Evaluation of Future Streamflow in the Upper Part of the Nilwala River Basin (Sri Lanka) under Climate Change
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Data Collection
2.3. Research Methodology
2.3.1. Filling Missing Climate Data
2.3.2. Future Climate Projection
2.3.3. Hydrological Modelling
2.3.4. Impact of Climate Change on Future Streamflow
3. Results and Discussion
3.1. Future Climate Projection and Analysis
3.2. Calibration of the HEC-HMS Model
3.3. Impact of Climate Change in Future Streamflow
3.4. Uncertainties and Limitations of the Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Summary for policymakers. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Ahiablame, L.; Sinha, T.; Paul, M.; Ji, J.-H.; Rajib, A. Streamflow response to potential land use and climate changes in the James River watershed, Upper Midwest United States. J. Hydrol. Reg. Stud. 2017, 14, 150–166. [Google Scholar] [CrossRef]
- Eliades, M.; Bruggeman, A.; Lubczynski, M.W.; Christou, A.; Camera, C.; Djuma, H. The water balance components of Mediterranean pine trees on a steep mountain slope during two hydrologically contrasting years. J. Hydrol. 2018, 562, 712–724. [Google Scholar] [CrossRef]
- Wang, K.; Liang, S. Global atmospheric downward longwave radiation over land surface under all-sky conditions from 1973 to 2008. J. Geophys. Res. 2009, 114, 1–12. [Google Scholar] [CrossRef]
- Vargas-Amelin, E.; Pindado, P. The challenge of climate change in Spain: Water resources, agriculture and land. J. Hydrol. 2014, 518, 243–249. [Google Scholar] [CrossRef]
- Lee, C.-H.; Yeh, H.-F. Impact of climate change and human activities on streamflow variations based on the Budyko framework. Water 2019, 11, 2001. [Google Scholar] [CrossRef] [Green Version]
- Raneesh, K.Y.; Santosh, G.T. A study on the impact of climate change on streamflow at the watershed scale in the humid tropics. Hydrol. Sci. J. J. Des Sci. Hydrol. 2011, 56, 946–965. [Google Scholar] [CrossRef]
- Dahal, N.; Shrestha, U.; Tuitui, A.; Ojha, H. Temporal changes in precipitation and temperature and their implications on the streamflow of Rosi river, Central Nepal. Climate 2019, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Vandana, K.; Islam, A.; Sarthi, P.P.; Sikka, A.K.; Kapil, H. Assessment of potential impact of climate change on streamflow: A case study of the Brahmani River basin, India. J. Water Clim. Chang. 2019, 10, 624–641. [Google Scholar] [CrossRef]
- Gunathilake, M.B.; Amaratunga, Y.V.; Perera, A.; Chathuranika, I.M.; Gunathilake, A.S.; Rathnayake, U. Evaluation of future climate and potential impact on streamflow in the Upper Nan River Basin of Northern Thailand. Adv. Meteorol. 2020, 2020, 1–15. [Google Scholar] [CrossRef]
- Liu, Z.; Cuo, L.; Li, Q.; Liu, X.; Ma, X.; Liang, L.; Ding, J. Impacts of climate change and land use/cover change on streamflow in Beichuan River Basin in Qinghai province, China. Water 2020, 12, 1198. [Google Scholar] [CrossRef] [Green Version]
