N-Amidation of Nitrogen-Containing Heterocyclic Compounds: Can We Apply Enzymatic Tools?
Abstract
:1. Introduction
2. Chemical Methods
2.1. N-Heterocycles Production by Metal Catalysts
2.2. Transition Metal Catalysis
2.3. Cycloaddition Methods
2.4. Photocatalytic Methods
3. Enzymatic Tools
3.1. Nitrogen Acetyltransferase
3.2. Carboxylic Acid Reductase
3.3. Lipase and Cutinase
4. Concluding Remarks and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, F.; Yao, Y.; Zhu, H.; Zhang, Y. Nitrogen-containing Heterocycle: A Privileged Scaffold for Marketed Drugs. Curr. Top. Med. Chem. 2021, 21, 439–441. [Google Scholar] [CrossRef]
- Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S. A Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications. Molecules 2020, 25, 1909. [Google Scholar] [CrossRef] [PubMed]
- Jagadeesh, R.V.; Murugesan, K.; Alshammari, A.S.; Neumann, H.; Pohl, M.-M.; Radnik, J.; Beller, M. MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science 2017, 358, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. J. Med. Chem. 2014, 57, 10257–10274. [Google Scholar] [CrossRef]
- Li, G.; Szostak, M. Highly selective transition-metal-free transamidation of amides and amidation of esters at room temperature. Nat. Commun 2018, 9, 4165. [Google Scholar] [CrossRef]
- Roughley, S.D.; Jordan, A.M. The Medicinal Chemist's Toolbox: An Analysis of Reactions Used in the Pursuit of Drug Candidates. J. Med. Chem. 2011, 42, 3451–3479. [Google Scholar] [CrossRef]
- Valeur, E.; Bradley, M. Amide bond formation: Beyond the myth of coupling reagents. Chem. Soc. Rev. 2009, 38, 606–631. [Google Scholar] [CrossRef]
- Carey, J.S.; Laffan, D.; Thomson, C.; Williams, M.T. Analysis of the reactions used for the preparation of drug candidate molecules. Org. Biomol. Chem. 2006, 4, 2337–2347. [Google Scholar] [CrossRef]
- Schuerch, C.; Huntress, E.H. The Schmidt Reaction. I. Conditions and Reaction Mechanism with Primary, Secondary and Tertiary Aliphatic Acids. J. Am. Chem. Soc. 1949, 71, 2233–2237. [Google Scholar] [CrossRef]
- Smith, P.A.S. The Schmidt Reaction: Experimental Conditions and Mechanism. J. Am. Chem. Soc. 1948, 70, 320–323. [Google Scholar] [CrossRef]
- Ritter, J.J.; Minieri, P.P. A new reaction of nitriles; amides from alkenes and mononitriles. J. Am. Chem. Soc. 1948, 70, 4045–4048. [Google Scholar] [CrossRef]
- Soeta, T.; Kojima, Y.; Ukaji, Y.; Inomata, K. O-Silylative Passerini Reaction: A New One-Pot Synthesis of alpha-Siloxyamides. Org. Lett. 2010, 12, 4341–4343. [Google Scholar] [CrossRef]
- Ugi, I. The α-Addition of Immonium Ions and Anions to Isonitriles Accompanied by Secondary Reactions. Angew. Chem. Int. Ed. 1962, 1, 8–21. [Google Scholar] [CrossRef]
- Xu, Z.G.; Ding, Y.; Meng, J.P.; Tang, D.Y.; Li, Y.; Lei, J.; Xu, C.; Chen, Z.Z. Facile Construction of Hydantoin Scaffolds via a Post-Ugi Cascade Reaction. Synlett 2018, 29, 2199–2202. [Google Scholar] [CrossRef]
- Eaton, P.E.; Carlson, G.R.; Lee, J.T. Phosphorus pentoxide-methanesulfonic acid. Convenient alternative to polyphosphoric acid. J. Org. Chem. 1973, 38, 4071–4073. [Google Scholar] [CrossRef]
