Mass Transfer Enhancement in High-Solids Anaerobic Digestion of Organic Fraction of Municipal Solid Wastes: A Review
Abstract
:1. Introduction
2. Overview of HS-AD and Process Design
2.1. Basics and Influencing Factors of HS-AD
2.2. Classification and Commercial Systems of HS-AD
3. Rheological Characteristics and Limitation of Mass Transfer of HS-AD
3.1. Rheological Characteristics of Digestate
3.2. Limitation of Mass Transfer
4. Strategies for Enhancing Mass Transfer in HS-AD
4.1. Substrate Pretreatment
4.2. Mixing Optimization
4.3. Biochar Addition
5. Summary and Future Trends
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, W.L.; Gupta, R.; Zhang, Z.K.; Cao, L.X.; Li, Y.Q.; Show, P.L.; Kumar, S.; Gupta, V.K.; Lin, K.Y.A.; Varjani, S.; et al. A review of high-solid anaerobic digestion (HSAD): From transport phenomena to process design. Renew. Sustain. Energy Rev. 2023, 180, 113305. [Google Scholar] [CrossRef]
- Xu, Y.; Gong, H.; Dai, X. High-solid anaerobic digestion of sewage sludge: Achievements and perspectives. Front. Environ. Sci. Eng. 2020, 15, 71. [Google Scholar] [CrossRef]
- Li, L.L.; Gao, Q.W.; Liu, X.P.; Zhao, Q.L.; Wang, W.Y.; Wang, K.; Zhou, H.M.; Jiang, J.Q. Insights into high-solids anaerobic digestion of food waste enhanced by activated carbon via promoting direct interspecies electron transfer. Bioresour. Technol. 2022, 351, 127008. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.W.; Li, L.L.; Zhao, Q.L.; Wang, K.; Zhou, H.M.; Wang, W.Y.; Ding, J. Insights into high-solids anaerobic digestion of food waste concomitant with sorbate: Performance and mechanisms. Bioresour. Technol. 2023, 381, 129159. [Google Scholar] [CrossRef] [PubMed]
- Li, L.L.; Wang, K.; Sun, Z.J.; Zhao, Q.L.; Zhou, H.M.; Gao, Q.W.; Jiang, J.Q.; Mei, W.Y. Effect of optimized intermittent mixing during high-solids anaerobic co-digestion of food waste and sewage sludge: Simulation, performance, and mechanisms. Sci. Total Environ. 2022, 842, 156882. [Google Scholar] [CrossRef]
- Di Capua, F.; Spasiano, D.; Giordano, A.; Adani, F.; Fratino, U.; Pirozzi, F.; Esposito, G. High-solid anaerobic digestion of sewage sludge: Challenges and opportunities. Appl. Energy 2020, 278, 115608. [Google Scholar] [CrossRef]
- Andre, L.; Pauss, A.; Ribeiro, T. Solid anaerobic digestion: State-of-art, scientific and technological hurdles. Bioresour. Technol. 2018, 247, 1027–1037. [Google Scholar] [CrossRef]
- Ellacuriaga, M.; Cascallana, J.G.; Gonzalez, R.; Gomez, X. High-Solid Anaerobic Digestion: Reviewing Strategies for Increasing Reactor Performance. Environments 2021, 8, 80. [Google Scholar] [CrossRef]
- Yue, L.C.; Cheng, J.; Zhang, H.H.; Yuan, L.Y.; Hua, J.J.; Dong, H.Q.; Li, Y.Y.; Zhou, J.H. Inhibition of N-Vanillylnonanamide in anaerobic digestion of lipids in food waste: Microorganisms damage and blocked electron transfer. J. Hazard. Mater. 2020, 399, 123098. [Google Scholar] [CrossRef]
- Wang, Z.Z.; Hu, Y.S.; Wang, S.; Wu, G.X.; Zhan, X.M. A critical review on dry anaerobic digestion of organic waste: Characteristics, operational conditions, and improvement strategies. Renew. Sustain. Energy Rev. 2023, 176, 113208. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Chen, J.J.; Song, J.; Hai, Z.; Lu, X.H.; Ji, X.Y.; Wang, C.S. Adjusting the rheological properties of corn-straw slurry to reduce the agitation power consumption in anaerobic digestion. Bioresour. Technol. 2019, 272, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Craig, K.J.; Nieuwoudt, M.N.; Niemand, L.J. CFD simulation of anaerobic digester with variable sewage sludge rheology. Water Res. 2013, 47, 4485–4497. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.S.; Li, J.B.; Han, L.J.; Xiao, W.H. High-solids enzymatic hydrolysis of ball-milled corn stover with reduced slurry viscosity and improved sugar yields. Biotechnol. Biofuels 2020, 13, 77. [Google Scholar] [CrossRef] [PubMed]