- Masud, M.B.; Soni, P.; Shrestha, S.; Tripathi, N.K. Changes in climate extremes over North Thailand, 1960–2099. J. Climatol. 2016, 2016, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Gao, D.; Chen, T.; Yang, K.; Zhou, J.; Ao, T. Projecting the impacts of climate change on streamflow in the upper reaches of the Yangtze River basin. J. Water Clim. Chang. 2021, 12, 1724–1743. [Google Scholar] [CrossRef]
- Navas, R.; Alonso, J.; Gorgoglione, A.; Vervoort, R. Identifying climate and human impact trends in streamflow: A case study in Uruguay. Water 2019, 11, 1433. [Google Scholar] [CrossRef] [Green Version]
- Gunawardana, S.K.; Shrestha, S.; Mohanasundaram, S.; Salin, K.R.; Piman, T. Multiple drivers of hydrological alteration in the transboundary Srepok River Basin of the Lower Mekong Region. J. Environ. Manag. 2021, 278, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, A.G.; Atabay, S.; Amou-Assar, K.H.; Imteaz, M.A. Climate change impacts on inflows into lake Eppalock reservoir from Upper Campaspe catchment. Hydrology 2021, 8, 108. [Google Scholar] [CrossRef]
- Maharjan, M.; Aryal, A.; Talchabhadel, R.; Thapa, B.R. Impact of climate change on the streamflow modulated by changes in precipitation and temperature in the north latitude watershed of Nepal. Hydrology 2021, 8, 117. [Google Scholar] [CrossRef]
- Shelton, S.; Lin, Z. Streamflow variability in Mahaweli river basin of Sri Lanka during 1990–2014 and its possible mechanisms. Water 2019, 11, 2485. [Google Scholar] [CrossRef] [Green Version]
- Sirisena, T.A.; Maskey, S.; Bamunawala, J.; Coppola, E.; Ranasinghe, R. Projected streamflow and sediment supply under changing climate to the coast of the Kalu river basin in tropical Sri Lanka over the 21st century. Water 2021, 13, 31. [Google Scholar] [CrossRef]
- Ghaderpour, E.; Vujadinovic, T.; Hassan, Q.K. Application of the least-squares wavelet software in hydrology: Athabasca River basin. J. Hydrol. Reg. Stud. 2021, 36, 1–18. [Google Scholar] [CrossRef]
- Abeywardana, N.; Bebermeier, W.; Schütt, B. Ancient water management and governance in the dry zone of Sri Lanka until abandonment, and the influence of colonial politics during reclamation. Water 2018, 10, 1746. [Google Scholar] [CrossRef] [Green Version]
- Somasundaram, D.; Zhang, F.; Ediriweera, S.; Wang, S.; Li, J.; Zhang, B. Spatial and temporal changes in surface water area of Sri Lanka over a 30-year period. Remote Sens. 2020, 12, 3701. [Google Scholar] [CrossRef]
- Tsuchida, T.; Takeda, S. Is resilience socially emerging or embedded?: A review of “resilience” under climate change in Sri Lanka. J. Saf. Sci. Resil. 2021, 2, 258–266. [Google Scholar] [CrossRef]
- Alahacoon, N.; Edirisinghe, M. Spatial variability of rainfall trends in Sri Lanka from 1989 to 2019 as an indication of climate change. ISPRS Int. J. Geo-Inf. 2021, 10, 84. [Google Scholar] [CrossRef]
- Burt, T.P.; Weerasinghe, K.D. Rainfall distributions in Sri Lanka in time and space: An analysis based on daily rainfall data. Climate 2014, 2, 242–263. [Google Scholar] [CrossRef] [Green Version]
- Eckstein, D.; Künzel, V.; Schäfer, L.; Winges, M. Global Climate Risk Index; Germanwatch e.V.: Berlin, Germany, 2020; pp. 1–44. Available online: https://germanwatch.org/sites/germanwatch.org/files/20-2-01e%20Global%20Climate%20Risk%20Index%202020_10.pdf (accessed on 5 January 2022).