- Todorovic, M.; Perrin, D.M. Recent developments in catalytic amide bond formation. Peptide Science 2020, 112, e24210. [Google Scholar] [CrossRef]
- Pattabiraman, V.R.; Bode, J.W. Rethinking amide bond synthesis. Nature 2011, 480, 471–479. [Google Scholar] [CrossRef]
- de Figueiredo, R.M.; Suppo, J.-S.; Campagne, J.-M. Nonclassical Routes for Amide Bond Formation. Chem. Rev. 2016, 116, 12029–12122. [Google Scholar] [CrossRef]
- Santos, A.S.; Silva, A.M.S.; Marques, M.M.B. Sustainable Amidation Reactions – Recent Advances. Eur. J. Org. Chem. 2020, 2020, 2501–2516. [Google Scholar] [CrossRef]
- Petchey, M.R.; Grogan, G. Enzyme-Catalysed Synthesis of Secondary and Tertiary Amides. Adv. Synth. Catal. 2019, 361, 3895–3914. [Google Scholar] [CrossRef]
- Taylor, A.P.; Robinson, R.P.; Fobian, Y.M.; Blakemore, D.C.; Jones, L.H.; Fadeyi, O. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem. 2016, 14, 6611–6637. [Google Scholar] [CrossRef] [PubMed]
- Arumugam, V.; Kaminsky, W.; Nallasamy, D. Pd(ii) pincer type complex catalyzed tandem C–H and N–H activation of acetanilide in aqueous media: A concise access to functionalized carbazoles in a single step. Green Chem. 2016, 18, 3295–3301. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Q.; Li, H.; Guo, S.; Xiao, B.; Deng, W.; Liu, L.; He, W. Cu/Fe Catalyzed Intermolecular Oxidative Amination of Benzylic C−H Bonds. Chem. Eur. J. 2016, 22, 6208–6212. [Google Scholar] [CrossRef] [PubMed]
- Nimmagadda, S.K.; Zhang, Z.; Antilla, J.C. Asymmetric One-Pot Synthesis of 1,3-Oxazolidines and 1,3-Oxazinanes via Hemiaminal Intermediates. Org. Lett. 2014, 16, 4098–4101. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Qi, X.; Li, M.; Chen, P.; Liu, G. Palladium-Catalyzed Intermolecular Aminocarbonylation of Alkenes: Efficient Access of β-Amino Acid Derivatives. J. Am. Chem. Soc. 2015, 137, 2480–2483. [Google Scholar] [CrossRef]
- Fang, X.; Li, H.; Jackstell, R.; Beller, M. Selective Palladium-Catalyzed Aminocarbonylation of 1,3-Dienes: Atom-Efficient Synthesis of β,γ-Unsaturated Amides. J. Am. Chem. Soc. 2014, 136, 16039–16043. [Google Scholar] [CrossRef]
- Zhang, G.; Gao, B.; Huang, H. Palladium-catalyzed hydroaminocarbonylation of alkenes with amines: A strategy to overcome the basicity barrier imparted by aliphatic amines. Angew. Chem. Int. Ed 2015, 54, 7657–7661. [Google Scholar] [CrossRef]
- Li, Y.; Barløse, C.; Jørgensen, J.; Carlsen, B.D.; Jørgensen, K.A. Asymmetric Catalytic Aza-Diels–Alder/Ring-Closing Cascade Reaction Forming Bicyclic Azaheterocycles by Trienamine Catalysis. Chem. Eur. J. 2017, 23, 38–41. [Google Scholar] [CrossRef]
- Vinogradov, M.G.; Turova, O.V.; Zlotin, S.G. Catalytic Asymmetric Aza-Diels-Alder Reaction: Pivotal Milestones and Recent Applications to Synthesis of Nitrogen-Containing Heterocycles. Adv. Synth. Catal. 2021, 363, 1466–1526. [Google Scholar] [CrossRef]
- Chow, S.Y.; Stevens, M.Y.; Åkerbladh, L.; Bergman, S.; Odell, L.R. Mild and Low-Pressure fac-Ir(ppy)3-Mediated Radical Aminocarbonylation of Unactivated Alkyl Iodides through Visible-Light Photoredox Catalysis. Chem. Eur. J. 2016, 22, 9155–9161. [Google Scholar] [CrossRef]
