The Potential Effects of Light Irradiance in Glaucoma and Photobiomodulation Therapy
Abstract
:1. Introduction
2. Human Eye Anatomy and Physiology
3. The Effects of Blue Light on the Eyes
4. Red Light and PBM Therapy
5. Mechanism of Eye Recovery through PBM Therapy
6. Advantages of PBM Therapy
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weinreb, R.N.; Tee Khaw, P. Primary Open-Angle Glaucoma. Lancet 2004, 363, 1711–1720. [Google Scholar] [CrossRef] [PubMed]
- Laha, B.; Stafford, B.K.; Huberman, A.D. Regenerating Optic Pathways from the Eye to the Brain. Science 2017, 356, 1031–1034. [Google Scholar] [CrossRef] [PubMed]
- Tham, Y.C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.Y. Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040: A Systematic Review and Meta-Analysis. Ophthalmology 2014, 121, 2081–2090. [Google Scholar] [CrossRef]
- Rudnicka, A.R.; Mt-Isa, S.; Owen, C.G.; Cook, D.G.; Ashby, D. Variations in Primary Open-Angle Glaucoma Prevalence by Age, Gender, and Race: A Bayesian Meta-Analysis. Investig. Ophthalmol. Vis. Sci. 2006, 47, 4254–4261. [Google Scholar] [CrossRef]
- Foster, P.J.; Buhrmann, R.; Quigley, H.A.; Johnson, G.J. The Definition and Classification of Glaucoma in Prevalence Surveys. Br. J. Ophthalmol. 2002, 86, 238–242. [Google Scholar] [CrossRef]
- Marcus, M.W.; De Vries, M.M.; Junoy Montolio, F.G.; Jansonius, N.M. Myopia as a Risk Factor for Open-Angle Glaucoma: A Systematic Review and Meta-Analysis. Ophthalmology 2011, 118, 1989–1994.e2. [Google Scholar] [CrossRef]
- Chen, S.J.; Lu, P.; Zhang, W.F.; Lu, J.H. High Myopia as a Risk Factor in Primary Open Angle Glaucoma. Int. J. Ophthalmol. 2012, 5, 750–753. [Google Scholar] [CrossRef] [PubMed]
- Kolb, H.; Ralph, N.; Eduardo, F. Webvision: The Organization of the Retina and Visual System; University of Utah Health Sciences Center: Salt Lake City, UT, USA, 1995; ISBN 21413389. [Google Scholar]
- Hong, K.-H.; Kim, S.-J. A Study of Medical Costs According to the Number of Myopic Patients in Korea. Korean J. Vis. Sci. 2017, 19, 149–158. [Google Scholar] [CrossRef]
- Jeong, Y.C.; Hwang, Y.H. Etiology and Features of Eyes with Rubeosis Iridis among Korean Patients: A Population-Based Single Center Study. PLoS ONE 2016, 11, 4–11. [Google Scholar] [CrossRef]
- Kim, H.A.; Han, K.; Lee, Y.A.; Choi, J.A.; Park, Y.M. Differential Association of Metabolic Risk Factors with Open Angle Glaucoma According to Obesity in a Korean Population. Sci. Rep. 2016, 6, 38283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abokyi, S.; Mensah, S.N.; Otchere, H.; Akoto, Y.O.; Ntodie, M. Differential Effect of Maximal Incremental Treadmill Exercise on Tear Secretion and Tear Film Stability in Athletes and Non-Athletes. Exp. Eye Res. 2022, 214, 108865. [Google Scholar] [CrossRef]
- Makin, R.D.; Argyle, D.; Hirahara, S.; Nagasaka, Y.; Zhang, M.; Yan, Z.; Kerur, N.; Ambati, J.; Gelfand, B.D. Voluntary Exercise Suppresses Choroidal Neovascularization in Mice. Retin. Cell Biol. 2020, 61, 52. [Google Scholar] [CrossRef]
- Sun, C.; Yang, H.; Hu, Y.; Qu, Y.; Hu, Y.; Sun, Y.; Ying, Z.; Song, H. Association of Sleep Behaviour and Pattern with the Risk of Glaucoma: A Prospective Cohort Study in the UK Biobank. BMJ Open 2022, 12, e063676. [Google Scholar] [CrossRef]
- Lee, S.M.; Jin, S.W. Efficacy of Preservative-Free Latanoprost in Normal-Tension Glaucoma with Mild to Moderate Dry Eye. J. Korean Ophthalmol. Soc. 2020, 61, 639–644. [Google Scholar] [CrossRef]
