Fast Blue and Cholera Toxin-B Survival Guide for Alpha-Motoneurons Labeling: Less Is Better in Young B6SJL Mice, but More Is Better in Aged C57Bl/J Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Surgical Procedures and Tracer Injections
2.3. Perfusion and Dissection of Spinal Cord
2.4. Identification of Spinal Cord Segments and Sectioning
2.5. Mounting and Immunohistochemistry
2.6. Imaging and Data Analysis
2.7. Statistical Analysis and Data Presentation
3. Results
3.1. Lower Concentration/Short Labeling Duration FB and CTB Protocols Are as Effective as Higher Concentration/Long Labeling Duration Protocols in Young (6–7 Weeks) Mice
3.2. CTB Is More Effective in Labeling More α-MNs of Young Mice
3.3. FB and CTB Label α-ΜΝ Anatomy of Young Mice Comparably
3.4. FB and CTB Label MNs, but Not Ins
3.5. Tracer Leakage with some FB Protocols
3.6. Intensity and Density Are Altered by Concentration of FB and CTB Labeling in Aged C57 Mice
3.7. FB and CTB Labels αMN’s Differently in Aged C57 Animals
4. Discussion
4.1. Summary of Findings
4.2. High or Low Tracer Concentration?
4.3. Optimal Timing, Is Shorter Better?
4.4. Concentration Is Age Dependent
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kristensson, K.; Olsson, Y. Retrograde axonal transport of protein. Brain Res. 1971, 29, 363–365. [Google Scholar] [CrossRef] [PubMed]
- Nance, D.M.; Burns, J. Fluorescent dextrans as sensitive anterograde neuroanatomical tracers: Applications and pitfalls. Brain Res. Bull. 1990, 25, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Schmued, L.C.; Fallon, J.H. Fluoro-Gold: A new fluorescent retrograde axonal tracer with numerous unique properties. Brain Res. 1986, 377, 147–154. [Google Scholar] [CrossRef]
- Haenggeli, C.; Kato, A. Rapid and reproducible methods using fluorogold for labelling a subpopulation of cervical motoneurons: Application in the wobbler mouse. J. Neurosci. Methods 2002, 116, 119–124. [Google Scholar] [CrossRef]
- Horie, M.; Meguro, R.; Hoshino, K.; Ishida, N.; Norita, M. Neuroanatomical study on the tecto-suprageniculate-dorsal auditory cortex pathway in the rat. Neuroscience 2013, 228, 382–394. [Google Scholar] [CrossRef]
- Chiasseu, M.; Alarcon-Martinez, L.; Belforte, N.; Quintero, H.; Dotigny, F.; Velde, C.V.; Panayi, F.; Louis, C.; Polo, A.D. Tau accumulation in retina promotes early neuronal dysfunction and precedes brain pathology in mouse model of Alzheimer’s disease. Mol. Degener. 2017, 12, 58. [Google Scholar] [CrossRef] [Green Version]
- Acosta, M.C.; Copley, P.A.; Harrell, J.R.; Wilhelm, J.C. Estrogen signaling is necessary for exercise-mediated enhancement of motoneuron participation in axon regeneration after peripheral nerve injury in mice. Dev. Neurobiol. 2017, 77, 1133–1143. [Google Scholar] [CrossRef]
- De Lacalle, S.; Cooper, J.D.; Svendsen, C.N.; Dunnett, S.B.; Sofroniew, M.V. Reduced retrograde labelling with fluorescent tracer accompanies neuronal atrophy of basal forebrain cholinergic neurons in aged rats. Neuroscience 1996, 75, 19–27. [Google Scholar] [CrossRef]
- Frolkis, V.V.; Tanin, S.A.; Gorban, Y.N. Age-related changes in axonal transport. Exp. Gerontol. 1997, 32, 441–450. [Google Scholar] [CrossRef]