- Veatch, A.M.; Alexanian, E.J. Cobalt-catalyzed aminocarbonylation of (hetero)aryl halides promoted by visible light. Chem. Sci 2020, 11, 7210–7213. [Google Scholar] [CrossRef]
- Yadav, A.K.; Srivastava, V.P.; Yadav, L.D.S. Visible-light-mediated eosin Y catalyzed aerobic desulfurization of thioamides into amides. New J. Chem. 2013, 37, 4119–4124. [Google Scholar] [CrossRef]
- Ismail, A.R.; Kashtoh, H.; Baek, K.H. Temperature-resistant and solvent-tolerant lipases as industrial biocatalysts: Biotechnological approaches and applications. Int. J. Biol. Macromol. 2021, 187, 127–142. [Google Scholar] [CrossRef]
- Pellis, A.; Cantone, S.; Ebert, C.; Gardossi, L. Evolving biocatalysis to meet bioeconomy challenges and opportunities. N. Biotechnol. 2018, 40, 154–169. [Google Scholar] [CrossRef]
- Sharma, S.; Das, J.; Braje, W.M.; Dash, A.K.; Handa, S. A Glimpse into Green Chemistry Practices in the Pharmaceutical Industry. ChemSusChem 2020, 13, 2859–2875. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, P.; Xu, Y.; Liang, Y.; Wang, P.G.; Cheng, J. N-acetyltransferases from three different organisms displaying distinct selectivity toward hexosamines and N-terminal amine of peptides. Carbohydr. Res. 2019, 472, 72–75. [Google Scholar] [CrossRef]
- Kinsky, S.C. Assay, Purification, and Properties of Imidazole Acetylase. J. Biol. Chem. 1960, 235, 94–98. [Google Scholar] [CrossRef]
- Yang, J.; Wencewicz, T.A. In Vitro Reconstitution of Fimsbactin Biosynthesis from Acinetobacter baumannii. ACS Chem. Biol. 2022, 17, 2923–2935. [Google Scholar] [CrossRef]
- Derrington, S.R.; Turner, N.J.; France, S.P. Carboxylic acid reductases (CARs): An industrial perspective. J. Biotechnol. 2019, 304, 78–88. [Google Scholar] [CrossRef]
- Wood, A.J.L.; Weise, N.J.; Frampton, J.D.; Dunstan, M.S.; Hollas, M.A.; Derrington, S.R.; Lloyd, R.C.; Quaglia, D.; Parmeggiani, F.; Leys, D.; et al. Adenylation Activity of Carboxylic Acid Reductases Enables the Synthesis of Amides. Angew. Chem. Int. Ed. 2017, 56, 14498–14501. [Google Scholar] [CrossRef]
- Qu, G.; Guo, J.; Yang, D.; Sun, Z. Biocatalysis of carboxylic acid reductases: Phylogenesis, catalytic mechanism and potential applications. Green Chem. 2018, 20, 777–792. [Google Scholar] [CrossRef]
- Gahloth, D.; Aleku, G.A.; Leys, D. Carboxylic acid reductase: Structure and mechanism. J. Biotechnol. 2020, 307, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Lubberink, M.; Finnigan, W.; Schnepel, C.; Baldwin, C.R.; Turner, N.J.; Flitsch, S.L. One-Step Biocatalytic Synthesis of Sustainable Surfactants by Selective Amide Bond Formation. Angew. Chem. Int. Ed 2022, 61, e202205054. [Google Scholar] [CrossRef] [PubMed]
- Lubberink, M.; Schnepel, C.; Citoler, J.; Derrington, S.R.; Finnigan, W.; Hayes, M.A.; Turner, N.J.; Flitsch, S.L. Biocatalytic Monoacylation of Symmetrical Diamines and Its Application to the Synthesis of Pharmaceutically Relevant Amides. ACS Catalysis 2020, 10, 10005–10009. [Google Scholar] [CrossRef]
- Qin, Z.; Zhang, X.; Sang, X.; Zhang, W.; Qu, G.; Sun, Z. Carboxylic acid reductases enable intramolecular lactamization reactions. Green Synth. Catal. 2022, 3, 294–297. [Google Scholar] [CrossRef]
