Multi-Variable SWAT Model Calibration Using Satellite-Based Evapotranspiration Data and Streamflow
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Data Sources
2.3. The SWAT Hydrological Model
2.4. Model Setup
2.5. Model Calibration and Sensitivity Analysis
3. Results
3.1. Sensitivity Analysis
3.2. Model Performance Evaluation
3.2.1. Streamflow Calibration
3.2.2. Actual Evapotranspiration Calibration
3.2.3. Multi-Variable Calibration
3.3. Major Water Balance Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Corine Classification | SWAT Code | SWAT Classification | (%) Catchment |
---|---|---|---|
Industrial or commercial units | UCOM | Commercial | 11.43 |
Discontinuous urban fabric | URLD | Residential-Low Density | 34.11 |
Road and rail networks and associated land | UTRN | Transportation | 4.07 |
Continuous urban fabric | URHD | Residential-High Density | 1.54 |
Pastures | PAST | Pasture | 0.31 |
Land principally occupied by agriculture, with significant areas of natural vegetation | AGRL | Agricultural Land-Generic | 12.39 |
Broad-leaved forest | FRSD | Forest-Deciduous | 3.11 |
Coniferous forest | FRSE | Forest-Evergreen | 9.59 |
Mixed forest | FRST | Forest-Mixed | 7.51 |
Sclerophyllous vegetation | RNGB | Range-Brush | 15.94 |
Sub-Basins | Artificial Surfaces (%) | Agricultural Areas (%) | Forests and Semi Natural Areas (%) |
---|---|---|---|
Sub-basin 1 | 1.88 | 5.02 | 93.10 |
Sub-basin 2 | 53.36 | 9.95 | 36.69 |
Sub-basin 3 | 21.83 | 9.28 | 68.89 |
Sub-basin 4 | 56.11 | 25.05 | 18.84 |
Sub-basin 5 | 76.91 | 0.74 | 22.35 |
Sub-basin 6 | 18.31 | 23.25 | 58.45 |
Sub-basin 7 | 76.43 | 8.34 | 15.23 |
Sub-basin 8 | 56.77 | 0.29 | 42.94 |
Sub-basin 9 | 75.28 | 3.06 | 21.65 |
Sub-basin 10 | 80.65 | 2.72 | 16.63 |
Sub-basin 11 | 28.65 | 27.38 | 43.97 |
Sub-basin 12 | 100.01 | 0.00 | 0.00 |
Sub-basin 13 | 74.16 | 25.83 | 0.00 |
Sub-basin 14 | 73.29 | 26.71 | 0.00 |
Sub-basin 15 | 81.90 | 18.10 | 0.00 |
Sub-basin 16 | 99.33 | 0.67 | 0.00 |
Sub-basin 17 | 64.20 | 35.76 | 0.04 |
Sub-basin 18 | 29.88 | 19.13 | 51.00 |
Sub-basin 19 | 7.98 | 13.54 | 78.48 |
Sub-basin 20 | 9.29 | 28.47 | 62.23 |
Sub-basin 21 | 80.42 | 19.58 | 0.00 |
Sub-basin 22 | 73.64 | 26.36 | 0.00 |
Sub-basin 23 | 83.87 | 16.13 | 0.00 |
Sub-basin 24 | 100.01 | 0.00 | 0.00 |
Sub-basin 25 | 100.00 | 0.00 | 0.00 |
References
- Arnold, J.G.; Youssef, M.A.; Yen, H.; White, M.J.; Sheshukov, A.Y.; Sadeghi, A.M.; Moriasi, D.N.; Steiner, J.L.; Amatya, D.M.; Skaggs, R.W.; et al. Hydrological Processes and Model Representation: Impact of Soft Data on Calibration. Trans. ASABE 2015, 58, 1637–1660. [Google Scholar] [CrossRef]
- Daggupati, P.; Yen, H.; White, M.J.; Srinivasan, R.; Arnold, J.G.; Keitzer, C.S.; Sowa, S.P. Impact of model development, calibration and validation decisions on hydrological simulations in West Lake Erie Basin. Hydrol. Processes 2015, 29, 5307–5320. [Google Scholar] [CrossRef]
- Gassman, P.W.; Sadeghi, A.M.; Srinivasan, R. Applications of the SWAT Model Special Section: Overview and Insights. J. Environ. Qual. 2014, 43, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hrachowitz, M.; Savenije, H.H.G.; Blöschl, G.; McDonnell, J.J.; Sivapalan, M.; Pomeroy, J.W.; Arheimer, B.; Blume, T.; Clark, M.P.; Ehret, U.; et al. A decade of Predictions in Ungauged Basins (PUB)—A review. Hydrol. Sci. J. 2013, 58, 1198–1255. [Google Scholar] [CrossRef]