- Bollon, J.; Le-Hyaric, R.; Benbelkacem, H.; Buffiere, P. Development of a kinetic model for anaerobic dry digestion processes: Focus on acetate degradation and moisture content. Biochem. Eng. J. 2011, 56, 212–218. [Google Scholar] [CrossRef]
- Carlos-Pinedo, S.; Wang, Z.; Eriksson, O. Methane yield from SS-AD: Experiences to learn by a full spectrum analysis at laboratory-, pilot- and full-scale. Biomass Bioenergy 2019, 127, 105270. [Google Scholar] [CrossRef]
- Kunatsa, T.; Xia, X.H. A review on anaerobic digestion with focus on the role of biomass co-digestion, modelling and optimisation on biogas production and enhancement. Bioresour. Technol. 2022, 344, 126311. [Google Scholar] [CrossRef]
- Amin, F.R.; Khalid, H.; Zhang, H.; Rahman, S.U.; Zhang, R.H.; Liu, G.Q.; Chen, C. Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express 2017, 7, 72. [Google Scholar] [CrossRef]
- Li, L.L.; Wang, K.; Wei, L.L.; Zhao, Q.L.; Zhou, H.M.; Jiang, J.Q. CFD simulation and performance evaluation of gas mixing during high solids anaerobic digestion of food waste. Biochem. Eng. J. 2022, 178, 108279. [Google Scholar] [CrossRef]
- Latha, K.; Velraj, R.; Shanmugam, P.; Sivanesan, S. Mixing strategies of high solids anaerobic co-digestion using food waste with sewage sludge for enhanced biogas production. J. Clean. Prod. 2019, 210, 388–400. [Google Scholar] [CrossRef]
- Trad, Z.; Fontaine, J.P.; Larroche, C.; Vial, C. Multiscale mixing analysis and modeling of biohydrogen production by dark fermentation. Renew. Energy 2016, 98, 264–282. [Google Scholar] [CrossRef]
- Cha, M.; Kim, S.; Park, C. Recent advances and future potential of anaerobic ceramic membrane bioreactors for wastewater treatment: A review. Membr. Water Treat. 2020, 11, 31. [Google Scholar] [CrossRef]
- Zhao, D.Y.; Yan, B.H.; Liu, C.; Yao, B.; Luo, L.; Yang, Y.; Liu, L.C.; Wu, F.; Zhou, Y.Y. Mitigation of acidogenic product inhibition and elevated mass transfer by biochar during anaerobic digestion of food waste. Bioresour. Technol. 2021, 338, 125531. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Dutta, S.; You, S.M.; Luo, G.; Zhang, S.C.; Show, P.L.; Sawarkar, A.D.; Singh, L.; Tsang, D.C.W. A critical review on biochar for enhancing biogas production from anaerobic digestion of food waste and sludge. J. Clean. Prod. 2021, 305, 127143. [Google Scholar] [CrossRef]
- Li, Y.B.; Park, S.Y.; Zhu, J.Y. Solid-state anaerobic digestion for methane production from organic waste. Renew. Sustain. Energy Rev. 2011, 15, 821–826. [Google Scholar] [CrossRef]
- Ren, Y.Y.; Yu, M.; Wu, C.F.; Wang, Q.H.; Gao, M.; Huang, Q.Q.; Liu, Y. A comprehensive review on food waste anaerobic digestion: Research updates and tendencies. Bioresour. Technol. 2018, 247, 1069–1076. [Google Scholar] [CrossRef] [PubMed]
- Gerardi, M.H. The Microbiology of Anaerobic Digesters; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Tchobanoglus, G.; Burton, F.; Stensel, H.D. Wastewater engineering: Treatment and reuse. Am. Water Work. Assoc. J. 2003, 95, 201. [Google Scholar]