- Akhtar, M.K.; Turner, N.J.; Jones, P.R. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities. Proc. Natl. Acad. Sci. USA 2013, 110, 87–92. [Google Scholar] [CrossRef]
- Roussel, A.; Amara, S.; Nyyssölä, A.; Mateos-Diaz, E.; Blangy, S.; Kontkanen, H.; Westerholm-Parvinen, A.; Carrière, F.; Cambillau, C. A Cutinase from Trichoderma reesei with a Lid-Covered Active Site and Kinetic Properties of True Lipases. J. Mol. Biol. 2014, 426, 3757–3772. [Google Scholar] [CrossRef]
- Ferrario, V.; Pellis, A.; Cespugli, M.; Guebitz, G.M.; Gardossi, L. Nature Inspired Solutions for Polymers: Will Cutinase Enzymes Make Polyesters and Polyamides Greener? Catalysts 2016, 6, 205. [Google Scholar] [CrossRef]
- Chen, S.; Su, L.; Chen, J.; Wu, J. Cutinase: Characteristics, preparation, and application. Biotechnol. Adv. 2013, 31, 1754–1767. [Google Scholar] [CrossRef]
- Martinez, C.; Degeus, P.; Lauwereys, M.; Matthyssens, G.; Cambillau, C. Fusarium solani cutinase is a lipolytic enzyme with a catalytic serine accessible to solvent. Nature 1992, 356, 615–618. [Google Scholar] [CrossRef]
- Wang, W.; Nema, S.; Teagarden, D. Protein aggregation--pathways and influencing factors. Int. J. Pharm. 2010, 390, 89–99. [Google Scholar] [CrossRef]
- Tyndall, J.; Sinchaikul, S.; Fothergill-Gilmore, L.; Taylor, P.; Walkinshaw, M. Crystal Structure of a Thermostable Lipase from Bacillus stearothermophilus P1. J. Mol. Biol. 2002, 323, 859–869. [Google Scholar] [CrossRef]
- Kumar, A.; Dhar, K.; Kanwar, S.S.; Arora, P.K. Lipase catalysis in organic solvents: Advantages and applications. Biol. Proced. Online 2016, 18, 2. [Google Scholar] [CrossRef]
- Stavila, E.; Arsyi, R.Z.; Petrovic, D.M.; Loos, K. Fusarium solani pisi cutinase-catalyzed synthesis of polyamides. Eur. Polym. J. 2013, 49, 834–842. [Google Scholar] [CrossRef]
- Nardini Marco, D.B.W. α/β Hydrolase fold enzymes: The family keeps growing. Curr. Opin. Struct. Biol. 1999, 9, 732–737. [Google Scholar] [CrossRef]
- Pleiss, J.; Fischer, M.; Schmid, R.D. Anatomy of lipase binding sites: The scissile fatty acid binding site. Chem. Phys. Lipids 1998, 93, 67–80. [Google Scholar] [CrossRef]
- Alfonso, I.; Gotor, V. Biocatalytic and biomimetic aminolysis reactions: Useful tools for selective transformations on polyfunctional substrates. Chem. Soc. Rev. 2004, 33, 201–209. [Google Scholar] [CrossRef]
- Al-Ghanayem, A.A.; Joseph, B.; Alhussaini, M.S.; Ramteke, P.W. Microbial Extremozymes; Academic Press: Cambridge, MA, USA, 2022; pp. 223–230. ISBN 978-0-12-822945-3. [Google Scholar]
- Salgado, C.A.; dos Santos, C.I.A.; Vanetti, M.C.D. Microbial lipases: Propitious biocatalysts for the food industry. Food Bioscience 2022, 45, 101509. [Google Scholar] [CrossRef]
- Liang, X.; Zou, H. Biotechnological Application of Cutinase: A Powerful Tool in Synthetic Biology. SynBio 2023, 1, 54–64. [Google Scholar] [CrossRef]
- Castillo, E.; Casas-Godoy, L.; Sandoval, G. Medium-engineering: A useful tool for modulating lipase activity and selectivity. Biocatalysis 2016, 1, 178–188. [Google Scholar] [CrossRef]
