Experimental Models for Rare Melanoma Research—The Niche That Needs to Be Addressed
Abstract
:1. Introduction
2. Histopathological Description of Rare Melanoma Subtypes
2.1. General Aspects
2.2. Characteristics of UM
2.3. Characteristics of ALM
2.4. Characteristics of MM
3. Current Status of Rare Melanoma Experimental Models
3.1. General Aspects
3.2. Experimental Models for UM
3.3. Experimental Models for ALM
3.4. Experimental Models for MM
4. Innovative Models for Future Rare Melanoma Research
4.1. Modeling Biological Heterogeneity
4.2. In Silico Models for Melanoma Research
- Genomic models: These models use genomic data to predict the behavior of melanoma cells. For example, machine learning algorithms can be trained on genomic data to predict the likelihood of melanoma progression.
- Mathematical models: These models use mathematical equations to describe the behavior of melanoma cells. For example, mathematical models can be used to simulate the growth and metastasis of melanoma cells.
- Multiscale models: These models integrate multiple scales of biological organization, from molecular to cellular to tissue level, to simulate the behavior of melanoma cells. For example, multiscale models can be used to simulate the interaction between melanoma cells and the immune system.
5. Precision Medicine for Rare Melanoma Treatment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmed, B.; Qadir, M.I.; Ghafoor, S. Malignant Melanoma: Skin Cancer-Diagnosis, Prevention, and Treatment. Crit. Rev. Eukaryot. Gene Expr. 2020, 30, 291–297. [Google Scholar] [CrossRef]
- Schadendorf, D.; Fisher, D.E.; Garbe, C.; Gershenwald, J.E.; Grob, J.J.; Halpern, A.; Herlyn, M.; Marchetti, M.A.; McArthur, G.; Ribas, A.; et al. Melanoma. Nat. Rev. Dis. Prim. 2015, 1, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Brierley, J.D.; Gospodarowicz, M.K.; Wittekind, C. (Eds.) TNM Classification of Malignant Tumours; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Tsatmali, M.; Ancans, J.; Thody, A.J. Melanocyte Function and Its Control by Melanocortin Peptides. J. Histochem. Cytochem. 2002, 50, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, C.; Kim, D.W.; Gombos, D.S.; Oba, J.; Qin, Y.; Williams, M.D.; Esmaeli, B.; Grimm, E.A.; Wargo, J.A.; Woodman, S.E.; et al. Uveal Melanoma: From Diagnosis to Treatment and the Science in Between. Cancer 2016, 122, 2299–2312. [Google Scholar] [CrossRef]
- Smit, K.N.; Jager, M.J.; De Klein, A.; Kiliç, E. Uveal melanoma: Towards a molecular understanding. Prog. Retin. Eye Res. 2019, 75, 100800. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Smalley, I.; Chen, Z.; Wu, J.-Y.; Phadke, M.S.; Teer, J.K.; Nguyen, T.; Karreth, F.A.; Koomen, J.M.; Sarnaik, A.A.; et al. Single cell characterization of the cellular landscape of acral melanoma identifies novel targets for immunotherapy. Clin. Cancer Res. 2022, 28, 2131–2146. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Qi, Z.; Zhang, L.; Guo, J.; Si, L. Immunotherapy in Acral and Mucosal Melanoma: Current Status and Future Directions. Front. Immunol. 2021, 12, 680407. [Google Scholar] [CrossRef]
- Postow, M.A.; Hamid, O.; Carvajal, R.D. Mucosal Melanoma: Pathogenesis, Clinical Behavior, and Management. Curr. Oncol. Rep. 2012, 14, 441–448. [Google Scholar] [CrossRef]
- Nassar, K.W.; Tan, A.C.; Anschutz, C.; Campus, M.; Program, B.T. The Mutational Landscape of Mucosal Melanoma. Semin. Cancer Biol. 2020, 61, 139–148. [Google Scholar] [CrossRef]