- Cho, H. Climate change risk assessment for Kurunegala, Sri Lanka: Water and heat waves. Climate 2020, 8, 140. [Google Scholar] [CrossRef]
- Naveendrakumar, G.; Vithanage, M.; Kwon, H.H.; Iqbal, M.C.; Pathmarajah, S.; Obeysekara, J. Five decadal trends in averages and extremes of rainfall and temperature in Sri Lanka. Adv. Meteorol. 2018, 2018, 4217917. [Google Scholar] [CrossRef]
- Parajuli, K.; Kang, K. Application of statistical downscaling in GCMs at constructing the map of precipitation in the Mekong River basin. Russ. Meteorol. Hydrol. 2014, 39, 271–282. [Google Scholar] [CrossRef]
- Mahmoodi, N.; Wagner, P.D.; Kiesel, J.; Fohrer, N. Modeling the impact of climate change on streamflow and major hydrological components of an Iranian Wadi system. J. Water Clim. Chang. 2021, 12, 1598–1613. [Google Scholar] [CrossRef]
- Remilekun, A.T.; Thando, N.; Nerhene, D.; Archer, E. Integrated assessment of the influence of climate change on current and future intra-annual water availability in the Vaal River catchment. J. Water Clim. Chang. 2021, 12, 533–551. [Google Scholar] [CrossRef] [Green Version]
- Bao, Z.; Zhang, J.; Yan, X.; Wang, G.; Jin, J.; Liu, Y.; Guan, X. Future streamflow assessment in the Haihe River basin located in northern China using a regionalized variable infiltration capacity model based on 18 CMIP5 GCMs. J. Water Clim. Chang. 2020, 11, 1551–1569. [Google Scholar] [CrossRef]
- Trang, N.T.; Shrestha, S.; Ishidaira, H.; Nhi, P.T. Evaluating the impacts of climate change on the hydrology and water resource availability in the 3S river basin of Cambodia, Laos, and Vietnam. Vietnam. J. Sci. Technol. Eng. 2020, 62, 77–86. [Google Scholar] [CrossRef]
- Ratnayake, U.; Sachindra, D.; Nandalal, K.D. Rainfall forecasting for flood prediction in the Nilwala basin. In Proceedings of the International Symposium on Coastal Zones and Climate Change: Assessing the Impacts and Developing Adaptation Strategies; Monash University: Melbourne, Australia, 2010. [Google Scholar]
- Acharya, S.C.; Babel, M.; Madsen, H.; Sisomphon, P.; Shrestha, S. Comparison of different quantile regression methods to estimate predictive hydrological uncertainty in the Upper Chao Phraya River Basin, Thailand. J. Flood Risk Manag. 2019, 13, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Piyadasa, R. River sand mining and associated environmental problems in Sri Lanka. In Sediment Problems and Sediment Management in Asian River Basins; NHBS Ltd.: Hyderabad, India, 2009; pp. 148–153. [Google Scholar]
- De Silva, M.P.; Karunatileka, R.; Thiemann, W.H. Study of some physicochemical properties of Nilwala River waters in Southern Sri Lanka with special reference to effluents resulting from anthropogenic activities. J. Environ. Sci. Health-Part A Environ. Sci. Eng. 1998, 23, 381–398. [Google Scholar] [CrossRef]
- Prabodini, M.K.; Tushara, C.G. Assessment of Water Quality in the Downstream of Nilwala River; ACEPS–2013; University of Ruhuna: Galle, Sri Lanka, 2013; pp. 151–158. [Google Scholar]
- Elkaduwa, W.K.; Sakthivadivel, R. Use of Historical Data as a Decision Support Tool in Watershed Management: A Case Study of the Upper Nilwala Basin in Sri Lanka; IWMI: Colombo, Sri Lanka, 1999. [Google Scholar] [CrossRef]
- FAO; IIASA. Harmonized World Soil Database. 2012. Available online: http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/ (accessed on 3 April 2021).