- Sarker, S.; Lamb, J.J.; Hjelme, D.R.; Lien, K.M. A Review of the Role of Critical Parameters in the Design and Operation of Biogas Production Plants. Appl. Sci. 2019, 9, 1915. [Google Scholar] [CrossRef]
- Nkuna, R.; Roopnarain, A.; Rashama, C.; Adeleke, R. Insights into organic loading rates of anaerobic digestion for biogas production: A review. Crit. Rev. Biotechnol. 2022, 42, 487–507. [Google Scholar] [CrossRef]
- Akinbomi, J.G.; Patinvoh, R.J.; Taherzadeh, M.J. Current challenges of high-solid anaerobic digestion and possible measures for its effective applications: A review. Biotechnol. Biofuels 2022, 15, 52. [Google Scholar] [CrossRef]
- Nizami, A.-S.; Saville, B.A.; MacLean, H.L. Anaerobic digesters: Perspectives and challenges. In Bioenergy Production by Anaerobic Digestion; Routledge: London, UK, 2013; pp. 139–151. [Google Scholar]
- Charlottenburg, A.; Rosenheim, H. Anaerobic Digestion; European Bioplastics eV: Berlin, Germany, 2015; Volume 8. [Google Scholar]
- De Baere, L. The Dranco Technology: A Unique Digestion Technology for Solid Organic Waste; Organic Waste Systems Pub.: Brussels, Beligium, 2010; pp. 1–8. [Google Scholar]
- Alvarez, C.; Colon, J.; Lopes, A.C.; Fernandez-Polanco, M.; Benbelkacem, H.; Buffiere, P. Hydrodynamics of high solids anaerobic reactor: Characterization of solid segregation and liquid mixing pattern in a pilot plant VALORGA facility under different reactor geometry. Waste Manag. 2018, 76, 306–314. [Google Scholar] [CrossRef]
- Wellinger, A.; Wyder, K.; Metzler, A.E. Kompogas—A New System for the Anaerobic Treatment of Source Separated Waste. Water Sci. Technol. 1993, 27, 153–158. [Google Scholar] [CrossRef]
- De Baere, L.; Mattheeuws, B.; Velghe, F. State of the art of anaerobic digestion in Europe. In Proceedings of the 12th World Congress on Anaerobic Digestion (AD12), Guadalajara, Mexico, 31 October–4 November 2010; pp. 3–6. [Google Scholar]
- Fagbohungbe, M.O.; Dodd, I.C.; Herbert, B.M.J.; Li, H.; Ricketts, L.; Semple, K.T. High solid anaerobic digestion: Operational challenges and possibilities. Environ. Technol. Innov. 2015, 4, 268–284. [Google Scholar] [CrossRef]
- Lutz, P. New BEKON Biogas technology for dry fermentation in batch process. In Description of BEKON Dry Fermentation Processing; BEKON: Unterföhring, Germany, 2010. [Google Scholar]
- Ten Brummeler, E.; Aarnink, M.; Koster, I. Dry anaerobic digestion of solid organic waste in a biocel reactor at pilot-plant scale. Water Sci. Technol. 1992, 25, 301–310. [Google Scholar] [CrossRef]
- Elsharkawy, K.; Elsamadony, M.; Afify, H. Comparative analysis of common full scale reactors for dry anaerobic digestion process. E3s Web Conf. 2019, 83, 01011. [Google Scholar] [CrossRef]
- Nkemka, V.N.; Murto, M. Two-stage anaerobic dry digestion of blue mussel and reed. Renew. Energy 2013, 50, 359–364. [Google Scholar] [CrossRef]
- Chavez-Vazquez, M.; Bagley, D.M. Evaluation of the performance of different anaerobic digestion technologies for solid waste treatment. In Proceedings of the Joint CSCE/EWRI of ASCE International Conference on Environmental Engineering, Niagara Falls, ON, Canada, 21–24 July 2002. [Google Scholar]
- Liu, X.-Y.; Ding, H.-B.; Wang, J.-Y. Food waste to bioenergy. In Bioenergy and Biofuel from Biowastes and Biomass; American Society of Civil Engineers (ASCE): Reston, VA, USA, 2010; pp. 43–70. [Google Scholar]
- Srisowmeya, G.; Chakravarthy, M.; Devi, G.N. Critical considerations in two-stage anaerobic digestion of food waste—A review. Renew. Sustain. Energy Rev. 2020, 119, 109587. [Google Scholar] [CrossRef]