- Sajjad, H.; Imtiaz, S.; Noor, T.; Siddiqui, Y.H.; Sajjad, A.; Zia, M. Cancer models in preclinical research: A chronicle review of advancement in effective cancer research. Anim. Model. Exp. Med. 2021, 4, 87–103. [Google Scholar] [CrossRef]
- Martinez-Pacheco, S.; O’driscoll, L. Pre-clinical in vitro models used in cancer research: Results of a worldwide survey. Cancers 2021, 13, 6033. [Google Scholar] [CrossRef]
- Behrens, D.; Rolff, J.; Hoffmann, J. Predictive In Vivo Models for Oncology. Handb. Exp. Pharmacol. 2016, 232, 203–221. [Google Scholar] [PubMed]
- Miebach, L.; Berner, J.; Bekeschus, S. In ovo model in cancer research and tumor immunology. Front. Immunol. 2022, 13, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Blidisel, A.; Marcovici, I.; Coricovac, D.; Hut, F.; Dehelean, C.A.; Cretu, O.M. Experimental models of hepatocellular carcinoma—A preclinical perspective. Cancers 2021, 13, 3651. [Google Scholar] [CrossRef] [PubMed]
- Fontoura, J. Comparison of 2D and 3D cell culture models for cell growth, gene expression and drug resistance. Mater. Sci. Eng. C 2020, 107, 110264. [Google Scholar] [CrossRef]
- Ghanghoria, R.; Kesharwani, P.; Jain, N.K. Significance of Various Experimental Models and Assay Techniques in Cancer Diagnosis. Mini Rev. Med. Chem. 2017, 17, 1713–1724. [Google Scholar] [CrossRef]
- Jager, M.J.; Shields, C.L.; Cebulla, C.M.; Abdel-rahman, M.H.; Grossniklaus, H.E.; Stern, M.; Carvajal, R.D.; Belfort, R.N.; Jia, R.; Shields, J.A.; et al. Uveal melanoma. Nat. Rev. Dis. Prim. 2020, 20, 18–20. [Google Scholar] [CrossRef]
- Goydos, J.S.; Shoen, S.L. Acral lentiginous melanoma. Cancer Treat. Res. 2016, 167, 321–329. [Google Scholar]
- Han, B.; Hur, K.; Ohn, J.; Lim, S.S.; Mun, J.H. Acral lentiginous melanoma in situ: Dermoscopic features and management strategy. Sci. Rep. 2020, 10, 1–7. [Google Scholar] [CrossRef]
- Tacastacas, J.D. Update on primary mucosal melanoma. J. Am. Dermatol. 2014, 71, 366–375. [Google Scholar] [CrossRef]
- Yde, S.S.; Sjoegren, P.; Heje, M.; Stolle, L.B. Mucosal Melanoma: A Literature Review. Curr. Oncol. Rep. 2018, 20, 28. [Google Scholar] [CrossRef] [PubMed]
- Marconi, A.; Quadri, M.; Saltari, A.; Pincelli, C. Progress in melanoma modelling in vitro. Exp. Dermatol. 2018, 27, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Patton, E.E.; Mueller, K.L.; Adams, D.J.; Anandasabapathy, N.; Aplin, A.E.; Bertolotto, C.; Bosenberg, M.; Ceol, C.J.; Burd, C.E.; Chi, P.; et al. Melanoma models for the next generation of therapies. Cancer Cell. 2021, 39, 610–631. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Guijarro, E. Genetically Engineered Mouse Models of Melanoma. Cancer 2017, 123, 2089–2103. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, M.H. Multiple murine BRafV600E melanoma cell lines with sensitivity to PLX4032 Molly. Pigment. Cell Melanoma Res. 2014, 27, 495–501. [Google Scholar] [CrossRef]
- Saleh, J. Murine models of melanoma. Pathol. Res. Pract. 2018, 214, 1235–1238. [Google Scholar] [CrossRef]
- Krepler, C.; Sproesser, K.; Brafford, P.; Beqiri, M.; Garman, B.; Xiao, M.; Shannan, B.; Watters, A.; Perego, M.; Zhang, G.; et al. A comprehensive patient-derived xenograft collection representing the heterogeneity of melanoma. Physiol. Behav. 2017, 21, 1953–1967. [Google Scholar] [CrossRef]