- Simon, C.M.; Dai, Y.; Van Alstyne, M.; Koutsioumpa, C.; Pagiazitis, J.G.; Chalif, J.I.; Wang, X.; Rabinowitz, J.E.; Henderson, C.E.; Pellizzoni, L.; et al. Converging Mechanisms of p53 Activation Drive Motor Neuron Degeneration in Spinal Muscular Atrophy. Cell Rep. 2017, 21, 3767–3780. [Google Scholar] [CrossRef]
- Xu, Q.G.; Forden, J.; Walsh, S.K.; Gordon, T.; Midha, R. Motoneuron survival after chronic and sequential peripheral nerve injuries in the rat. J. Neurosurg. 2010, 112, 890–899. [Google Scholar] [CrossRef] [PubMed]
- Van Alstyne, M.; Simon, C.M.; Sardi, S.P.; Shihabuddin, L.S.; Mentis, G.Z.; Pellizzoni, L. Dysregulation of Mdm2 and Mdm4 alternative splicing underlies motor neuron death in spinal muscular atrophy. Genes Dev. 2018, 32, 1045–1059. [Google Scholar] [CrossRef] [PubMed]
- Grkovic, I.; Fernandez, K.; McAllen, R.; Anderson, C. Misidentification of cardiac vagal pre-ganglionic neurons after injection of retrograde tracer into the pericardial space in the rat. Cell Tissue Res. 2005, 28, 639–645. [Google Scholar] [CrossRef]
- Yoshikawa, A.; Atobe, Y.; Takeda, A.; Kamiya, Y.; Takiguchi, M.; Funakoshi, K. A retrograde tracer study of compensatory corticospinal projections in rats with neonatal hemidecortication. Dev. Neurosci. 2011, 33, 539–547. [Google Scholar] [CrossRef]
- Hayashi, A.; Moradzadeh, A.; Hunter, D.A.; Kawamura, D.H.; Puppala, V.K.; Tung, T.H.; Mackinnon, S.E.; Myckatyn, T.M. Retrograde labeling in peripheral nerve research: It is not all black and white. J. Reconstr. Microsurg. 2007, 23, 381–389. [Google Scholar] [CrossRef]
- Kobbert, C.; Apps, R.; Bechmann, I.; Lanciego, J.; Mey, J.; Thanos, S. Current concepts in neuroanatomical tracing. Prog. Neurobiol. 2000, 62, 327–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lencer, W.; Tsai, B. The intracellular voyage of cholera toxin: Going retro. Trends Biochem. Sci. 2003, 28, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Pettersson, J.; Lobov, S.; Novikova, L. Labeling of olfactory ensheathing glial cells with fluorescent tracers for neurotransplantation. Brain Res. Bull. 2010, 81, 125–132. [Google Scholar] [CrossRef]
- Havton, L.A.; Broman, J. Systemic administration of cholera toxin B subunit conjugated to horseradish peroxidase in the adult rat labels preganglionic autonomic neurons, motoneurons, and select primary afferents for light and electron microscopic studies. J. Neurosci. Methods 2005, 149, 101–109. [Google Scholar] [CrossRef]
- Yao, F.; Zhang, E.; Gao, Z.; Ji, H.; Marmouri, M.; Xia, X. Did You Choose Appropriate Tracer for Retrograde Tracing o Retinal Ganglion Cells? Difference between CTB and FG. PLoS ONE 2018, 13, e0205133. [Google Scholar] [CrossRef]
- Laird, F.M.; Farah, M.H.; Ackerley, S.; Hoke, A.; Maragakis, N.; Rothstein, J.D.; Griffin, J.; Price, D.L.; Martin, L.J.; Wong, P.C. Motor neuron disease occurring in a mutant dynactin mouse model is characterized by defects in vesicular trafficking. J. Neurosci. 2008, 28, 1997–2005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spalloni, A.; Longone, P. Cognitive impairment in amyotrophic lateral sclerosis, clues from the SOD1 mouse. Neurosci. Biobehav. Rev. 2016, 60, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.C.; Pardo, C.A.; Borchelt, D.R.; Lee, M.K.; Copeland, N.G.; Jenkins, N.A.; Sisodia, S.S.; Cleveland, D.W.; Price, D.L. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 1995, 14, 1105–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiserer, R.S.; Harrison, F.E.; Syverud, D.C.; McDonald, M.P. Impaired spatial learning in the APPSwe + PSEN1DeltaE9 bigenic mouse model of Alzheimer’s disease. Genes Brain Behav. 2007, 6, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Chugh, D.; Iyer, C.C.; Wang, X.; Bobbili, P.; Rich, M.M.; Arnold, W.D. Neuromuscular junction transmission failure is a late phenotype in aging mice. Neurobiol. Aging 2020, 86, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Fahim, M.A. Endurance exercise modulates neuromuscular junction of C57BL/6NNia aging mice. J. Appl. Physiol. 1997, 83, 59–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Justice, J.N.; Carter, C.S.; Beck, H.J.; Gioscia-Ryan, R.A.; McQueen, M.; Enoka, R.M.; Seals, D.R. Battery of behavioral tests in mice that models age-associated changes in human motor function. Age 2014, 36, 583–592. [Google Scholar] [CrossRef]
- Krishnan, V.S.; White, Z.; McMahon, C.D.; Hodgetts, S.I.; Fitzgerald, M.; Shavlakadze, T.; Harvey, A.R.; Grounds, M.D. A Neurogenic Perspective of Sarcopenia: Time Course Study of Sciatic Nerves From Aging Mice. J. Neuropathol. Exp. Neurol. 2016, 75, 464–478. [Google Scholar] [CrossRef] [Green Version]
- Choi, D.; Li, D.; Raisman, G. Fluorescent retrograde neuronal tracers that label the rat facial nucleus: A comparison of Fast Blue, Fluoro-ruby, Fluoro-emerald, Fluoro-gold and DiI. J. Neurosci. Methods 2002, 117, 167–172. [Google Scholar] [CrossRef]
- Hirakawa, M.; McCabe, J.; Kawata, M. Time-related changes in the labeling pattern of motor and sensory neurons innervating the gastroscnemius muscle, as revealed by the retrograde transport of cholera toxin B subunit. Cell Tissue Res. 1992, 267, 419–427. [Google Scholar] [CrossRef]
- McHanwell, S.; Biscoe, T.J. The sizes of motoneurons supplying hindlimb muscles in the mouse. Proc. R. Soc. Lond. B Biol. Sci. 1981, 213, 201–216. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, A.; Ohira, Y.; Tanaka, M.; Nishikawa, W.; Ishioka, N.; Higashibata, A.; Izumi, R.; Shimazu, T.; Ibata, Y. Cell body size and succinate dehydrogenase activity of spinal motoneurons innervating the soleus muscle in mice, rats, and cats. Neurochem. Res. 2001, 26, 1301–1304. [Google Scholar] [CrossRef] [PubMed]
- Bacskai, T.; Fu, Y.; Sengul, G.; Rusznak, Z.; Paxinos, G.; Watson, C. Musculotopic organization of the motor neurons supplying forelimb and shoulder girdle muscles in the mouse. Brain Struct. Funct. 2013, 218, 221–238. [Google Scholar] [CrossRef] [PubMed]
- Lagerback, P.A. An ultrastructural study of cat lumbosacral gamma-motoneurons after retrograde labelling with horseradish peroxidase. J. Comp. Neurol. 1985, 240, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Lagerback, P.A.; Cullheim, S.; Ulfhake, B. Electron microscopic observations on the synaptology of cat sciatic gamma-motoneurons after intracellular staining with horseradish peroxidase. Neurosci. Lett. 1986, 70, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Witts, E.C.; Zagoraiou, L.; Miles, G.B. Anatomy and function of cholinergic C bouton inputs to motor neurons. J. Anat. 2014, 224, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Viancour, T.A.; Kreiter, N.A. Vesicular fast axonal transport rates in young and old rat axons. Brain Res. 1993, 628, 209–217. [Google Scholar] [CrossRef]