- Fernández, J.; Pérez, M.; Romero, L.I. Effect of substrate concentration on dry mesophilic anaerobic digestion of organic fraction of municipal solid waste (OFMSW). Bioresour. Technol. 2008, 99, 6075–6080. [Google Scholar] [CrossRef]
- Rodríguez, J.F.; Pérez, M.; Romero, L.I. Mesophilic anaerobic digestion of the organic fraction of municipal solid waste: Optimisation of the semicontinuous process. Chem. Eng. J. 2012, 193, 10–15. [Google Scholar] [CrossRef]
- Eshtiaghi, N.; Markis, F.; Yap, S.D.; Baudez, J.C.; Slatter, P. Rheological characterisation of municipal sludge: A review. Water Res. 2013, 47, 5493–5510. [Google Scholar] [CrossRef]
- Li, L.; Wang, K.; Mei, W.; Gao, Q.; Zhao, Q.; Zhou, H.; Jiang, J. Rheology-dependent mass diffusion characteristics of high-solids anaerobic co-digestate of food waste and sewage sludge. Biochem. Eng. J. 2023, 199, 109043. [Google Scholar] [CrossRef]
- Moeller, G.; Torres, L.G. Rheological characterization of primary and secondary sludges treated by both aerobic and anaerobic digestion. Bioresour. Technol. 1997, 61, 207–211. [Google Scholar] [CrossRef]
- Dai, X.; Gai, X.; Dong, B. Rheology evolution of sludge through high-solid anaerobic digestion. Bioresour. Technol. 2014, 174, 6–10. [Google Scholar] [CrossRef]
- Liu, J.; Yu, D.; Zhang, J.; Yang, M.; Wang, Y.; Wei, Y.; Tong, J. Rheological properties of sewage sludge during enhanced anaerobic digestion with microwave-H2O2 pretreatment. Water Res. 2016, 98, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Beugre, E.Y.-M.; Gnagne, T. Vane geometry for measurement of influent rheological behaviour in dry anaerobic digestion. Renew. Sustain. Energy Rev. 2022, 155, 111928. [Google Scholar] [CrossRef]
- Liu, C.; Li, H.; Zhang, Y.; Si, D.; Chen, Q. Evolution of microbial community along with increasing solid concentration during high-solids anaerobic digestion of sewage sludge. Bioresour. Technol. 2016, 216, 87–94. [Google Scholar] [CrossRef]
- Jiang, J.; Wu, J.; Poncin, S.; Li, H.Z. Rheological characteristics of highly concentrated anaerobic digested sludge. Biochem. Eng. J. 2014, 86, 57–61. [Google Scholar] [CrossRef]
- Cao, X.; Jiang, K.; Wang, X.; Xu, G. Effect of total suspended solids and various treatment on rheological characteristics of municipal sludge. Res. Chem. Intermed. 2018, 44, 5123–5138. [Google Scholar] [CrossRef]
- Baudez, J.C.; Slatter, P.; Eshtiaghi, N. The impact of temperature on the rheological behaviour of anaerobic digested sludge. Chem. Eng. J. 2013, 215–216, 182–187. [Google Scholar] [CrossRef]
- Kariyama, I.D.; Zhai, X.D.; Wu, B.X. Influence of mixing on anaerobic digestion efficiency in stirred tank digesters: A review. Water Res. 2018, 143, 503–517. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Wu, J.; Poncin, S.; Cao, Z.P.; Li, Z.H.; Li, H.Z. Flow field investigation of high solid anaerobic digestion by Particle Image Velocimetry (PIV). Sci. Total Environ. 2018, 626, 592–602. [Google Scholar] [CrossRef]
- Li, Q.A.; Gao, X.; Liu, Y.Q.; Wang, G.J.; Li, Y.Y.; Sano, D.; Wang, X.C.; Chen, R. Biochar and GAC intensify anaerobic phenol degradation via distinctive adsorption and conductive properties. J. Hazard. Mater. 2021, 405, 124183. [Google Scholar] [CrossRef]