- Rossi, G.C.M.; Tinelli, C.; Pasinetti, G.M.; Milano, G.; Bianchi, P.E. Dry Eye Syndrome-Related Quality of Life in Glaucoma Patients. Eur. J. Ophthalmol. 2009, 19, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Savastano, A.; Savastano, M.C.; Carlomusto, L.; Savastano, S. Bilateral Glaucomatous Optic Neuropathy Caused by Eye Rubbing. Case Rep. Ophthalmol. 2015, 6, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Godley, B.F.; Shamsi, F.A.; Liang, F.Q.; Jarrett, S.G.; Davies, S.; Boulton, M. Blue Light Induces Mitochondrial DNA Damage and Free Radical Production in Epithelial Cells. J. Biol. Chem. 2005, 280, 21061–21066. [Google Scholar] [CrossRef]
- Kernt, M.; Walch, A.; Neubauer, A.S.; Hirneiss, C.; Haritoglou Md, C.; Ulbig, M.W.; Kampik, A. Filtering Blue Light Reduces Light-Induced Oxidative Stress, Senescence and Accumulation of Extracellular Matrix Proteins in Human Retinal Pigment Epithelium Cells. Clin. Exp. Ophthalmol. 2012, 40, e87–e97. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Álvarez, C.; Osborne, N.N. Blue Light Exacerbates and Red Light Counteracts Negative Insults to Retinal Ganglion Cells in Situ and R28 Cells in Vitro. Neurochem. Int. 2019, 125, 187–196. [Google Scholar] [CrossRef]
- Osborne, N.N.; Lascaratos, G.; Bron, A.J.; Chidlow, G.; Wood, J.P.M. A Hypothesis to Suggest That Light Is a Risk Factor in Glaucoma and the Mitochondrial Optic Neuropathies. Br. J. Ophthalmol. 2006, 90, 237–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osborne, N.N. Mitochondria: Their Role in Ganglion Cell Death and Survival in Primary Open Angle Glaucoma. Exp. Eye Res. 2010, 90, 750–757. [Google Scholar] [CrossRef]
- Kels, B.D.; Grzybowski, A.; Grant-Kels, J.M. Human Ocular Anatomy. Clin. Dermatol. 2015, 33, 140–146. [Google Scholar] [CrossRef]
- Chinnery, H.R.; McMenamin, P.G.; Dando, S.J. Macrophage Physiology in the Eye. Pflugers Arch. Eur. J. Physiol. 2017, 469, 501–515. [Google Scholar] [CrossRef]
- Miller, N.R.; Walsh, F.B.; Hoyt, W.F. Walsh and Hoyt’s Clinical Neuro-Ophthalmology; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005; Volume 1, ISBN 0781748119. [Google Scholar]
- Schubert, H.D. Structure and Function of the Neural Retina. Ophthalmology 2009, 2, 771–774. [Google Scholar]
- Masland, R.H. The Functional Architecture of the Retina. Sci. Am. 1986, 255, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Young, R.W. The Renewal of Rod and Cone Outer Segments in the Rhesus Monkey. J. Cell Biol. 1971, 49, 303–318. [Google Scholar] [CrossRef] [PubMed]
- Foulds, W.S. Do We Need a Retinal Pigment Epithelium (or Choroid) for the Maintenance of Retinal Apposition? Br. J. Ophthalmol. 1985, 69, 237–239. [Google Scholar] [CrossRef]
- Grierson, I.; Hiscott, P.; Hogg, P.; Robey, H.; Mazure, A.; Larkin, G. Development, Repair and Regeneration of the Retinal Pigment Epithelium. Eye 1994, 8, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Reh, T.A.; Levine, E.M. Multipotential Stem Cells and Progenitors in the Vertebrate Retina. J. Neurobiol. 1998, 36, 206–220. [Google Scholar] [CrossRef]
- Willermain, F.; Scifo, L.; Weber, C.; Caspers, L.; Perret, J.; Delporte, C. Potential Interplay between Hyperosmolarity and Inflammation on Retinal Pigmented Epithelium in Pathogenesis of Diabetic Retinopathy. Int. J. Mol. Sci. 2018, 19, 1056. [Google Scholar] [CrossRef]
- Tao, J.X.; Zhou, W.C.; Zhu, X.G. Mitochondria as Potential Targets and Initiators of the Blue Light Hazard to the Retina. Oxid. Med. Cell. Longev. 2019, 2019, 6435364. [Google Scholar] [CrossRef] [Green Version]