- Atanasova, D.Y.; Dimitrov, N.D.; Lazarov, N.E. Expression of nitric oxide-containing structures in the rat carotid body. Acta Histochem. 2016, 118, 770–775. [Google Scholar] [CrossRef]
- Chen, B.K.; Madigan, N.N.; Hakim, J.S.; Dadsetan, M.; McMahon, S.S.; Yaszemski, M.J.; Windebank, A.J. GDNF Schwann cells in hydrogel scaffolds promote regional axon regeneration, remyelination and functional improvement after spinal cord transection in rats. J. Tissue Eng. Regen. Med. 2018, 12, e398–e407. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Liu, Q.; Li, S.; Zhang, J.; Li, Y. End-to-side neurorrhaphy for nerve repair and function rehabilitation. J. Surg. Res. 2015, 197, 427–435. [Google Scholar] [CrossRef]
- Hashimoto, M.; Yamanaka, A.; Kato, S.; Tanifuji, M.; Kobayashi, K.; Yaginuma, H. Anatomical Evidence for a Direct Projection from Purkinje Cells in the Mouse Cerebellar Vermis to Medial Parabrachial Nucleus. Front. Neural Circuits 2018, 12, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Malykhina, A.P. Neuro-tracing approach to study kidney innervation: A technical note. Kidney Res. Clin. Pract. 2017, 36, 86–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Yang, G.; Xiang, W.; Bushman, W. Retrograde double-labeling demonstrates convergent afferent innervation of the prostate and bladder. Prostate 2016, 76, 767–775. [Google Scholar] [CrossRef]
- Majima, T.; Tyagi, P.; Dogishi, K.; Kashyap, M.; Funahashi, Y.; Gotoh, M.; Chancellor, M.B.; Yoshimura, N. Effect of Intravesical Liposome-Based Nerve Growth Factor Antisense Therapy on Bladder Overactivity and Nociception in a Rat Model of Cystitis Induced by Hydrogen Peroxide. Hum. Gene Ther. 2017, 28, 598–609. [Google Scholar] [CrossRef]
- Shimizu, N.; Wada, N.; Shimizu, T.; Suzuki, T.; Takaoka, E.I.; Kanai, A.J.; de Groat, W.C.; Hirayama, A.; Hashimoto, M.; Uemura, H.; et al. Effects of nerve growth factor neutralization on TRP channel expression in laser-captured bladder afferent neurons in mice with spinal cord injury. Neurosci. Lett. 2018, 683, 100–103. [Google Scholar] [CrossRef]
- Shimizu, T.; Majima, T.; Suzuki, T.; Shimizu, N.; Wada, N.; Kadekawa, K.; Takai, S.; Takaoka, E.; Kwon, J.; Kanai, A.J.; et al. Nerve growth factor-dependent hyperexcitability of capsaicin-sensitive bladder afferent neurones in mice with spinal cord injury. Exp. Physiol. 2018, 103, 896–904. [Google Scholar] [CrossRef] [Green Version]
- Takaki, F.; Nakamuta, N.; Kusakabe, T.; Yamamoto, Y. Sympathetic and sensory innervation of small intensely fluorescent (SIF) cells in rat superior cervical ganglion. Cell Tissue Res. 2015, 359, 441–451. [Google Scholar] [CrossRef]
- Wong, H.; Hossain, S.; Cairns, B.E. Delta-9-tetrahydrocannabinol decreases masticatory muscle sensitization in female rats through peripheral cannabinoid receptor activation. Eur. J. Pain 2017, 21, 1732–1742. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, Y.; Nakamuta, N. Morphology of P2X3-immunoreactive nerve endings in the rat tracheal mucosa. J. Comp. Neurol. 2018, 526, 550–566. [Google Scholar] [CrossRef]
- Zimmerman, R.; Smith, A.; Fech, T.; Mansour, Y.; Kulesza, R.J., Jr. In utero exposure to valproic acid disrupts ascending projections to the central nucleus of the inferior colliculus from the auditory brainstem. Exp. Brain Res. 2020, 238, 551–563. [Google Scholar] [CrossRef]