- Frantz, W.T.; Ceol, C.J. From Tank to Treatment: Modeling Melanoma in Zebrafish. Cells 2020, 4, 1289. [Google Scholar] [CrossRef]
- Tas, F.; Keskin, S.; Karadeniz, A.; Daǧoǧlu, N.; Sen, F.; Kilic, L.; Yildiz, I. Noncutaneous melanoma have distinct features from each other and cutaneous melanoma. Oncology 2012, 81, 353–358. [Google Scholar] [CrossRef]
- Vergara, I.A.; Wilmott, J.S.; Long, G.V.; Scolyer, R.A. Genetic drivers of non-cutaneous melanomas: Challenges and opportunities in a heterogeneous landscape. Exp. Dermatol. 2022, 31, 13–30. [Google Scholar] [CrossRef]
- Conforti, C.; Zalaudek, I. Epidemiology and Risk Factors of Melanoma: A Review. Dermatol. Pract. Concept. 2021, 11, 2021161S. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, G.C.; Falzone, L.; Salemi, R.; Zanghì, A.; Spandidos, D.A.; Mccubrey, J.A.; Candido, S.; Libra, M. Cutaneous melanoma: From pathogenesis to therapy (Review). Int. J. Oncol. 2018, 52, 1071–1080. [Google Scholar] [CrossRef]
- Richards, J.R.; Yoo, J.H.; Shin, D.; Odelberg, S.J. Mouse models of uveal melanoma: Strengths, weaknesses, and future directions. Pigment. Cell. Melanoma Res. 2020, 33, 264–278. [Google Scholar] [CrossRef] [PubMed]
- Anfuso, C.D.; Longo, A.; Distefano, A.; Amorini, A.M.; Salmeri, M.; Zangh, G.; Giallongo, C.; Giurdanella, G.; Lupo, G. Uveal Melanoma Cells Elicit Retinal Pericyte Phenotypical and Biochemical Changes in an In Vitro Model of Coculture. Int. J. Mol. Sci. 2020, 21, 5557. [Google Scholar] [CrossRef]
- Fiorentzis, M.; Viestenz, A.; Siebolts, U.; Seitz, B.; Coupland, S.E.; Heinzelmann, J. The potential use of electrochemotherapy in the treatment of uveal melanoma: In vitro results in 3D tumor cultures and in vivo results in a chick embryo model. Cancers 2019, 11, 1344. [Google Scholar] [CrossRef] [PubMed]
- Fiorentzis, M.; Sokolenko, E.A.; Bechrakis, N.E.; Ting, S.; Schmid, K.W.; Sak, A.; Stuschke, M.; Seitz, B.; Berchner-pfannschmidt, U. Electrochemotherapy with Bleomycin Enhances Radiosensitivity of Uveal Melanomas: First In Vitro Results in 3D Cultures of Primary Uveal Melanoma Cell Lines. Cancers 2021, 13, 3086. [Google Scholar] [CrossRef] [PubMed]
- Helgadottir, H.; Höiom, V. The genetics of uveal melanoma: Current insights. Appl. Clin. Genet. 2016, 9, 147–155. [Google Scholar]
- Furney, S.J.; Turajlic, S.; Fenwick, K.; Lambros, M.B.; Mackay, A.; Ricken, G.; Mitsopoulos, C.; Kozarewa, I.; Hakas, J.; Zvelebil, M.; et al. Genomic characterisation of acral melanoma cell lines. Pigment. Cell. Melanoma Res. 2012, 25, 488–492. [Google Scholar] [CrossRef]
- Hu, R.; Zhao, S.; Su, J.; Chen, X.; Yin, M. Establishment of cultured primary acral melanoma cells and animal models for Chinese patients. Pigment. Cell. Melanoma Res. 2021, 34, 1131–1137. [Google Scholar] [CrossRef]
- Goldrick, C.; Palanga, L.; Tang, B.; Mealy, G.; Crown, J.; Horgan, N.; Kennedy, S.; Walsh, N. Hindsight: Review of preclinical disease models for the development of new treatments for uveal melanoma. J. Cancer 2021, 12, 4672–4685. [Google Scholar] [CrossRef]
- Aughton, K.; Shahidipour, H.; Djirackor, L.; Coupland, S.E.; Kalirai, H. Characterization of uveal melanoma cell lines and primary tumor samples in 3d culture. Transl. Vis. Sci. Technol. 2020, 9, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Grienwank, K. Genetic and Molecular Characterization of Uveal Melanoma Cell Lines. Pigment. Cell Melanoma Res. 2013, 25, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, P.B.; Laskaris, A.; Goyeneche, A.A.; Chen, Y.; Telleria, C.M.; Burnier, J. V Anticancer effects of mifepristone on human uveal melanoma cells. Cancer Cell. Int. 2021, 21, 1–15. [Google Scholar] [CrossRef]