- del Olmo-Aguado, S.; Núñez-Álvarez, C.; Osborne, N.N. Blue Light Action on Mitochondria Leads to Cell Death by Necroptosis. Neurochem. Res. 2016, 41, 2324–2335. [Google Scholar] [CrossRef]
- Fink, S.L.; Cookson, B.T. Apoptosis, Pyroptosis, and Necrosis: Mechanistic Description of Dead and Dying Eukaryotic Cells. Infect. Immun. 2005, 73, 1907–1916. [Google Scholar] [CrossRef]
- Lane, N. POWER GAMES. Nat. Publ. Gr. 2006, 443, 901–903. [Google Scholar] [CrossRef] [PubMed]
- Anders, J.J.; Lanzafame, R.J.; Arany, P.R. Low-Level Light/Laser Therapy versus Photobiomodulation Therapy. Photomed. Laser Surg. 2015, 33, 183–184. [Google Scholar] [CrossRef]
- Kim, W.S.; Glen Calderhead, R. Is Light-Emitting Diode Phototherapy (LED-LLLT) Really Effective? Laser Ther. 2011, 20, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Hosseini-Zijoud, S.M. The Importance of Coherency. Photomed. Laser Surg. 2005, 23, 431–434. [Google Scholar]
- Calabrese, E.J.; Iavicoli, I.; Calabrese, V. Hormesis: Its Impact on Medicine and Health. Hum. Exp. Toxicol. 2013, 32, 120–152. [Google Scholar] [CrossRef]
- del Olmo-Aguado, S.; Núñez-Álvarez, C.; Osborne, N.N. Red Light of the Visual Spectrum Attenuates Cell Death in Culture and Retinal Ganglion Cell Death in Situ. Acta Ophthalmol. 2016, 94, e481–e491. [Google Scholar] [CrossRef]
- Hamblin, M.R. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem. Photobiol. 2018, 94, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Wong-Riley, M.T.T.; Liang, H.L.; Eells, J.T.; Chance, B.; Henry, M.M.; Buchmann, E.; Kane, M.; Whelan, H.T. Photobiomodulation Directly Benefits Primary Neurons Functionally Inactivated by Toxins: Role of Cytochrome c Oxidase. J. Biol. Chem. 2005, 280, 4761–4771. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.L.; Whelan, H.T.; Eells, J.T.; Meng, H.; Buchmann, E.; Lerch-Gaggl, A.; Wong-Riley, M. Photobiomodulation Partially Rescues Visual Cortical Neurons from Cyanide-Induced Apoptosis. Neuroscience 2006, 139, 639–649. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Gonçalves, J.B.; Buchaim, D.V.; de Souza Bueno, C.R.; Pomini, K.T.; Barraviera, B.; Júnior, R.S.F.; Andreo, J.C.; de Castro Rodrigues, A.; Cestari, T.M.; Buchaim, R.L. Effects of Low-Level Laser Therapy on Autogenous Bone Graft Stabilized with a New Heterologous Fibrin Sealant. J. Photochem. Photobiol. B. 2016, 162, 663–668. [Google Scholar] [CrossRef]
- Buchaim, D.V.; Andreo, J.C.; Ferreira Junior, R.S.; Barraviera, B.; Rodrigues, A.d.C.; Macedo, M.d.C.; Rosa Junior, G.M.; Shinohara, A.L.; Santos German, I.J.; Pomini, K.T.; et al. Efficacy of Laser Photobiomodulation on Morphological and Functional Repair of the Facial Nerve. Photomed. Laser Surg. 2017, 35, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Rosso, M.P.d.O.; Rosa Júnior, G.M.; Buchaim, D.V.; German, I.J.S.; Pomini, K.T.; de Souza, R.G.; Pereira, M.; Favaretto Júnior, I.A.; Bueno, C.R. de S.; Gonçalves, J.B. de O.; et al. Stimulation of Morphofunctional Repair of the Facial Nerve with Photobiomodulation, Using the End-to-Side Technique or a New Heterologous Fibrin Sealant. J. Photochem. Photobiol. B. 2017, 175, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Buchaim, R.L.; Andreo, J.C.; Barraviera, B.; Ferreira Junior, R.S.; Buchaim, D.V.; Rosa Junior, G.M.; de Oliveira, A.L.R.; de Castro Rodrigues, A. Effect of Low-Level Laser Therapy (LLLT) on Peripheral Nerve Regeneration Using Fibrin Glue Derived from Snake Venom. Injury 2015, 46, 655–660. [Google Scholar] [CrossRef]