- Chew, K.R.; Leong, H.Y.; Khoo, K.S.; Vo, D.V.N.; Anjum, H.; Chang, C.K.; Show, P.L. Effects of anaerobic digestion of food waste on biogas production and environmental impacts: A review. Environ. Chem. Lett. 2021, 19, 2921–2939. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, D.; Dai, L.L.; Dong, B.; Dai, X.H. Magnetite Triggering Enhanced Direct Interspecies Electron Transfer: A Scavenger for the Blockage of Electron Transfer in Anaerobic Digestion of High-Solids Sewage Sludge. Environ. Sci. Technol. 2018, 52, 7160–7169. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.-B.; Cayetano, R.D.A.; Park, J.; Jo, Y.; Jeong, S.Y.; Lee, M.Y.; Pandey, A.; Kim, S.-H. Impact of thermal pretreatment on anaerobic digestion of dewatered sludge from municipal and industrial wastewaters and its economic feasibility. Energy 2022, 254, 124345. [Google Scholar] [CrossRef]
- Arelli, V.; Begum, S.; Anupoju, G.R.; Kuruti, K.; Shailaja, S. Dry anaerobic co-digestion of food waste and cattle manure: Impact of total solids, substrate ratio and thermal pre treatment on methane yield and quality of biomanure. Bioresour. Technol. 2018, 253, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Hu, Y.-Y.; Wang, S.-F.; Cao, Z.-P.; Li, H.-Z.; Fu, X.-M.; Wang, K.-J.; Zuo, J.-E. Effects of thermal treatment on high solid anaerobic digestion of swine manure: Enhancement assessment and kinetic analysis. Waste Manag. 2017, 62, 69–75. [Google Scholar] [CrossRef]
- Kim, G.-B.; Cayetano, R.D.A.; Park, J.; Jo, Y.; Jeong, S.Y.; Lee, M.Y.; Kim, S.-H. Effect of low-thermal pretreatment on the methanogenic performance and microbiome population of continuous high-solid anaerobic digester treating dewatered sludge. Bioresour. Technol. 2021, 341, 125756. [Google Scholar] [CrossRef]
- Wang, F.; Xu, F.; Liu, Z.; Cui, Z.; Li, Y. Effects of outdoor dry bale storage conditions on corn stover and the subsequent biogas production from anaerobic digestion. Renew. Energy 2019, 134, 276–283. [Google Scholar] [CrossRef]
- Dumas, C.; Silva Ghizzi Damasceno, G.; Barakat, A.; Carrère, H.; Steyer, J.-P.; Rouau, X. Effects of grinding processes on anaerobic digestion of wheat straw. Ind. Crops Prod. 2015, 74, 450–456. [Google Scholar] [CrossRef]
- Schroyen, M.; Vervaeren, H.; Vandepitte, H.; Van Hulle, S.W.H.; Raes, K. Effect of enzymatic pretreatment of various lignocellulosic substrates on production of phenolic compounds and biomethane potential. Bioresour. Technol. 2015, 192, 696–702. [Google Scholar] [CrossRef]
- Kaparaju, P.; Buendia, I.; Ellegaard, L.; Angelidakia, I. Effects of mixing on methane production during thermophilic anaerobic digestion of manure: Lab-scale and pilot-scale studies. Bioresour. Technol. 2008, 99, 4919–4928. [Google Scholar] [CrossRef]
- Karim, K.; Hoffmann, R.; Thomas Klasson, K.; Al-Dahhan, M.H. Anaerobic digestion of animal waste: Effect of mode of mixing. Water Res. 2005, 39, 3597–3606. [Google Scholar] [CrossRef]
- Ratanatamskul, C.; Saleart, T. Effects of sludge recirculation rate and mixing time on performance of a prototype single-stage anaerobic digester for conversion of food wastes to biogas and energy recovery. Environ. Sci. Pollut. Res. 2016, 23, 7092–7098. [Google Scholar] [CrossRef] [PubMed]
- Lü, F.; Liu, Y.; Shao, L.; He, P. Powdered biochar doubled microbial growth in anaerobic digestion of oil. Appl. Energy 2019, 247, 605–614. [Google Scholar] [CrossRef]