- Van Emmerik, T.; Mulder, G.; Eilander, D.; Piet, M.; Savenije, H. Predicting the ungauged basin: Model validation and realism assessment. Front. Earth Sci. 2015, 3, 62. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Beven, K.; Binley, A. GLUE: 20 years on. Hydrol. Processes 2014, 28, 5897–5918. [Google Scholar] [CrossRef] [Green Version]
- Kelleher, C.; McGlynn, B.; Wagener, T. Characterizing and reducing equifinality by constraining a distributed catchment model with regional signatures, local observations, and process understanding. Hydrol. Earth Syst. Sci. 2017, 21, 3325–3352. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Yin, J.; Dahlke, H.E. Enhancing Soil and Water Assessment Tool Snow Prediction Reliability with Remote-Sensing-Based Snow Water Equivalent Reconstruction Product for Upland Watersheds in a Multi-Objective Calibration Process. Water 2020, 12, 3190. [Google Scholar] [CrossRef]
- Her, Y.; Seong, C. Responses of hydrological model equifinality, uncertainty, and performance to multi-objective parameter calibration. J. Hydroinformatics 2018, 20, 864–885. [Google Scholar] [CrossRef] [Green Version]
- Rajib, A.; Merwade, V.; Yu, Z. Rationale and Efficacy of Assimilating Remotely Sensed Potential Evapotranspiration for Reduced Uncertainty of Hydrologic Models. Water Resour. Res. 2018, 54, 4615–4637. [Google Scholar] [CrossRef]
- Shah, S.; Duan, Z.; Song, X.; Li, R.; Mao, H.; Liu, J.; Ma, T.; Wang, M. Evaluating the added value of multi-variable calibration of SWAT with remotely sensed evapotranspiration data for improving hydrological modeling. J. Hydrol. 2021, 603, 127046. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Droogers, P. Calibration of a distributed hydrological model based on satellite evapotranspiration. J. Hydrol. 2008, 349, 411–424. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Parajuli, P.B.; Jayakody, P.; Ouyang, Y. Evaluation of Using Remote Sensing Evapotranspiration Data in SWAT. Water Resour. Manag. 2018, 32, 985–996. [Google Scholar] [CrossRef]
- Sirisena, T.A.J.G.; Maskey, S.; Ranasinghe, R. Hydrological Model Calibration with Streamflow and Remote Sensing Based Evapotranspiration Data in a Data Poor Basin. Remote Sens. 2020, 12, 3768. [Google Scholar] [CrossRef]
- Dile, Y.T.; Ayana, E.K.; Worqlul, A.W.; Xie, H.; Srinivasan, R.; Lefore, N.; You, L.; Clarke, N. Evaluating satellite-based evapotranspiration estimates for hydrological applications in data-scarce regions: A case in Ethiopia. Sci. Total Environ. 2020, 743, 140702. [Google Scholar] [CrossRef]
- Herman, M.R.; Nejadhashemi, A.P.; Abouali, M.; Hernandez-Suarez, J.S.; Daneshvar, F.; Zhang, Z.; Anderson, M.C.; Sadeghi, A.M.; Hain, C.R.; Sharifi, A. Evaluating the role of evapotranspiration remote sensing data in improving hydrological modeling predictability. J. Hydrol. 2018, 556, 39–49. [Google Scholar] [CrossRef]
- Aboelnour, M.; Gitau, M.W.; Engel, B.A. Hydrologic response in an urban watershed as affected by climate and land-use change. Water 2019, 11, 1603. [Google Scholar] [CrossRef] [Green Version]
- Becker, R.; Koppa, A.; Schulz, S.; Usman, M.; aus der Beek, T.; Schüth, C. Spatially distributed model calibration of a highly managed hydrological system using remote sensing-derived ET data. J. Hydrol. 2019, 577, 123944. [Google Scholar] [CrossRef]