- Dithmer, M.; Kirsch, A.; Richert, E.; Fuchs, S.; Wang, F.; Schmidt, H.; Coupland, S.E.; Roider, J.; Klettner, A. Fucoidan Does Not Exert Anti-Tumorigenic Effects on Uveal Melanoma Cell Lines. Mar. Drugs 2017, 15, 193. [Google Scholar] [CrossRef] [PubMed]
- Amalinei, C.; Grigoraș, A.; Lozneanu, L.; Căruntu, I.D.; Giușcă, S.E.; Balan, R.A. The Interplay between Tumour Microenvironment Components in Malignant Melanoma. Medicina 2022, 58, 365. [Google Scholar] [CrossRef]
- Babchia, N.; Landreville, S.; Clément, B.; Coulouarn, C.; Mouriaux, F. The bidirectional crosstalk between metastatic uveal melanoma cells and hepatic stellate cells engenders an in fl ammatory microenvironment. Exp. Eye Res. 2019, 181, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Kalirai, H.; Shahidipour, H.; Luyten, G.P.M.; Coupland, S.E. Use of the Chick Embryo Model in Uveal Melanoma. Ocul. Oncol. Pathol. 2015, 1, 133–140. [Google Scholar] [CrossRef]
- van der Ent, W.; Burrello, C.; de Lange, M.J.; van der Velden, P.A.; Jochemsen, A.G.; Jager, M.J.; Snaar-Jagalska, B.E. Embryonic Zebrafish: Different Phenotypes after Injection of Human Uveal Melanoma Cells. Ocul. Oncol. Pathol. 2015, 1, 170–181. [Google Scholar] [CrossRef]
- Tobia, C.; Coltrini, D.; Ronca, R.; Loda, A.; Guerra, J.; Scalvini, E.; Semeraro, F.; Rezzola, S. An Orthotopic Model of Uveal Melanoma in Zebrafish Embryo: A Novel Platform for Drug Evaluation. Biomedicines 2021, 9, 1873. [Google Scholar] [CrossRef]
- Carita, G.; Némati, F.; Decaudin, D. Uveal Melanoma Patient-Derived Xenografts. Ocul. Oncol. Pathol. 2015, 1, 161–169. [Google Scholar] [CrossRef]
- Kageyama, K.; Ohara, M.; Saito, K.; Ozaki, S.; Terai, M.; Mastrangelo, M.J.; Fortina, P.; Aplin, A.E.; Sato, T. Establishment of an orthotopic patient-derived xenograft mouse model using uveal melanoma hepatic metastasis. J. Transl. Med. 2017, 15, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Basurto-Lozada, P.; Molina-Aguilar, C.; Castaneda-Garcia, C.; Vázquez-Cruz, M.E.; Garcia-Salinas, O.I.; Álvarez-Cano, A.; Martínez-Said, H.; Roldán-Marín, R.; Adams, D.J.; Possik, P.A.; et al. Acral lentiginous melanoma: Basic facts, biological characteristics and research perspectives of an understudied disease. Pigment. Cell. Melanoma Res. 2021, 34, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Weiss, J.M.; Hunter, M.V.; Cruz, N.M.; Baggiolini, A.; Tagore, M.; Ma, Y.; Misale, S.; Marasco, M.; Simon-vermot, T.; Campbell, N.R.; et al. Anatomic position determines oncogenic specificity in melanoma. Nature 2022, 604, 354–361. [Google Scholar] [CrossRef]
- Piura, B.; Rabinovich, A.; Dgani, R. Malignant melanoma ofthe vulva: Report of six cases and review of the literature. European journal of gynaecological oncology. Eur. J. Gynaecol. Oncol. 1999, 20, 182–186. [Google Scholar]
- Ma, Y.; Xia, R.; Ma, X.; Judson-torres, R.L.; Zeng, H. Mucosal Melanoma: Pathological Evolution, Pathway Dependency and Targeted Therapy. Front. Oncol. 2021, 11, 702287. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, S.V.; Bologna, S.B.; Hsieh, R.; Sangueza, M.; Fernandes, J.D.; Nico, M.M.S. Establishment and characterization of an oral mucosal melanoma cell line (MEMO) derived from a longstanding primary oral melanoma. Am. J. Dermatopathol. 2013, 35, 248–251. [Google Scholar] [CrossRef]