- Goswami, A.; Van Lanen, S.G. Enzymatic strategies and biocatalysts for amide bond formation: Tricks of the trade outside of the ribosome. Mol. Biosyst. 2015, 11, 338–353. [Google Scholar] [CrossRef] [PubMed]
- Liljeblad, A.; Kallio, P.; Vainio, M.; Niemi, J.; Kanerva, L.T. Formation and hydrolysis of amide bonds by lipase A from Candida antarctica; exceptional features. Org. Biomol. Chem. 2010, 8, 886–895. [Google Scholar] [CrossRef] [PubMed]
- Brundiek, H.; Padhi, S.K.; Kourist, R.; Evitt, A.; Bornscheuer, U.T. Altering the scissile fatty acid binding site of Candida antarctica lipase A by protein engineering for the selective hydrolysis of medium chain fatty acids. Eur. J. Lipid Sci. Technol. 2012, 114, 1148–1153. [Google Scholar] [CrossRef]
- Lima, R.N.; dos Anjos, C.S.; Orozco, E.V.M.; Porto, A.L.M. Versatility of Candida antarctica lipase in the amide bond formation applied in organic synthesis and biotechnological processes. Mol. Catal. 2019, 466, 75–105. [Google Scholar] [CrossRef]
- Monteiro, R.R.C.; Virgen-Ortiz, J.J.; Berenguer-Murcia, Á.; da Rocha, T.N.; dos Santos, J.C.S.; Alcántara, A.R.; Fernandez-Lafuente, R. Biotechnological relevance of the lipase A from Candida antarctica. Catal. Today 2021, 362, 141–154. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Guex, N.; Peitsch, M.C.; Schwede, T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis 2009, 30, S162–S173. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef]
- Kitadokoro, K.; Kakara, M.; Matsui, S.; Osokoshi, R.; Thumarat, U.; Kawai, F.; Kamitani, S. Structural insights into the unique polylactate-degrading mechanism of Thermobifida alba cutinase. FEBS J. 2019, 286, 2087–2098. [Google Scholar] [CrossRef]
- Nicolas, A.; Egmond, M.; Verrips, C.T.; de Vlieg, J.; Longhi, S.; Cambillau, C.; Martinez, C. Contribution of cutinase serine 42 side chain to the stabilization of the oxyanion transition state. Biochemistry 1996, 35, 398–410. [Google Scholar] [CrossRef]
- Flores-Castañón, N.; Sarkar, S.; Banerjee, A. Structural, functional, and molecular docking analyses of microbial cutinase enzymes against polyurethane monomers. J. Hazard. Mater. Lett. 2022, 3, 100063. [Google Scholar] [CrossRef]
- Pellis, A.; Ferrario, V.; Hufnagel, B.; Brandauer, M.; Gamerith, C.; Herrero Acero, E.; Ebert, C.; Gardossi, L.; Guebitz, G. Enlarging the tools for efficient enzymatic polycondensation: Structural and catalytic features of cutinase 1 from: Thermobifida cellulosilytica. Catal. Sci. Technol. 2015, 6. [Google Scholar] [CrossRef]
- Shirke, A.N.; Basore, D.; Holton, S.; Su, A.; Baugh, E.; Butterfoss, G.L.; Makhatadze, G.; Bystroff, C.; Gross, R.A. Influence of surface charge, binding site residues and glycosylation on Thielavia terrestris cutinase biochemical characteristics. Appl. Microbiol. Biotechnol. 2016, 100, 4435–4446. [Google Scholar] [CrossRef]
- Kitadokoro, K.; Thumarat, U.; Nakamura, R.; Nishimura, K.; Karatani, H.; Suzuki, H.; Kawai, F. Crystal structure of cutinase Est119 from Thermobifida alba AHK119 that can degrade modified polyethylene terephthalate at 1.76Å resolution. Polym. Degrad. Stab. 2012, 97, 771–775. [Google Scholar] [CrossRef]