- Busico, G.; Colombani, N.; Fronzi, D.; Pellegrini, M.; Tazioli, A.; Mastrocicco, M. Evaluating SWAT model performance, considering different soils data input, to quantify actual and future runoff susceptibility in a highly urbanized basin. J. Environ. Manag. 2020, 266, 110625. [Google Scholar] [CrossRef] [PubMed]
- Jha, M.K.; Afreen, S. Flooding urban landscapes: Analysis using combined hydrodynamic and hydrologic modeling approaches. Water 2020, 12, 1986. [Google Scholar] [CrossRef]
- van Tol, J.; van Zijl, G.; Julich, S. Importance of detailed soil information for hydrological modelling in an urbanized environment. Hydrology 2020, 7, 34. [Google Scholar] [CrossRef]
- Boithias, L.; Sauvage, S.; Lenica, A.; Roux, H.; Abbaspour, K.; Larnier, K.; Dartus, D.; Sánchez-Pérez, J. Simulating Flash Floods at Hourly Time-Step Using the SWAT Model. Water 2017, 9, 929. [Google Scholar] [CrossRef] [Green Version]
- Mamassis, N.; Koukouvinos, A.; Baki, S. Final Report, Development of a Geographical Information System and an Internet Application for the Supervision of Kephisos Protected Areas; Department of Water Resources and Environmental Engineering, National Technical University of Athens: Athens, Greece, 2008; Available online: http://www.itia.ntua.gr/el/project_reports/151/ (accessed on 15 January 2021).
- Zerefos, C.; Repapis, C.; Giannakopoulos, C.; Kapsomenakis, J.; Papanikolaou, D.; Papanikolaou, M.; Poulos, S.; Vrekoussis, M.; Philandras, C.; Tselioudis, G. The climate of the Eastern Mediterranean and Greece: Past, present and future. In The Environmental, Economic and Social Impacts of Climate Change in Greece; Bank of Greece: Athens, Greece, 2011; pp. 50–58. [Google Scholar]
- Lagouvardos, K.; Kotroni, V.; Bezes, A.; Koletsis, I.; Kopania, T.; Lykoudis, S.; Mazarakis, N.; Papagiannaki, K.; Vougioukas, S. The automatic weather stations NOANN network of the National Observatory of Athens: Operation and database. Geosci. Data J. 2017, 4, 4–16. [Google Scholar] [CrossRef]
- Corine Land Cover, (CLC) Land Use Data. Available online: https://land.copernicus.eu/ (accessed on 15 December 2020).
- Food and Agriculture Organization, (FAO). HWSD Soil Data. Available online: www.fao.org (accessed on 10 December 2020).
- U.S. Geological Survey, (USGS). Shuttle Radar Topography Mission (SRTM), DEM Data. Available online: https://earthexplorer.usgs.gov/ (accessed on 5 December 2020).
- FAO; IIASA; ISRIC; ISSCAS. Harmonized World Soil Database Version 1.2; Food & Agriculture Organization of the UN: Rome, Italy; International Institute for Applied Systems Analysis: Laxenburg, Austria, 2012; ISBN 9781626239777. [Google Scholar]
- Open Hydrosystem Information Network, (OpenHi.net). Observed Streamflow Data. Available online: https://openhi.net/ (accessed on 20 December 2020).
- Moderate Resolution Imaging Spectroradiometer, (MODIS). Evapotranspiration Data. Available online: https://modis.gsfc.nasa.gov/ (accessed on 2 March 2021).
- Running, S.; Mu, Q.; Zhao, M.; Moreno, A. User ’s Guide NASA Earth Observing System MODIS Land Algorithm (For Collection 6); National Aeronautics and Space Administration (NASA): Washington, DC, USA, 2019; pp. 1–38.