- Zygelyte, E.; Bernard, M.E.; Tomlinson, J.E.; Martin, M.J.; Terhorst, A.; Bradford, H.E.; Lundquist, S.A.; Sledziona, M.; Cheetham, J. RetroDISCO: Clearing technique to improve quantification of retrograde labeled motor neurons of intact mouse spinal cords. J. Neurosci. Methods 2016, 271, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Chaves-Coira, I.; Barros-Zulaica, N.; Rodrigo-Angulo, M.; Nunez, A. Modulation of Specific Sensory Cortical Areas by Segregated Basal Forebrain Cholinergic Neurons Demonstrated by Neuronal Tracing and Optogenetic Stimulation in Mice. Front. Neural Circuits 2016, 10, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaves-Coira, I.; Rodrigo-Angulo, M.L.; Nunez, A. Bilateral Pathways from the Basal Forebrain to Sensory Cortices May Contribute to Synchronous Sensory Processing. Front. Neuroanat. 2018, 12, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanda, H.; Clodfelder-Miller, B.J.; Gu, J.G.; Ness, T.J.; DeBerry, J.J. Electrophysiological properties of lumbosacral primary afferent neurons innervating urothelial and non-urothelial layers of mouse urinary bladder. Brain Res. 2016, 1648, 81–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La, J.H.; Feng, B.; Kaji, K.; Schwartz, E.S.; Gebhart, G.F. Roles of isolectin B4-binding afferents in colorectal mechanical nociception. Pain 2016, 157, 348–354. [Google Scholar] [CrossRef]
- Okabe, N.; Himi, N.; Maruyama-Nakamura, E.; Hayashi, N.; Narita, K.; Miyamoto, O. Rehabilitative skilled forelimb training enhances axonal remodeling in the corticospinal pathway but not the brainstem-spinal pathways after photothrombotic stroke in the primary motor cortex. PLoS ONE 2017, 12, e0187413. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Peduzzi, S.; Snyder, M.; Schneider, R.; Starkey, M.; Schwab, M. Heterogeneous spine loss in layer 5 cortical neurons after spinal cord injury. Cereb. Cortex 2012, 22, 1309–1317. [Google Scholar] [CrossRef] [Green Version]
- Kwon, B.; Liu, J.; Messerer, C.; Kobayashi, N.; McGraw, J.; Oschipok, L.; Tetzlaff, W. Survival and regeneration of rubrospinal neurons 1 year after spinal cord injury. Proc. Natl. Acad. Sci. USA 2002, 99, 3246–3251. [Google Scholar] [CrossRef] [Green Version]
- Sagot, Y.; Rosse, T.; Vejsada, R.; Perrelet, D.; Kato, A. Differential effects of neurotrophic factors on motoneuron retrograde labeling in a murine model of motoneuron disease. J. Neurosci. 1998, 18, 1132–1141. [Google Scholar] [CrossRef] [Green Version]
- Dukkipati, S.; Garrett, T.; Elbasiouny, S. The vulnerability of spinal motoneurons and soma size plasticity in mouse model of amyotrophic lateral sclerosis. J. Physiol. 2018, 596, 1723–1745. [Google Scholar] [CrossRef]
- Elbasiouny, S.M. Motoneuron excitability dysfunction in ALS: Pseudo-mystery or authentic conundrum? J. Physiol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Novikova, L.; Novikov, L.; Kellerth, O. Persistent neuronal labeling by retrograde fluorescent tracers: A comparison between FB, FG and various dextran conjugates. J. Neurosci. Methods 1997, 74, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Khristy, W.; Ali, N.J.; Bravo, A.B.; de Leon, R.; Roy, R.R.; Zhong, H.; London, N.J.; Edgerton, V.R.; Tillakaratne, N.J. Changes in GABA(A) receptor subunit gamma 2 in extensor and flexor motoneurons and astrocytes after spinal cord transection and motor training. Brain Res. 2009, 1273, 9–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popratiloff, A.; Neiss, W.; Skouras, E.; Streppel, M.; Guinas-Lichius, O.; Angelov, D. Evaluation of muscle re-innervation employing pre- and post-axotomy injections of fluorescent retrograde tracers. Brain Res. Bull. 2001, 54, 115–123. [Google Scholar] [CrossRef]