- Chen, Z. Selective Mono-Acylation of Piperazine Derivatives with Pseudomonas Stutzeri lipase (PSL). Master’s Thesis, The University of Manchester, Manchester, UK, 2016. [Google Scholar]
- Nikolaivits, E.; Kanelli, M.; Dimarogona, M.; Topakas, E. A Middle-Aged Enzyme Still in Its Prime: Recent Advances in the Field of Cutinases. Catalysts 2018, 8, 612. [Google Scholar] [CrossRef]
- Austin, H.P.; Allen, M.D.; Donohoe, B.S.; Rorrer, N.A.; Kearns, F.L.; Silveira, R.L.; Pollard, B.C.; Dominick, G.; Duman, R.; El Omari, K.; et al. Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc. Natl. Acad. Sci. USA 2018, 115, E4350–E4357. [Google Scholar] [CrossRef]
- Sinha, R.; Shukla, P. Current Trends in Protein Engineering: Updates and Progress. Curr. Protein Peptide Sci. 2019, 20, 398–407. [Google Scholar] [CrossRef]
- Chen, H.; Ma, L.; Dai, H.; Fu, Y.; Wang, H.; Zhang, Y. Advances in Rational Protein Engineering toward Functional Architectures and Their Applications in Food Science. J. Agric. Food Chem. 2022, 70, 4522–4533. [Google Scholar] [CrossRef]
- Araújo, R.; Silva, C.; O'Neill, A.; Micaelo, N.; Guebitz, G.; Soares, C.M.; Casal, M.; Cavaco-Paulo, A. Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6,6 fibers. J. Biotechnol. 2007, 128, 849–857. [Google Scholar] [CrossRef]
- Lan, D.; Xu, H.; Xu, J.; Dubin, G.; Liu, J.; Iqbal Khan, F.; Wang, Y. Malassezia globosa MgMDL2 lipase: Crystal structure and rational modification of substrate specificity. Biochem. Biophys. Res. Commun. 2017, 488, 259–265. [Google Scholar] [CrossRef]
- Ding, X.; Tang, X.; Zheng, R.; Zheng, Y. Identification and engineering of the key residues at the crevice-like binding site of lipases responsible for activity and substrate specificity. Biotechnol. Lett. 2019, 41, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Chen, K.; Bai, S.; Yu, L.; Sun, Y. Cutinase fused with C-terminal residues of α-synuclein improves polyethylene terephthalate degradation by enhancing the substrate binding. Biochem. Eng. J. 2022, 188, 108709. [Google Scholar] [CrossRef]
- Kirk, O.; Christensen, M.W. Lipases from Candida antarctica: Unique Biocatalysts from a Unique Origin. Org. Process Res. Dev. 2002, 6, 446–451. [Google Scholar] [CrossRef]
- Krishna, S.H.; Persson, M.; Bornscheuer, U.T. Enantioselective transesterification of a tertiary alcohol by lipase A from Candida antarctica. Tetrahedron Asymmetry 2002, 13, 2693–2696. [Google Scholar] [CrossRef]
- Muller, J.; Sowa, M.A.; Fredrich, B.; Brundiek, H.; Bornscheuer, U.T. Enhancing the Acyltransferase Activity of Candida antarctica Lipase A by Rational Design. ChemBioChem 2015, 16, 1791–1796. [Google Scholar] [CrossRef]
- Mordhorst, S.; Maurer, A.; Popadić, D.; Brech, J.; Andexer, J.N. A Flexible Polyphosphate-Driven Regeneration System for Coenzyme A Dependent Catalysis. ChemCatChem 2017, 9, 4164–4168. [Google Scholar] [CrossRef]
- Winn, M.; Richardson, S.M.; Campopiano, D.J.; Micklefield, J. Harnessing and engineering amide bond forming ligases for the synthesis of amides. Curr. Opin. Chem. Biol. 2020, 55, 77–85. [Google Scholar] [CrossRef]