- Pan, J.; Ma, J.; Liu, X.; Zhai, L.; Ouyang, X.; Liu, H. Effects of different types of biochar on the anaerobic digestion of chicken manure. Bioresour. Technol. 2019, 275, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Forrester, S.; Koval, J.; Urgun-Demirtas, M. Yearlong semi-continuous operation of thermophilic two-stage anaerobic digesters amended with biochar for enhanced biomethane production. J. Clean. Prod. 2017, 167, 863–874. [Google Scholar] [CrossRef]
- Jang, H.M.; Choi, Y.-K.; Kan, E. Effects of dairy manure-derived biochar on psychrophilic, mesophilic and thermophilic anaerobic digestions of dairy manure. Bioresour. Technol. 2018, 250, 927–931. [Google Scholar] [CrossRef]
- Jiang, Q.; Chen, Y.; Yu, S.; Zhu, R.; Zhong, C.; Zou, H.; Gu, L.; He, Q. Effects of citrus peel biochar on anaerobic co-digestion of food waste and sewage sludge and its direct interspecies electron transfer pathway study. Chem. Eng. J. 2020, 398, 125643. [Google Scholar] [CrossRef]
- Elgarahy, A.M.; Eloffy, M.G.; Alengebawy, A.; El-Sherif, D.M.; Gaballah, M.S.; Elwakeel, K.Z.; El-Qelish, M. Sustainable management of food waste; pre-treatment strategies, techno-economic assessment, bibliometric analysis, and potential utilizations: A systematic review. Environ. Res. 2023, 225, 115558. [Google Scholar] [CrossRef]
- Richard, E.N.; Hilonga, A.; Machunda, R.L.; Njau, K.N. A review on strategies to optimize metabolic stages of anaerobic digestion of municipal solid wastes towards enhanced resources recovery. Sustain. Environ. Res. 2019, 29, 36. [Google Scholar] [CrossRef]
- Basinas, P.; Rusin, J.; Chamradova, K. Assessment of high-solid mesophilic and thermophilic anaerobic digestion of mechanically-separated municipal solid waste. Environ. Res. 2021, 192, 110202. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, H.C.; Franco, R.T.; Bayard, R.; Buffiere, P. Mechanical Pre-treatments Evaluation of Cattle Manure Before Anaerobic Digestion. Waste Biomass Valorization 2020, 11, 5175–5184. [Google Scholar] [CrossRef]
- Lindmark, J.; Leksell, N.; Schnurer, A.; Thorin, E. Effects of mechanical pre-treatment on the biogas yield from ley crop silage. Appl. Energy 2012, 97, 498–502. [Google Scholar] [CrossRef]
- Rocamora, I.; Wagland, S.T.; Villa, R.; Simpson, E.W.; Fernandez, O.; Bajon-Fernandez, Y. Dry anaerobic digestion of organic waste: A review of operational parameters and their impact on process performance. Bioresour. Technol. 2020, 299, 122681. [Google Scholar] [CrossRef]
- Tamaki, Y.; Mazza, G. Measurement of structural carbohydrates, lignins, and micro-components of straw and shives: Effects of extractives, particle size and crop species. Ind. Crops Prod. 2010, 31, 534–541. [Google Scholar] [CrossRef]
- Hernández-Shek, M.; Mathieux, M.; André, L.; Peultier, P.; Pauss, A.; Ribeiro, T. Quantifying porosity changes in solid biomass waste using a disruptive approach of water retention curves (WRC) for dry anaerobic digestion. Bioresour. Technol. Rep. 2020, 12, 100585. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, P.; Ma, B.; Wu, H.; Zhang, S.; Xu, X. Sewage sludge disintegration by high-pressure homogenization: A sludge disintegration model. J. Environ. Sci. 2012, 24, 814–820. [Google Scholar] [CrossRef]
- Onyeche, T.I.; Schlaefer, O.; Sievers, M. Advanced anaerobic digestion of sludge through high pressure homogenisation. J. Solid Waste Technol. Manag. 2003, 29, 56–61. [Google Scholar]
- Biswal, B.K.; Huang, H.; Dai, J.; Chen, G.H.; Wu, D. Impact of low-thermal pretreatment on physicochemical properties of saline waste activated sludge, hydrolysis of organics and methane yield in anaerobic digestion. Bioresour. Technol. 2020, 297, 122423. [Google Scholar] [CrossRef]