- de Vasconcellos, L.M.R.; Barbara, M.A.M.; Rovai, E.d.S.; de Oliveira França, M.; Ebrahim, Z.F.; de Vasconcellos, L.G.O.; Porto, C.D.; Cairo, C.A.A. Titanium Scaffold Osteogenesis in Healthy and Osteoporotic Rats Is Improved by the Use of Low-Level Laser Therapy (GaAlAs). Lasers Med. Sci. 2016, 31, 899–905. [Google Scholar] [CrossRef]
- Buchaim, D.V.; Rodrigues, A.d.C.; Buchaim, R.L.; Barraviera, B.; Junior, R.S.F.; Junior, G.M.R.; Bueno, C.R.D.S.; Roque, D.D.; Dias, D.V.; Dare, L.R.; et al. The New Heterologous Fibrin Sealant in Combination with Low-Level Laser Therapy (LLLT) in the Repair of the Buccal Branch of the Facial Nerve. Lasers Med. Sci. 2016, 31, 965–972. [Google Scholar] [CrossRef]
- Yazdani, S.O.; Golestaneh, A.F.; Shafiee, A.; Hafizi, M.; Omrani, H.-A.G.; Soleimani, M. Effects of Low Level Laser Therapy on Proliferation and Neurotrophic Factor Gene Expression of Human Schwann Cells in Vitro. J. Photochem. Photobiol. B. 2012, 107, 9–13. [Google Scholar] [CrossRef]
- Hashmi, J.T.; Huang, Y.-Y.; Osmani, B.Z.; Sharma, S.K.; Naeser, M.A.; Hamblin, M.R. Role of Low-Level Laser Therapy in Neurorehabilitation. PM&R 2010, 2, S292–S305. [Google Scholar] [CrossRef]
- Gigo-Benato, D.; Geuna, S.; de Castro Rodrigues, A.; Tos, P.; Fornaro, M.; Boux, E.; Battiston, B.; Giacobini-Robecchi, M.G. Low-Power Laser Biostimulation Enhances Nerve Repair after End-to-Side Neurorrhaphy: A Double-Blind Randomized Study in the Rat Median Nerve Model. Lasers Med. Sci. 2004, 19, 57–65. [Google Scholar] [CrossRef]
- Rochkind, S.; Drory, V.; Alon, M.; Nissan, M.; Ouaknine, G.E. Laser Phototherapy (780 Nm), a New Modality in Treatment of Long-Term Incomplete Peripheral Nerve Injury: A Randomized Double-Blind Placebo-Controlled Study. Photomed. Laser Surg. 2007, 25, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-Z.; Chen, Y.-J.; Wang, Y.-H.; Yeh, M.-L.; Huang, M.-H.; Ho, M.-L.; Liang, J.-I.; Chen, C.-H. Low-Level Laser Irradiation Improves Functional Recovery and Nerve Regeneration in Sciatic Nerve Crush Rat Injury Model. PLoS ONE 2014, 9, e103348. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Wang, Y.-H.; Wang, C.-Z.; Ho, M.-L.; Kuo, P.-L.; Huang, M.-H.; Chen, C.-H. Effect of Low Level Laser Therapy on Chronic Compression of the Dorsal Root Ganglion. PLoS ONE 2014, 9, e89894. [Google Scholar] [CrossRef]
- Bang, J.; Kim, H.Y.; Lee, H. Optogenetic and Chemogenetic Approaches for Studying Astrocytes and Gliotransmitters. Exp. Neurobiol. 2016, 25, 205–221. [Google Scholar] [CrossRef]
- Iyer, S.M.; Vesuna, S.; Ramakrishnan, C.; Huynh, K.; Young, S.; Berndt, A.; Lee, S.Y.; Gorini, C.J.; Deisseroth, K.; Delp, S.L. Optogenetic and Chemogenetic Strategies for Sustained Inhibition of Pain. Sci. Rep. 2016, 6, 30570. [Google Scholar] [CrossRef]
- Begum, R.; Powner, M.B.; Hudson, N.; Hogg, C.; Jeffery, G. Treatment with 670 Nm Light Up Regulates Cytochrome C Oxidase Expression and Reduces Inflammation in an Age-Related Macular Degeneration Model. PLoS ONE 2013, 8, 1–11. [Google Scholar] [CrossRef]
- Gkotsi, D.; Begum, R.; Salt, T.; Lascaratos, G.; Hogg, C.; Chau, K.Y.; Schapira, A.H.V.; Jeffery, G. Recharging Mitochondrial Batteries in Old Eyes. Near Infra-Red Increases ATP. Exp. Eye Res. 2014, 122, 50–53. [Google Scholar] [CrossRef]
- Mason, M.G.; Nicholls, P.; Wilson, M.T.; Cooper, C.E. Nitric Oxide Inhibition of Respiration Involves Both Competitive (Heme) and Noncompetitive (Copper) Binding to Cytochrome c Oxidase. Proc. Natl. Acad. Sci. USA 2006, 103, 708–713. [Google Scholar] [CrossRef]