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil & Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: Texas, TX, USA, 2011; ISBN Technical Report No. 406. [Google Scholar]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef] [Green Version]
- Dile, Y.T.; Daggupati, P.; George, C.; Srinivasan, R.; Arnold, J. Introducing a new open source GIS user interface for the SWAT model. Environ. Model. Softw. 2016, 85, 129–138. [Google Scholar] [CrossRef]
- Soil Conservation Service, S. National Engineering Handbook, Section 4, Hydrology; Department of Agriculture: Washington, DC, USA, 1972. [Google Scholar]
- Jeong, J.; Williams, J.R.; Merkel, W.H.; Arnold, J.G.; Wang, X.; Rossi, C.G. Improvement of the variable storage coefficient method with water surface gradient as a variable. Trans. ASABE 2014, 57, 791–801. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Johnson, C.A.; van Genuchten, M.T. Estimating Uncertain Flow and Transport Parameters Using a Sequential Uncertainty Fitting Procedure. Vadose Zone J. 2004, 3, 1340–1352. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Odusanya, A.E.; Mehdi, B.; Schürz, C.; Oke, A.O.; Awokola, O.S.; Awomeso, J.A.; Adejuwon, J.O.; Schulz, K. Multi-site calibration and validation of SWAT with satellite-based evapotranspiration in a data-sparse catchment in southwestern Nigeria. Hydrol. Earth Syst. Sci. 2019, 23, 1113–1144. [Google Scholar] [CrossRef] [Green Version]
- Franco, A.C.L.; Bonumá, N.B. Multi-variable SWAT model calibration with remotely sensed evapotranspiration and observed flow. RBRH 2017, 22, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef] [Green Version]
- Tobin, K.; Bennett, M. Improving Alpine Summertime Streamflow Simulations by the Incorporation of Evapotranspiration Data. Water 2019, 11, 112. [Google Scholar] [CrossRef] [Green Version]
- Abera, W.; Formetta, G.; Brocca, L.; Rigon, R. Modeling the water budget of the Upper Blue Nile basin using the JGrass-NewAge model system and satellite data. Hydrol. Earth Syst. Sci. 2017, 21, 3145–3165. [Google Scholar] [CrossRef] [Green Version]
- López López, P.; Sutanudjaja, E.H.; Schellekens, J.; Sterk, G.; Bierkens, M.F.P. Calibration of a large-scale hydrological model using satellite-based soil moisture and evapotranspiration products. Hydrol. Earth Syst. Sci. 2017, 21, 3125–3144. [Google Scholar] [CrossRef] [Green Version]
- Rientjes, T.H.M.; Muthuwatta, L.P.; Bos, M.G.; Booij, M.J.; Bhatti, H.A. Multi-variable calibration of a semi-distributed hydrological model using streamflow data and satellite-based evapotranspiration. J. Hydrol. 2013, 505, 276–290. [Google Scholar] [CrossRef]
- Vervoort, W.R.; Miechels, S.F.; van Ogtrop, F.F.; Guillaume, J.H.A. Remotely sensed evapotranspiration to calibrate a lumped conceptual model: Pitfalls and opportunities. J. Hydrol. 2014, 519, 3223–3236. [Google Scholar] [CrossRef]