- Naumann, T.; Hartig, W.; Frotscher, M. Retrograde tracing with Fluoro-Gold: Different methods of tracer dectection at the ultastructural level and neurodegenerative changes of back-filled neurons in long-term studies. J. Neurosci. Methods 2000, 103, 11–21. [Google Scholar] [CrossRef]
Tracer | Concentration (%) | Labeling Duration | Sex | # of Young B6SJL Mice | # of Aged C57 Mice |
---|---|---|---|---|---|
CTB | 0.05% | 3-day | Male | 3 | 3 |
5-day | Male | 3 | 3 | ||
0.1% (control) | 3-day | Male | 3 | 3 | |
5-day | Male | 4 | 3 | ||
FB | 0.1% | 3-day | Male | 3 | 3 |
5-day | Male | 3 | 3 | ||
0.2% | 3-day | Male | 3 | 0 | |
5-day | Male | 3 | 0 | ||
2% (control) | 3-day | Male | 3 | 3 | |
5-day | Male | 3 | 3 |
Protocol | # of Non-MN FB Dots | # of Co-Labeled FB Dots w/NeuN | % Co-Labeled |
---|---|---|---|
0.1% FB 5-day | 28 | 5 | 17.85 |
0.2% FB 5-day | 11 | 7 | 63.63 |
2% FB 3-day | 56 | 4 | 7.14 |
2% FB 5-day | 87 | 3 | 3.44 |
Age | Successful Protocol | Intensity | Cell Density | Neurite | Avoid Leakage | |||
---|---|---|---|---|---|---|---|---|
Ratio | Difference | Volume | Length | Longest Path | ||||
Young | Tracer | FB/CTB | FB | CTB | FB | FB | FB/CTB | CTB/FB |
Concentration | L/H | L/H | L/H | L/H | L/H | L/H | CTB (any) FB (L) | |
Labeling duration | S/L | S/L | S/L | L | S/L | S/L | CTB (any) FB (S) | |
Aged | Tracer | FB/CTB | FB | FB/CTB | CTB | FB/CTB | FB/CTB | not assessed |
Concentration | H | H | H | H | H | H | not assessed | |
Labeling duration | L | L | S/L | S/L | S/L | S/L | not assessed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farid, H.; Gelford, W.B.; Goss, L.L.; Garrett, T.L.; Elbasiouny, S.M. Fast Blue and Cholera Toxin-B Survival Guide for Alpha-Motoneurons Labeling: Less Is Better in Young B6SJL Mice, but More Is Better in Aged C57Bl/J Mice. Bioengineering 2023, 10, 141. https://doi.org/10.3390/bioengineering10020141
Farid H, Gelford WB, Goss LL, Garrett TL, Elbasiouny SM. Fast Blue and Cholera Toxin-B Survival Guide for Alpha-Motoneurons Labeling: Less Is Better in Young B6SJL Mice, but More Is Better in Aged C57Bl/J Mice. Bioengineering. 2023; 10(2):141. https://doi.org/10.3390/bioengineering10020141
Chicago/Turabian StyleFarid, Hasan, Weston B. Gelford, Lori L. Goss, Teresa L. Garrett, and Sherif M. Elbasiouny. 2023. "Fast Blue and Cholera Toxin-B Survival Guide for Alpha-Motoneurons Labeling: Less Is Better in Young B6SJL Mice, but More Is Better in Aged C57Bl/J Mice" Bioengineering 10, no. 2: 141. https://doi.org/10.3390/bioengineering10020141
APA StyleFarid, H., Gelford, W. B., Goss, L. L., Garrett, T. L., & Elbasiouny, S. M. (2023). Fast Blue and Cholera Toxin-B Survival Guide for Alpha-Motoneurons Labeling: Less Is Better in Young B6SJL Mice, but More Is Better in Aged C57Bl/J Mice. Bioengineering, 10(2), 141. https://doi.org/10.3390/bioengineering10020141