- Yatagi, A.; Kamiguchi, K.; Arakawa, O.; Hamada, A.; Yasutomi, N.; Kitoh, A. Constructing a Long-Term Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges. Bull. Am. Meteorol. Soc. 2012, 93, 1401–1415. [Google Scholar]
- Nguyen, P.; Ombadi, M.; Sorooshian, S.; Hsu, K.; AghaKouchak, A.; Braithwaite, D.; Ashouri, H.; Rose Thorstensen, A. The PERSIANN family of global satellite precipitation data: A review and evaluation of products. Hydrol. Earth Syst. Sci. 2018, 22, 5801–5816. [Google Scholar] [CrossRef] [Green Version]
- Alazzy, A.A.; Lu, H.; Chen, R.; Ali, A.B.; Zhu, Y.; Su, J. Evaluation of satellite precipitation products and their potential influence on hydrological modeling over the Ganzi River Basin of the Tibetan Plateau. Adv. Meteorol. 2017, 2017, 23. [Google Scholar] [CrossRef] [Green Version]
- Zam, P.; Shrestha, S.; Budhathoki, A. Assessment of climate change impact on hydrology of a transboundary river of Bhutan and India. J. Water Clim. Chang. 2021, 12, 3224–3239. [Google Scholar] [CrossRef]
- Jet Propulsion Labrotory 2021. Available online: https://asterweb.jpl.nasa.gov/gdem.asp (accessed on 21 April 2021).
- Yin, Z.; Feng, Q.; Yang, L.; Wen, X.; Si, J.; Zou, S. Long term quantification of climate and land cover change impacts on streamflow in an Alpine River Catchment, Northwestern China. Sustainability 2017, 9, 1278. [Google Scholar] [CrossRef] [Green Version]
- Immerzee, W.W. Bias Correction for Satellite Precipitation Estimation Used by the MRC Mekong Flood Forecasting System; Mekong River Commission: Wageningen, The Netherlands, 2010. [Google Scholar]
- Chen, J.; Fang, X.; Wen, Z.; Chen, Q.; Ma, M.; Huang, Y.; Yang, L. Spatio-temporal patterns and impacts of sediment variations in downstream of the Three Gorges Dam on the Yangtze River, China. Sustainability 2018, 10, 93. [Google Scholar] [CrossRef] [Green Version]
- Zango, B.S.; Seidou, O.; Sartaj, M.; Nakhaei, N.; Stiles, K. Impacts of urbanization and climate change on water quantity and quality in the Carp River watershed. J. Water Clim. Chang. 2022, 13, 786–816. [Google Scholar] [CrossRef]
- Usman, M.; Pan, X.; Penna, D.; Ahmad, B. Hydrologic alteration and potential ecosystemic implications under a changing climate in the Chitral River, Hindukush region, Pakistan. J. Water Clim. Chang. 2021, 12, 1471–1486. [Google Scholar] [CrossRef]
- Sidiqi, M.; Shrestha, S. Assessment of climate change impact on the hydrology of the Kabul River Basin, Afghanistan. J. Water Eng. Manag. 2021, 2, 1–21. [Google Scholar] [CrossRef]
- Bekele, W.T.; Haile, A.T.; Rientjes, T. Impact of climate change on the stream flow of the Arjo-Didessa catchment under RCP scenarios. J. Water Clim. Chang. 2021, 12, 2325–2337. [Google Scholar] [CrossRef]
- Bhatta, B.; Shrestha, S.; Shrestha, P.K.; Talchabhadel, R. Evaluation and application of a SWAT model to assess the climate change impact on the hydrology of the Himalayan River Basin. Catena 2019, 181, 13. [Google Scholar] [CrossRef]