- Bruntner, C.; Lauer, B.; Schwarz, W.; Möhrle, V.; Bormann, C. Molecular characterization of co-transcribed genes from Streptomyces tendae Tü901 involved in the biosynthesis of the peptidyl moiety of the peptidyl nucleoside antibiotic nikkomycin. Mol. Gen. Genet. MGG 1999, 262, 102–114. [Google Scholar] [CrossRef]
- Tsuda, T.; Asami, M.; Koguchi, Y.; Kojima, S. Single mutation alters the substrate specificity of L-amino acid ligase. Biochemistry 2014, 53 16, 2650–2660. [Google Scholar] [CrossRef]
- Kinscherf, T.G.; Willis, D.K. The biosynthetic gene cluster for the beta-lactam antibiotic tabtoxin in Pseudomonas syringae. J. Antibiot. (Tokyo) 2005, 58, 817–821. [Google Scholar] [CrossRef] [Green Version]
- Kino, K.; Kotanaka, Y.; Arai, T.; Yagasaki, M. A Novel l-Amino Acid Ligase from Bacillus subtilis NBRC3134, a Microorganism Producing Peptide-Antibiotic Rhizocticin. Biosci. Biotechnol. Biochem. 2009, 73, 901–907. [Google Scholar] [CrossRef]
- Gao, Q.; Garcia-Pichel, F. An ATP-grasp ligase involved in the last biosynthetic step of the iminomycosporine shinorine in Nostoc punctiforme ATCC 29133. J. Bacteriol. 2011, 193, 5923–5928. [Google Scholar] [CrossRef]
- Lebar, M.D.; May, J.M.; Meeske, A.J.; Leiman, S.A.; Lupoli, T.J.; Tsukamoto, H.; Losick, R.; Rudner, D.Z.; Walker, S.; Kahne, D. Reconstitution of peptidoglycan cross-linking leads to improved fluorescent probes of cell wall synthesis. J. Am. Chem. Soc. 2014, 136, 10874–10877. [Google Scholar] [CrossRef]
- Qiao, Y.; Lebar, M.D.; Schirner, K.; Schaefer, K.; Tsukamoto, H.; Kahne, D.; Walker, S. Detection of lipid-linked peptidoglycan precursors by exploiting an unexpected transpeptidase reaction. J. Am. Chem. Soc. 2014, 136, 14678–14681. [Google Scholar] [CrossRef]
- Magano, J. Large-Scale Amidations in Process Chemistry: Practical Considerations for Reagent Selection and Reaction Execution. Org Process Res Dev 2022, 26, 1562–1689. [Google Scholar] [CrossRef]
Enzyme | Source | Description | Reference |
---|---|---|---|
Cutinase, PDB: 6AID | Thermobifida alba | Indicated by docking analysis (Figure 4a), this enzyme has potential ability to form acyl-enzyme intermediate for further amidation towards N-heterocyclic substrates. | [70] |
Cutinase, NCBI: OOO09588.1 | Aspergillus oryzae | Indicated by docking analysis (Figure 4b), this enzyme has potential ability to form acyl-enzyme intermediate for further amidation towards N-heterocyclic substrates. | Not published yet |
Cutinase, PDB: 1FFB | Fusarium solani pisi | Indicated by docking analysis (Figure 4c), this enzyme has potential ability to form acyl-enzyme intermediate for further amidation towards N-heterocyclic substrates. | [71] |
Cutinase, PDB: 4OYY and 4OYL | Humicola insolens | This enzyme can form acyl-enzyme intermediate with acyl donor. In addition, the aromatic ring in the catalytic pocket can help to form π–π stacking interactions with N-heterocyclic rings. | [48,72] |
Cutinase, NCBI: HQ147785 | Thermobifida cellulosilytica | The catalytic triad is located near to the surface of this enzyme, which helps to accommodate acyl donors and N-heterocyclic rings. | [73] |
Cutinase, PDB: 3GBS | Thielavia terrestris | Both hydrophilic and hydrophobic residues are found in the catalytic pocket, which contribute to recognize a broader range of acyl donors and amine substrates (including N-heterocyclic substrates). | [74] |