- Ferguson, C.R.; Sheffield, J.; Wood, E.F.; Gao, H. Quantifying uncertainty in a remote sensing-based estimate of evapotranspiration over continental USA. Int. J. Remote Sens. 2010, 31, 3821–3865. [Google Scholar] [CrossRef]
- Jin, X.; Jin, Y. Calibration of a Distributed Hydrological Model in a Data-Scarce Basin Based on GLEAM Datasets. Water 2020, 12, 897. [Google Scholar] [CrossRef] [Green Version]
- Tobin, K.J.; Bennett, M.E. Constraining SWAT Calibration with Remotely Sensed Evapotranspiration Data. J. Am. Water Resour. Assoc. 2017, 53, 593–604. [Google Scholar] [CrossRef]
- Harmel, R.D.; Cooper, R.J.; Slade, R.M.; Haney, R.L.; Arnold, J.G. Cumulative uncertainty in measured streamflow and water quality data for small watersheds. Trans. ASABE 2006, 49, 689–701. [Google Scholar] [CrossRef]
- Poméon, T.; Diekkrüger, B.; Springer, A.; Kusche, J.; Eicker, A. Multi-Objective Validation of SWAT for Sparsely-Gauged West African River Basins—A Remote Sensing Approach. Water 2018, 10, 451. [Google Scholar] [CrossRef] [Green Version]
Category | Parameter | Description |
---|---|---|
Surface runoff | r_CN2.mgt | Curve number |
v_SURLAG.bsn | Surface runoff lag coefficient | |
Groundwater/Baseflow | v_ALPHA_BF.gw | Baseflow alpha factor |
a_GW_DELAY.gw | Groundwater delay | |
v_RCHRG_DP.gw | Deep aquifer percolation fraction | |
v_REVAPMN.gw | Threshold depth of water in the shallow aquifer for ‘‘revap’’ to occur | |
v_GW_REVAP.gw | Groundwater ‘‘revap’’ coefficient | |
v_GWQMN.gw | Threshold depth of water in the shallow aquifer required for return flow to occur | |
Lateral flow | r_LAT_TTIME.hru | Lateral flow travel time |
r_HRU_SLP.hru | Average slope steepness | |
Channel | r_OV_N.hru | Manning’s coefficient for overland flow |
r_SLSUBBSN.hru | Average slope length | |
v_CH_N2.rte | Manning’s coefficient for the main channel | |
v_CH_K2.rte | Hydraulic conductivity of the main channel alluvium | |
Soil | v_ESCO.bsn | Soil evaporation compensation coefficient |
v_EPCO.hru | Plant uptake compensation coefficient | |
v_CANMX.hru | Maximum canopy storage | |
r_SOL_K.sol | Saturated hydraulic conductivity | |
r_SOL_BD.sol | Moist bulk density of the soil layer | |
r_SOL_AWC.sol | Soil available water storage capacity |
Parameters | Initial Ranges | Flow Calibration | AET Calibration | Flow and AET Calibration | ||||
---|---|---|---|---|---|---|---|---|
Min | Max | t-Test | p-Value | t-Test | p-Value | t-Test | p-Value | |
CN2 | −0.10 | 0.10 | −0.85 | 0.40 | 1.25 | 0.21 | −0.53 | 0.59 |
SURLAG | 0.00 | 10.00 | 0.38 | 0.70 | 0.64 | 0.53 | 1.23 | 0.22 |
ALPHA_BF | 0.00 | 1.00 | −0.07 | 0.95 | 0.47 | 0.64 | −0.46 | 0.65 |
GW_DELAY | −30.00 | 90.00 | 9.89 | 0.00 | −0.82 | 0.41 | 9.70 | 0.00 |
RCHRG_DP | 0.00 | 0.50 | 2.78 | 0.01 | −1.24 | 0.21 | 2.61 | 0.01 |
REVAPMN | 800.00 | 1900.00 | 0.53 | 0.60 | 0.05 | 0.96 | −0.35 | 0.73 |