- Shrestha, A.; Shrestha, S.; Tingsanchali, T.; Budhathoki, A.; Ninsawat, S. Adapting hydropower production to climate change: A case study of Kulekhani Hydropower Project in Nepal. J. Clean. Prod. 2021, 279, 1–14. [Google Scholar] [CrossRef]
- Adham, M.I.; Shirazi, S.M.; Othman, F.; Rahman, S.; Yusop, Z.; Ismail, Z. Runoff potentiality of a watershed through SCS and functional data analysis technique. Sci. World J. 2014, 2014, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Yu, J.; Lee, K.; Chung, H.; Sung, H.; Jeon, S. Impact assessment of climate change on the near and the far future streamflow in the Bocheongcheon Basin of Geumgang river, South Korea. Water 2021, 13, 2516. [Google Scholar] [CrossRef]
- Gunathilake, M.B.; Karunanayake, C.; Gunathilake, A.S.; Marasingha, N.; Samarasinghe, J.T.; Bandara, I.M.; Rathnayake, U. Hydrological models and Artificial Neural Networks (ANNs) to simulate streamflow in a tropical catchment of Sri Lanka. Appl. Comput. Intell. Soft Comput. 2021, 2021, 1–9. [Google Scholar] [CrossRef]
- Shekar, N.C.; Vinay, D.C. Performance of HEC-HMS and SWAT to simulate streamflow in the sub-humid tropical Hemavathi catchment. J. Water Clim. Chang. 2021, 12, 1–13. [Google Scholar] [CrossRef]
- Yang, S.C.; Yang, T.H. Uncertainty assessment: Reservoir inflow forecasting with ensemble precipitation forecasts and HEC-HMS. Adv. Meteorol. 2014, 2014, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Habibu, I.; Kamal, M.R.; Hin, L.S.; Abdullah, A.F. Performance of HEC-HMS and ArcSWAT models for assessing climate change impacts on streamflow at Bernam River Basin in Malaysia. Pertanika J. Sci. Technol. 2020, 28, 1027–1048. [Google Scholar]
- Sharafati, A.; Khazaei, M.R.; Nashwan, M.S.; Al-Ansari, N.; Yaseen, Z.M.; Shahid, S. Assessing the uncertainty associated with flood features due to variability of rainfall and hydrological parameters. Adv. Civ. Eng. 2020, 2020, 1–9. [Google Scholar] [CrossRef]
- Shrestha, S.; Bajracharya, A.R.; Babel, M.S. Assessment of risks due to climate change for the Upper Tamakoshi hydropower project in Nepal. Clim. Risk Manag. 2016, 14, 27–41. [Google Scholar] [CrossRef] [Green Version]
- Foster, H.E. Duration Curves. Trans. ASCE 1934, 99, 1213–1267. [Google Scholar] [CrossRef]
- Vogel, R.R.; Fennessey, N.W. Flow-duration curve. I: New interpretation and confidence intervals. J. Water Resour. Plan. Manag. 1994, 120, 485–504. [Google Scholar] [CrossRef]
- Swain, J.B.; Patra, K.C. Impact assessment of land use/land cover and climate change on streamflow regionalization in an ungauged catchment. J. Water Clim. Chang. 2019, 10, 554–568. [Google Scholar] [CrossRef]
- Budhathoki, A.; Babel, M.S.; Shrestha, S.; Meon, G.; Kamalamma, A.G. Climate change impact on water balance and hydrological extremes in different physiographic regions of the West Seti River Basin, Nepal. Ecohydrol. Hydrobiol. 2020, 21, 79–95. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Babel, M.S.; Gunathilake, M.B.; Jha, M.K. Evaluation of Ecosystem-Based Adaptation Measures for Sediment Yield in a Tropical Watershed in Thailand. Water 2021, 13, 2767. [Google Scholar] [CrossRef]