- Lin, W.; Lu, X.; Yang, H.; Huang, L.; Huang, W.; Tang, Y.; Liu, S.; Wang, H.; Zhang, Y. Metabolic heterogeneity protects metastatic mucosal melanomas cells from ferroptosis. Int. J. Mol. Med. 2022, 50, 1–16. [Google Scholar] [CrossRef]
- Shi, C.; Gu, Z.; Xu, S.; Ju, H.; Wu, Y.; Han, Y.; Li, J.; Li, C.; Wu, J.; Wang, L.; et al. Candidate therapeutic agents in a newly established triple wild-type mucosal melanoma cell line. Cancer Commun. 2022, 42, 627–647. [Google Scholar] [CrossRef]
- Ng, M.F.; Simmons, J.L. Heterogeneity in Melanoma. Cancers 2022, 14, 3030. [Google Scholar] [CrossRef]
- Rebecca, V.W.; Somasundaram, R.; Herlyn, M. Pre-clinical modeling of cutaneous melanoma. Nat. Commun. 2020, 11, 2858. [Google Scholar] [CrossRef]
- Nascentes Melo, L.M.; Kumar, S.; Riess, V.; Szylo, K.J. Advancements in melanoma cancer metastasis models. Pigment. Cell. Melanoma Res. 2022, 36, 206–223. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, M.; Lucarelli, P.; Kulms, D.; Sauter, T. Computational models of melanoma. Theor. Biol. Med Model. 2020, 17, 8. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lichtenberg, T.; Hoadley, K.A.; Poisson, L.M.; Alexander, J.; Cherniack, A.D.; Kovatich, A.J.; Benz, C.C.; Douglas, A.; Lee, A.V.; et al. An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell 2018, 173, 400–416. [Google Scholar] [CrossRef] [PubMed]
- Domingues, B.; Lopes, J.; Soares, P.; Populo, H. Melanoma treatment in review. Immuno Targets Ther. 2018, 7, 35–49. [Google Scholar] [CrossRef]
- Selvakumar, S.C.; Preethi, K.A.; Ross, K.; Tusubira, D.; Khan, M.W.A.; Mani, P.; Rao, T.N.; Sekar, D. CRISPR/Cas9 and next generation sequencing in the personalized treatment of Cancer. Mol. Cancer 2022, 21, 83. [Google Scholar] [CrossRef]
- Alicea, G.M.; Rebecca, V.W. Emerging strategies to treat rare and intractable subtypes of melanoma. Pigment. Cell Melanoma Res. 2021, 34, 44–58. [Google Scholar] [CrossRef]
- Branisteanu, D.; Bogdanici, C.; Branisteanu, D.; Maranduca, M.; Zemba, M.; Balta, F.; Branisteanu, C.; Moraru, A. Uveal melanoma diagnosis and current treatment options (Review). Exp. Ther. Med. 2021, 22, 1–8. [Google Scholar] [CrossRef]
- Zhang, Y.; Lan, S.; Wu, D. Advanced Acral Melanoma Therapies: Current Status and Future Directions. Curr. Treat. Options Oncol. 2022, 23, 1405–1427. [Google Scholar] [CrossRef]
- Tyrrell, H.; Payne, M. Combatting mucosal melanoma: Recent advances and future perspectives. Melanoma Manag. 2018, 5, MMT11. [Google Scholar] [CrossRef]
- Petrov, I.; Alexeyenko, A. Individualized discovery of rare cancer drivers in global network context. Elife 2022, 11, 1–28. [Google Scholar] [CrossRef]
- Gagan, J.; Van Allen, E.M. Next-generation sequencing to guide cancer therapy. Genome Med. 2015, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Conway, J.R.; Warner, J.L.; Rubinstein, W.S.; Miller, R.S. Next-Generation Sequencing and the Clinical Oncology Workflow: Data Challenges, Proposed Solutions, and a Call to Action. JCO Precis. Oncol. 2019, 3, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.F.; Li, G.R.; Wang, R.J.; Yi, Y.T.; Yang, L.; Jiang, D.; Zhang, X.P.; Peng, Y. Application of next-generation sequencing in clinical oncology to advance personalized treatment of cancer. Chin. J. Cancer 2012, 31, 463–470. [Google Scholar] [CrossRef]