GW_REVAP | 0.02 | 0.20 | 1.17 | 0.24 | −1.47 | 0.14 | −1.30 | 0.19 |
GWQMN | 0.00 | 500.00 | 0.18 | 0.86 | 0.69 | 0.49 | −0.34 | 0.73 |
LAT_TTIME | 0.00 | 180.00 | 18.98 | 0.00 | −0.02 | 0.99 | 22.12 | 0.00 |
HRU_SLP | −0.50 | 3.00 | 6.09 | 0.00 | −7.58 | 0.00 | −8.84 | 0.00 |
OV_N | −0.50 | 3.00 | −0.59 | 0.56 | 0.37 | 0.71 | 0.66 | 0.51 |
SLSUBBSN | −0.20 | 0.20 | −2.23 | 0.03 | 2.15 | 0.03 | 0.17 | 0.86 |
CH_N2 | 0.01 | 0.30 | 0.35 | 0.72 | 1.56 | 0.12 | 1.21 | 0.23 |
CH_K2 | 0.00 | 127.00 | −1.52 | 0.13 | −0.47 | 0.64 | 1.60 | 0.11 |
ESCO | 0.50 | 0.95 | 1.70 | 0.09 | 29.33 | 0.00 | 4.98 | 0.00 |
EPCO | 0.50 | 0.95 | −0.74 | 0.46 | −5.50 | 0.00 | −0.64 | 0.52 |
SOL_K | −0.80 | 0.80 | 8.43 | 0.00 | −8.24 | 0.00 | −7.85 | 0.00 |
SOL_BD | −0.30 | 0.30 | 10.46 | 0.00 | −7.70 | 0.00 | −8.45 | 0.00 |
SOL_AWC | −0.05 | 0.05 | −0.34 | 0.73 | 0.35 | 0.72 | 2.52 | 0.01 |
Variable | Station/Sub-Basin | NSE | R2 | PBIAS (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
(a) | (b) | (c) | (a) | (b) | (c) | (a) | (b) | (c) | ||
Streamflow | Monastiri station | 0.71 | 0.38 | 0.70 | 0.84 | 0.84 | 0.86 | 5.60 | 8.29 | 6.10 |
Evapotranspiration | Sub-basin 1 | 0.27 | 0.49 | 0.18 | 0.58 | 0.75 | 0.57 | 11.68 | 11.60 | 16.70 |
Sub-basin 2 | 0.30 | 0.33 | 0.28 | 0.72 | 0.76 | 0.76 | 10.96 | 12.70 | 13.80 | |
Sub-basin 3 | 0.11 | 0.36 | −0.10 | 0.59 | 0.69 | 0.55 | 15.81 | 15.00 | 21.70 | |
Sub-basin 4 | 0.37 | 0.34 | 0.42 | 0.73 | 0.75 | 0.75 | 8.48 | 12.50 | 13.60 | |
Sub-basin 5 | 0.09 | 0.28 | 0.15 | 0.80 | 0.78 | 0.81 | 3.07 | 6.10 | 5.30 | |
Sub-basin 6 | 0.22 | 0.35 | 0.26 | 0.64 | 0.74 | 0.68 | 9.00 | 10.70 | 14.50 | |
Sub-basin 7 | −0.17 | −0.14 | 0.19 | 0.87 | 0.80 | 0.86 | −12.72 | −5.30 | −8.40 | |
Sub-basin 8 | 0.57 | 0.56 | 0.69 | 0.82 | 0.82 | 0.83 | 2.46 | 6.40 | 5.40 | |
Sub-basin 9 | 0.42 | 0.51 | 0.56 | 0.83 | 0.82 | 0.79 | 2.69 | 7.00 | 7.00 | |
Sub-basin 10 | 0.44 | 0.58 | 0.52 | 0.80 | 0.87 | 0.81 | 1.19 | 6.00 | 4.00 | |
Sub-basin 11 | 0.34 | 0.54 | 0.63 | 0.84 | 0.82 | 0.83 | −0.53 | 7.70 | 2.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koltsida, E.; Kallioras, A. Multi-Variable SWAT Model Calibration Using Satellite-Based Evapotranspiration Data and Streamflow. Hydrology 2022, 9, 112. https://doi.org/10.3390/hydrology9070112
Koltsida E, Kallioras A. Multi-Variable SWAT Model Calibration Using Satellite-Based Evapotranspiration Data and Streamflow. Hydrology. 2022; 9(7):112. https://doi.org/10.3390/hydrology9070112
Chicago/Turabian StyleKoltsida, Evgenia, and Andreas Kallioras. 2022. "Multi-Variable SWAT Model Calibration Using Satellite-Based Evapotranspiration Data and Streamflow" Hydrology 9, no. 7: 112. https://doi.org/10.3390/hydrology9070112
APA StyleKoltsida, E., & Kallioras, A. (2022). Multi-Variable SWAT Model Calibration Using Satellite-Based Evapotranspiration Data and Streamflow. Hydrology, 9(7), 112. https://doi.org/10.3390/hydrology9070112