Performance Using Different Time Steps in Evapotranspiration Computations. Hydrology 2022, 9, 40. https://doi.org/10.3390/hydrology9020040
Awad A, El-Rawy M, Abdalhi M, Al-Ansari N. Evaluation of the DRAINMOD Model’s Performance Using Different Time Steps in Evapotranspiration Computations. Hydrology. 2022; 9(2):40. https://doi.org/10.3390/hydrology9020040
Chicago/Turabian StyleAwad, Ahmed, Mustafa El-Rawy, Mohmed Abdalhi, and Nadhir Al-Ansari. 2022. "Evaluation of the DRAINMOD Model’s Performance Using Different Time Steps in Evapotranspiration Computations" Hydrology 9, no. 2: 40. https://doi.org/10.3390/hydrology9020040
APA StyleAwad, A., El-Rawy, M., Abdalhi, M., & Al-Ansari, N. (2022). Evaluation of the DRAINMOD Model’s Performance Using Different Time Steps in Evapotranspiration Computations. Hydrology, 9(2), 40. https://doi.org/10.3390/hydrology9020040