- De Unamuno Bustos, B.; Estal, R.M.; Simó, G.P.; De Juan Jimenez, I.; Muñoz, B.E.; Serna, M.R.; De Miquel, V.A.; Ros, M.L.; Sánchez, R.B.; Enguídanos, E.N.; et al. Towards Personalized Medicine in Melanoma: Implementation of a Clinical Next-Generation Sequencing Panel. Sci. Rep. 2017, 7, 495. [Google Scholar] [CrossRef] [PubMed]
- Diefenbach, R.J.; Lee, J.H.; Menzies, A.M.; Carlino, M.S.; Long, G.V.; Saw, R.P.M.; Howle, J.R.; Spillane, A.J.; Scolyer, R.A.; Kefford, R.F.; et al. Design and testing of a custom melanoma next generation sequencing panel for analysis of circulating tumor dna. Cancers 2020, 12, 2228. [Google Scholar] [CrossRef] [PubMed]
- Afshar, A.R.; Damato, B.E.; Stewart, J.M.; Zablotska, L.B.; Roy, R.; Olshen, A.B.; Joseph, N.M.; Bastian, B.C. Next-generation sequencing of uveal melanoma for detection of genetic alterations predicting metastasis. Transl. Vis. Sci. Technol. 2019, 8, 18. [Google Scholar] [CrossRef]
- Cosgarea, I.; Ugurel, S.; Sucker, A.; Livingstone, E.; Zimmer, L.; Ziemer, M.; Utikal, J.; Mohr, P.; Pfeiffer, C.; Pföhler, C.; et al. Targeted next generation sequencing of mucosal melanomas identifies frequent NF1 and RAS mutations. Oncotarget 2017, 8, 40683–40692. [Google Scholar] [CrossRef]
- Ercolano, G.; De Cicco, P.; Rubino, V.; Terrazzano, G.; Ruggiero, G.; Carriero, R.; Kunderfranco, P.; Ianaro, A. Knockdown of PTGS2 by CRISPR/CAS9 system designates a new potential gene target for melanoma treatment. Front. Pharmacol. 2019, 10, 1456. [Google Scholar] [CrossRef]
- Glinkina, K.; Groenewoud, A.; Teunisse, A.F.A.S.; Snaar-Jagalska, B.E.; Jochemsen, A.G. Novel Treatments of Uveal Melanoma Identified with a Synthetic Lethal CRISPR/Cas9 Screen. Cancers 2022, 14, 3186. [Google Scholar] [CrossRef]
- Hodis, E.; Triglia, E.T.; Kwon, J.Y.; Biancalani, T.; Zakka, L.R.; Parkar, S.; Hütter, J.C.; Buffoni, L.; Delorey, T.M.; Phillips, D.; et al. Stepwise-edited, human melanoma models reveal mutations’ effect on tumor and microenvironment. Science 2022, 376, eabi8175. [Google Scholar] [CrossRef]
Melanoma Type | Localization | Incidence (% of Total Melanoma Cases) | Genetic Drivers | Available Experimental Models | References |
---|---|---|---|---|---|
CM | Skin | 90% | BRAF, NF1, NRAS, TERT and CDKN2A mutations | Cell lines, spheroids, organoids, melanoma-on-a-chip, reconstructed tissue, GEMs, STMs, ZMMs, PDXs, Chick embryo CAM, etc. | [23,24,32,33] |
UM | Iris, choroid, ciliary body | 5% | BAP1, GNAQ, GNA11, EIF1AX, SF3B1 mutations | Cell lines, Co-cultures, spheroids, ZMMs, PDXs, Chick embryo CAM. | [34,35,36,37,38] |
ALM | Palms, soles, or nail beds | 2–3% | KIT mutations | Cell lines, PDXs, ZMMs | [7,19,39,40] |
MM | The nasal cavity, the mucous covering the mouth, vagina, anus, gastrointestinal tract, urinary tract, biliary bladder | 0.8–3.7% | KIT, GNAQ/11 mutations | Cell lines, Spheroids, PDXs | [8,21,22] |
Experimental Models for UM | Examples | Applications | References |
---|---|---|---|
Cell Lines | Primary (92.1, MP41, MP46, MEL270, OCM-1, OCM-3, OCM-8, SP6.5) and metastatic (OMM1, OMM2.3, OMM2.5, MUM2C) cell lines | Anti-cancer drug screening; Genetic characterization for further preclinical studies | [18,43,44,45] |
Co-culture | 92.1 UM cells + human retinal pericytes (HRPC) | Evaluation of the interaction between UM cells and a TME cellular component | [35] |