- Ruffino, B.; Campo, G.; Genon, G.; Lorenzi, E.; Novarino, D.; Scibilia, G.; Zanetti, M. Improvement of anaerobic digestion of sewage sludge in a wastewater treatment plant by means of mechanical and thermal pre-treatments: Performance, energy and economical assessment. Bioresour. Technol. 2015, 175, 298–308. [Google Scholar] [CrossRef]
- Kor-Bicakci, G.; Eskicioglu, C. Recent developments on thermal municipal sludge pretreatment technologies for enhanced anaerobic digestion. Renew. Sustain. Energy Rev. 2019, 110, 423–443. [Google Scholar] [CrossRef]
- Malina, J.F.; Dutt, A. Highly Efficient Anaerobic-Digestion with Thermal Pretreatment—Discussion. Water Sci. Technol. 1985, 17, 1297–1301. [Google Scholar] [CrossRef]
- Hu, Y.-Y.; Wu, J.; Li, H.-Z.; Poncin, S.; Wang, K.-J.; Zuo, J.-E. Study of an enhanced dry anaerobic digestion of swine manure: Performance and microbial community property. Bioresour. Technol. 2019, 282, 353–360. [Google Scholar] [CrossRef]
- Thamizhakaran Stanley, J.; Thanarasu, A.; Senthil Kumar, P.; Periyasamy, K.; Raghunandhakumar, S.; Periyaraman, P.; Devaraj, K.; Dhanasekaran, A.; Subramanian, S. Potential pre-treatment of lignocellulosic biomass for the enhancement of biomethane production through anaerobic digestion—A review. Fuel 2022, 318, 123593. [Google Scholar] [CrossRef]
- Zafar, H.; Peleato, N.; Roberts, D. A review of the role of pre-treatment on the treatment of food waste using microbial fuel cells. Environ. Technol. Rev. 2022, 11, 72–90. [Google Scholar] [CrossRef]
- Yan, C.; Liu, Y.; Cui, X.; Cao, L.; Xiong, J.; Zhang, Q.; Wang, Y.; Ruan, R. Improving the efficiency of anaerobic digestion: Domesticated paddy soil microbes enhance the hydrolytic acidification of rice straw and pig manure. Bioresour. Technol. 2022, 345, 126570. [Google Scholar] [CrossRef]
- Zia, M.; Ahmed, S.; Kumar, A. Anaerobic digestion (AD) of fruit and vegetable market waste (FVMW): Potential of FVMW, bioreactor performance, co-substrates, and pre-treatment techniques. Biomass Convers. Biorefinery 2022, 12, 3573–3592. [Google Scholar] [CrossRef]
- Ariunbaatar, J.; Panico, A.; Esposito, G.; Pirozzi, F.; Lens, P.N.L. Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl. Energy 2014, 123, 143–156. [Google Scholar] [CrossRef]
- Li, L.L.; Wang, K.; Zhao, Q.L.; Gao, Q.W.; Zhou, H.M.; Jiang, J.Q.; Mei, W.Y. A critical review of experimental and CFD techniques to characterize the mixing performance of anaerobic digesters for biogas production. Rev. Environ. Sci. Bio/Technol. 2022, 21, 665–689. [Google Scholar] [CrossRef]
- Di Maria, F.; Sordi, A.; Micale, C. Optimization of Solid State Anaerobic Digestion by inoculum recirculation: The case of an existing Mechanical Biological Treatment plant. Appl. Energy 2012, 97, 462–469. [Google Scholar] [CrossRef]
- Franca, L.S.; Bassin, J.P. The role of dry anaerobic digestion in the treatment of the organic fraction of municipal solid waste: A systematic review. Biomass Bioenergy 2020, 143, 105866. [Google Scholar] [CrossRef]
- Yao, Y.Q.; Yu, L.; Ghogare, R.; Dunsmoor, A.; Davaritouchaee, M.; Chen, S.L. Simultaneous ammonia stripping and anaerobic digestion for efficient thermophilic conversion of dairy manure at high solids concentration. Energy 2017, 141, 179–188. [Google Scholar] [CrossRef]