- Taylor, C.T.; Moncada, S. Nitric Oxide, Cytochrome c Oxidase, and the Cellular Response to Hypoxia. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 643–647. [Google Scholar] [CrossRef]
- Moncada, S. Adventures in Vascular Biology: A Tale of Two Mediators. Philos. Trans. R. Soc. B Biol. Sci. 2006, 361, 735–759. [Google Scholar] [CrossRef]
- Schweizer, M.; Richter, C. Nitric Oxide Potently and Reversibly Deenergizes Mitochondria at Low Oxygen Tension. Biochem. Biophys. Res. Commun. 1994, 204, 169–175. [Google Scholar] [CrossRef]
- Cleeter, M.W.J.; Cooper, J.M.; Darley-Usmar, V.M.; Moncada, S.; Schapira, A.H.V. Reversible Inhibition of Cytochrome c Oxidase, the Terminal Enzyme of the Mitochondrial Respiratory Chain, by Nitric Oxide. Implications for Neurodegenerative Diseases. FEBS Lett. 1994, 345, 50–54. [Google Scholar] [CrossRef]
- Brown, G.C.; Cooper, C.E. Nanomolar Concentrations of Nitric Oxide Reversibly Inhibit Synaptosomal Respiration by Competing with Oxygen at Cytochrome Oxidase. FEBS Lett. 1994, 356, 295–298. [Google Scholar] [CrossRef] [PubMed]
- Bonomi, L.; Marchini, G.; Marraffa, M.; Morbio, R.; Gandham, S.B. The Relationship between IOP and Glaucoma in a Defined Population. Evid.-Based Eye Care 2001, 2, 234–235. [Google Scholar] [CrossRef]
- Osborne, N.N.; Núñez-Álvarez, C.; del Olmo-Aguado, S.; Merrayo-Lloves, J. Visual Light Effects on Mitochondria: The Potential Implications in Relation to Glaucoma. Mitochondrion 2017, 36, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Terrie, Y.C.B.T.-P.T. Glaucoma: Getting a Clear View: Early Detection and Treatment Are Key to Protecting Eyesight. Pharm. Times 2015, 81, 54. [Google Scholar]
- Kong, G.Y.X.; Van Bergen, N.J.; Trounce, I.A.; Crowston, J.G. Mitochondrial Dysfunction and Glaucoma. J. Glaucoma 2009, 18, 93–100. [Google Scholar] [CrossRef]
- Wolffsohn, J.S.; Cochrane, A.L. Low Vision Perspectives on Glaucoma. Clin. Exp. Optom. 1998, 81, 280–289. [Google Scholar] [CrossRef]
- Kyari, F.; Mohammed, M.A. The Basics of Good Postoperative Care after Glaucoma Surgery. Community Eye Health J. 2016, 429, 29–31. [Google Scholar]
- Tedford, C.E.; Delapp, S.; Bradley, S. Devices and Methods for Non-Invasive Multi-Wavelength Photobiomodulation for Ocular Treatments. U.S. Patent US20160067086A1, 10 March 2016. [Google Scholar]
- Li, L.; Sahi, S.K.; Peng, M.; Lee, E.B.; Ma, L.; Wojtowicz, J.L.; Malin, J.H.; Chen, W. Luminescence-and Nanoparticle-Mediated Increase of Light Absorption by Photoreceptor Cells: Converting UV Light to Visible Light. Sci. Rep. 2016, 6, 20821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, S.-H.; Suh, J.-S.; Lim, G.-H.; Kim, T.-J. The Potential Effects of Light Irradiance in Glaucoma and Photobiomodulation Therapy. Bioengineering 2023, 10, 223. https://doi.org/10.3390/bioengineering10020223
Ahn S-H, Suh J-S, Lim G-H, Kim T-J. The Potential Effects of Light Irradiance in Glaucoma and Photobiomodulation Therapy. Bioengineering. 2023; 10(2):223. https://doi.org/10.3390/bioengineering10020223
Chicago/Turabian StyleAhn, Sang-Hyun, Jung-Soo Suh, Gah-Hyun Lim, and Tae-Jin Kim. 2023. "The Potential Effects of Light Irradiance in Glaucoma and Photobiomodulation Therapy" Bioengineering 10, no. 2: 223. https://doi.org/10.3390/bioengineering10020223
APA StyleAhn, S. -H., Suh, J. -S., Lim, G. -H., & Kim, T. -J. (2023). The Potential Effects of Light Irradiance in Glaucoma and Photobiomodulation Therapy. Bioengineering, 10(2), 223. https://doi.org/10.3390/bioengineering10020223