Cutinase, NCBI: AB445476.2 | Thermobifida alba | In the substrate binding pocket, the arrangement of alternating hydrophobic and hydrophilic amino acids can facilitate its binding to acyl donors and hydrophilic amine substrates. | [75] |
Lipase, NCBI: AEA86017 | Pseudomonas stutzeri | The enzyme can catalyze the monoacetylation reaction towards the N-heterocyclic substrate of piperazine. | [76] |
PETase, NCBI: GAP38373.1 | Ideonella sakaiensis | This PETase has a more open and wider substrate binding pocket than cutinase and lipase. The S238F mutation can further provide π–π stacking interactions towards N-heterocyclic substrates. | [77,78] |
Advantage | Disadvantage | Reaction Condition | |
---|---|---|---|
Chemical methods | Matured techniques, high yield and efficiency. | Require extreme conditions (high temperature, strong acid/base), and large amounts of by products and solvents. | Detailed information is summarized in Figure 2. |
Nitrogen acetyltransferase | Mild condition, workable in aqueous solvent, and high selectivity. | Demands high-cost acyl coenzyme A (acetyl coenzyme A or succinyl coenzyme A) supplementation. | In aqueous solution, 0.05 M potassium phosphate buffer, pH 7.4, mild temperature, the concentrate of acyl CoA up to 5 × 10−5. |
Carboxylic acid reductase | Mild condition, workable in aqueous solvent, and recognizes a broader range of substrates for amide bond forming. | Demands ATP circulatory system. | In aqueous solution, carboxylic acid (1–10 mM), amine (175 mM), MgCl2 (100 mM), CARmm-A (3 mg/mL), Tris-buffer (100 mM), polyphosphate (4 mg/mL), pH 8.5, 30 °C, 16 h. |
Lipase and Cutinase | Thermo and organic solvent tolerance, industrial resources, do not demand expensive supplementation such as acyl CoA and ATP, and can recognize broad range of acyl donors. | N-amidation activities demand further research for nitrogen-containing heterocyclic substrates. | In organic solvents, broad temperature range (40–70 °C), broad acyl donors (acid, esters, and vinyl acetate). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, A.; Miao, X.; Yang, L.; Xu, C.; Liu, W.; Xian, M.; Zou, H. N-Amidation of Nitrogen-Containing Heterocyclic Compounds: Can We Apply Enzymatic Tools? Bioengineering 2023, 10, 222. https://doi.org/10.3390/bioengineering10020222
Yang A, Miao X, Yang L, Xu C, Liu W, Xian M, Zou H. N-Amidation of Nitrogen-Containing Heterocyclic Compounds: Can We Apply Enzymatic Tools? Bioengineering. 2023; 10(2):222. https://doi.org/10.3390/bioengineering10020222
Chicago/Turabian StyleYang, Anran, Xue Miao, Liu Yang, Chao Xu, Wei Liu, Mo Xian, and Huibin Zou. 2023. "N-Amidation of Nitrogen-Containing Heterocyclic Compounds: Can We Apply Enzymatic Tools?" Bioengineering 10, no. 2: 222. https://doi.org/10.3390/bioengineering10020222
APA StyleYang, A., Miao, X., Yang, L., Xu, C., Liu, W., Xian, M., & Zou, H. (2023). N-Amidation of Nitrogen-Containing Heterocyclic Compounds: Can We Apply Enzymatic Tools? Bioengineering, 10(2), 222. https://doi.org/10.3390/bioengineering10020222