- Gunathilake, M.B.; Zamri, M.N.M.; Alagiyawanna, T.P.; Samarasinghe, J.T.; Baddewela, P.K.; Babel, M.S.; Jha, M.K.; Rathnayake, U.S. Hydrologic Utility of Satellite-Based and Gauge-Based Gridded Precipitation Products in the Huai Bang Sai Watershed of Northeastern Thailand. Hydrology 2021, 8, 165. [Google Scholar] [CrossRef]
- Asghar, A.; Ali Amin, J.; Ribbe, L. Integrated hydrological modeling for assessment of water demand and supply under socio-economic and IPCC climate change scenarios using WEAP in Central Indus Basin. J. Water Supply Res. Technol. 2019, 68, 136–148. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Zhang, J.; Song, Y. Preliminary Research and Application of MIKE SHE Model in Jialingjiang River Basin. IOP Conf. Ser. Earth Environ. Sci. 2019, 304, 022088. [Google Scholar] [CrossRef]
- Ghaderpour, E. JUST: MATLAB and Python software for change detection and time series analysis. GPS Solut. 2021, 25, 1–7. [Google Scholar] [CrossRef]
- Ghaderpour, E.; Pagiatakis, S.D. LSWAVE: A MATLAB software for the least-squares wavelet and cross-wavelet analyses. GPS Solut. 2019, 23, 1–8. [Google Scholar] [CrossRef]
Station Name | Latitude °N | Longitude °E | Elevation above MSL (m) | Duration | |
---|---|---|---|---|---|
From | To | ||||
Meteorological data | |||||
Dampahala | 6.27 | 80.64 | 176 | 1980 | 2020 |
Kamburupitiya | 6.08 | 80.56 | 244 | 1980 | 2020 |
Kekenadura | 5.97 | 80.57 | 49 | 1980 | 2020 |
Kirama | 6.22 | 80.67 | 122 | 1980 | 2020 |
Goluwatta | 6.10 | 80.48 | 16 | 1980 | 2020 |
Deniyaya | 6.33 | 80.55 | 399 | 1980 | 2020 |
Hydrological data | |||||
Pitabeddara | 6.20 | 80.48 | 27 | 1998 | 2014 |
Data | Reference | Resolution | Coverage |
Topography (DEM) | [45] | 30 m × 30 m | Global |
APHRODITE rainfall | [41] | 0.25°/daily | Monsoon Asia |
Gridded rainfall | [42] | 0.5°/daily | Global |
RCMs (RCP4.5 and RCP8.5) | [10] | Global | |
RCM | Developer | Resolution | Parent GCM |
ACCESS-CSIRO-CCAM | Collaboration for Australia Weather and Climate Research, Australian Government | 0.5°/daily | ACCESS 1.0 |
CNRM-CM5-CSIRO-CCAM | National Centre for Meteorological Research | 0.5°/daily | CNRM-CM5 |
MPI-ESM-LR-CSIRO-CCAM | European Network for Earth System Modelling | 0.5°/daily | MPI-ESM-LR |
SBPP Bias Adjustment | ||||||
Statistical Indicator | Goluwatta | Dampahala | Kirama | Kamburupitiya | Kekenadura | Deniyaya |
PBIAS | 4.92 | 8.62 | 21.75 | 12.46 | 15.23 | 9.45 |
RMSE | 5.26 | 6.14 | 4.56 | 4.38 | 3.72 | 7.20 |
r | 0.49 | 0.58 | 0.59 | 0.55 | 0.54 | 0.60 |
LSM | ||||||
RCM | RCP4.5 | RCP8.5 | ||||
NOF | PBIAS | RMSE | NOF | PBIAS | RMSE | |
ACCESS | 0.83 | 5.30 | 6.07 | 0.56 | 0.03 | 4.06 |
CNRM | 0.87 | 3.76 | 6.36 | 0.84 | 9.43 | 6.14 |
MPI | 1.17 | 29.39 | 8.51 | 0.90 | 19.25 | 6.54 |