Mel270 and OMM2.3 UM cells + LX-2 hepatic stellate cells | Investigation of the role of hepatic microenvironment on UM growth and survival | [47] | |
Spheroids | Spheroids derived from 92.1, Mel270, UPMD2, UPMD3, MP46, MM28, OMM1 cell lines | Evaluation of electrochemotherapy with bleomycin as treatment for UM | [36,37] |
PDX Mouse Model | UM xenografts in SCID mice | Assessment of the pharmacological effects of anti-cancer drugs (fotemustine, and dacarbazine/temozolomide) | [51] |
Orthotopic PDX in NSG mice using liver metastatic metastases | Preclinical research studies of UM | [52] | |
Zebrafish | Orthotopic 92.1 xenograft in zebrafish embryos | Screening of anti-cancer drugs | [50] |
Mel270, OMM2.3, OMM2.5, OMM1, 92.1 xenografts in zebrafish embryos | Evaluation of UM cell behavior (i.e., interaction with host environment, proliferation, migration, and metastasis) | [49] | |
Chick Embryo CAM | 92.1 cells—Matrigel grafts | Evaluation of tumor growth; Assessment of ECT as a potential treatment for UM | [36] |
Experimental Models for ALM | Examples | Applications | References |
---|---|---|---|
Cell Lines | Primary (WM3211, MMG1, SMYM), and metastatic (SM2-1, Mel18) cell lines | Genomic characterization for further preclinical studies | [39] |
XYAM-1, XYAM-2, XYAM-3, and XYAM-4 | Investigation of the mutational profile for further preclinical studies | [40] | |
PDX Mouse Model | XYAM-4 xenograft in NSG mice | Evaluation of the proliferative and metastatic potential of ALM cells in vivo | [40] |
Zebrafish | Transgenic zebrafish model | - | [54] |
Experimental Models for MM | Examples | Applications | References |
---|---|---|---|
Cell Lines | MM9H-1 cell line | High-throughput drug screening of anti-cancer agents | [59] |
COMM-1 and COMM-2 cell lines | Investigation of the possible association between melanoma heterogeneity and metastasis | [58] | |
Spheroids | Spheroids derived from the MM9H-1 cell line | - | [59] |
PDX Mouse Model | MM9H-1 xenograft in BALB/c nude mice (subcutaneous and orthotopic inoculations) | Evaluation of tumor metastasis and tumorigenesis in vivo | [59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ionita, I.; Malita, D.; Dehelean, C.; Olteanu, E.; Marcovici, I.; Geamantan, A.; Chiriac, S.; Roman, A.; Radu, D. Experimental Models for Rare Melanoma Research—The Niche That Needs to Be Addressed. Bioengineering 2023, 10, 673. https://doi.org/10.3390/bioengineering10060673
Ionita I, Malita D, Dehelean C, Olteanu E, Marcovici I, Geamantan A, Chiriac S, Roman A, Radu D. Experimental Models for Rare Melanoma Research—The Niche That Needs to Be Addressed. Bioengineering. 2023; 10(6):673. https://doi.org/10.3390/bioengineering10060673
Chicago/Turabian StyleIonita, Ioana, Daniel Malita, Cristina Dehelean, Emilian Olteanu, Iasmina Marcovici, Andreea Geamantan, Sorin Chiriac, Andrea Roman, and Daniela Radu. 2023. "Experimental Models for Rare Melanoma Research—The Niche That Needs to Be Addressed" Bioengineering 10, no. 6: 673. https://doi.org/10.3390/bioengineering10060673
APA StyleIonita, I., Malita, D., Dehelean, C., Olteanu, E., Marcovici, I., Geamantan, A., Chiriac, S., Roman, A., & Radu, D. (2023). Experimental Models for Rare Melanoma Research—The Niche That Needs to Be Addressed. Bioengineering, 10(6), 673. https://doi.org/10.3390/bioengineering10060673