RCM | RCP4.5 | RCP8.5 | ||||
---|---|---|---|---|---|---|
2020s | 2050s | 2080s | 2020s | 2050s | 2080s | |
ACCESS | 5.80 | 15.82 | 15.19 | 3.66 | 13.62 | 18.90 |
CNRM | −4.61 | 4.15 | 0.17 | −7.37 | −2.82 | −0.59 |
MPI | 9.70 | 29.51 | 23.10 | 16.47 | 16.03 | 35.82 |
Ensemble | 3.63 | 16.49 | 12.82 | 4.26 | 8.94 | 18.04 |
Statistical Indicator and Time | NOF | NSE | PBIAS | R |
---|---|---|---|---|
Calibration (1998–2008) | 0.43 | 0.5 | 5.76 | 0.74 |
Validation (2009–2014) | 0.36 | 0.69 | 6.52 | 0.84 |
Method | Parameter/Units | Optimized Value |
---|---|---|
Simple canopy | Initial storage (%) | 20% |
Max storage (mm) | 10 | |
Crop coeffient | 1 | |
Deficit and constant | Initial deficit (mm) | 10 |
Max storage (mm) | 45 | |
Constant rate | 1.2 | |
Impervious (%) | 42–55 | |
Clark unit hydrograph | Time of concentration (h) | 24 |
Storage coefficient (h) | 22–66 | |
Recession baseflow | Initial discharge (m3/s) | 0.23 |
Recession constant | 0.85–0.91 | |
Ratio to peak | 0.22–0.26 | |
Muskingum routing | K (hr) | 0.7 |
X | 0.3 |
Period | RCM | RCP4.5 | RCP8.5 | ||||||
---|---|---|---|---|---|---|---|---|---|
NMS | IMS-1 | SWMS | IMS-2 | NMS | IMS-1 | SWMS | IMS-2 | ||
NF | ACCESS | 47.76 | 37.00 | −7.37 | 30.44 | 35.99 | 42.77 | 1.46 | 44.20 |
CNRM | 31.15 | 65.88 | −4.86 | 7.50 | 9.77 | 24.19 | −7.35 | 5.74 | |
MPI | 32.46 | 72.94 | −0.74 | 61.61 | 60.25 | 79.61 | 20.31 | 62.91 | |
MF | ACCESS | 131.30 | 43.84 | 19.12 | 76.65 | 114.30 | 43.88 | 17.79 | 81.26 |
CNRM | 76.84 | 86.30 | −7.08 | 56.82 | 48.07 | 54.25 | −9.32 | 23.67 | |
MPI | 156.59 | 87.72 | 36.82 | 120.34 | 92.49 | 74.15 | 11.72 | 56.26 | |
FF | ACCESS | 127.49 | 60.16 | 10.58 | 55.99 | 107.52 | 56.44 | 21.18 | 114.00 |
CNRM | 59.79 | 52.97 | 6.94 | 53.61 | 41.76 | 20.78 | 6.06 | 43.85 | |
MPI | 134.25 | 71.16 | 21.18 | 112.91 | 117.29 | 116.82 | 34.95 | 159.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chathuranika, I.M.; Gunathilake, M.B.; Azamathulla, H.M.; Rathnayake, U. Evaluation of Future Streamflow in the Upper Part of the Nilwala River Basin (Sri Lanka) under Climate Change. Hydrology 2022, 9, 48. https://doi.org/10.3390/hydrology9030048
Chathuranika IM, Gunathilake MB, Azamathulla HM, Rathnayake U. Evaluation of Future Streamflow in the Upper Part of the Nilwala River Basin (Sri Lanka) under Climate Change. Hydrology. 2022; 9(3):48. https://doi.org/10.3390/hydrology9030048
Chicago/Turabian StyleChathuranika, Imiya M., Miyuru B. Gunathilake, Hazi Md. Azamathulla, and Upaka Rathnayake. 2022. "Evaluation of Future Streamflow in the Upper Part of the Nilwala River Basin (Sri Lanka) under Climate Change" Hydrology 9, no. 3: 48. https://doi.org/10.3390/hydrology9030048
APA StyleChathuranika, I. M., Gunathilake, M. B., Azamathulla, H. M., & Rathnayake, U. (2022). Evaluation of Future Streamflow in the Upper Part of the Nilwala River Basin (Sri Lanka) under Climate Change. Hydrology, 9(3), 48. https://doi.org/10.3390/hydrology9030048