- Di Maria, F.; Barratta, M.; Bianconi, F.; Placidi, P.; Passeri, D. Solid anaerobic digestion batch with liquid digestate recirculation and wet anaerobic digestion of organic waste: Comparison of system performances and identification of microbial guilds. Waste Manag. 2017, 59, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Szamosi, Z.; Simenfalvi, Z. State of the art on mixing in an anaerobic digester: A review. Renew. Energy 2019, 141, 922–936. [Google Scholar] [CrossRef]
- Singh, B.; Kovacs, K.L.; Bagi, Z.; Nyari, J.; Szepesi, G.L.; Petrik, M.; Simenfalvi, Z.; Szamosi, Z. Enhancing Efficiency of Anaerobic Digestion by Optimization of Mixing Regimes Using Helical Ribbon Impeller. Fermentation 2021, 7, 251. [Google Scholar] [CrossRef]
- Lebranchu, A.; Delaunay, S.; Marchal, P.; Blanchard, F.; Pacaud, S.; Fick, M.; Olmos, E. Impact of shear stress and impeller design on the production of biogas in anaerobic digesters. Bioresour. Technol. 2017, 245, 1139–1147. [Google Scholar] [CrossRef]
- Trad, Z.; Vial, C.; Fontaine, J.P.; Larroche, C. Mixing and liquid-to-gas mass transfer under digester operating conditions. Chem. Eng. Sci. 2017, 170, 606–627. [Google Scholar] [CrossRef]
- Deublein, D.; Steinhauser, A. Biogas from Waste and Renewable Resources: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Chuenchart, W.; Karki, R.; Shitanaka, T.; Marcelino, K.R.; Lu, H.; Khanal, S.K. Nanobubble technology in anaerobic digestion: A review. Bioresour. Technol. 2021, 329, 124916. [Google Scholar] [CrossRef]
- Karthikeyan, O.P.; Visvanathan, C. Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: A review. Rev. Environ. Sci. Bio/Technol. 2013, 12, 257–284. [Google Scholar] [CrossRef]
- Zheng, Z.H.; Cai, Y.F.; Zhao, Y.B.; Meng, X.Y.; Zhang, Y.; Lu, C.G.; Hu, Y.G.; Cui, Z.J.; Wang, X.F. Achieve clean and efficient biomethane production by matching between digestate recirculation and straw-to-manure feeding ratios. J. Clean. Prod. 2020, 263, 121414. [Google Scholar] [CrossRef]
- Roopnarain, A.; Rama, H.; Ndaba, B.; Bello-Akinosho, M.; Bamuza-Pemu, E.; Adeleke, R. Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization. Renew. Sustain. Energy Rev. 2021, 152, 111717. [Google Scholar] [CrossRef]
- Lindmark, J.; Thorin, E.; Fdhila, R.B.; Dahlquist, E. Effects of mixing on the result of anaerobic digestion: Review. Renew. Sustain. Energy Rev. 2014, 40, 1030–1047. [Google Scholar] [CrossRef]
- Hoffmann, R.A.; Garcia, M.L.; Veskivar, M.; Karim, K.; Al-Dahhan, M.H.; Angenent, L.T. Effect of shear on performance and microbial ecology of continuously stirred anaerobic digesters treating animal manure. Biotechnol. Bioeng. 2008, 100, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Ward, A.J.; Hobbs, P.J.; Holliman, P.J.; Jones, D.L. Optimisation of the anaerobic digestion of agricultural resources. Bioresour. Technol. 2008, 99, 7928–7940. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.B.; Zou, D.X.; Yuan, H.R.; Wang, L.F.; Zhang, X.; Li, X.J. Identifying proper agitation interval to prevent floating layers formation of corn stover and improve biogas production in anaerobic digestion. Bioresour. Technol. 2015, 186, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Frey, J.; Grüssing, F.; Nägele, H.-J.; Oechsner, H. Cutting the electric power consumption of biogas plants: The impact of new technologies. Landtechnik 2013, 68, 58–63. [Google Scholar]
- Kress, P.; Nägele, H.-J.; Oechsner, H.; Ruile, S. Effect of agitation time on nutrient distribution in full-scale CSTR biogas digesters. Bioresour. Technol. 2018, 247, 1–6. [Google Scholar] [CrossRef]
- Wang, J.; Xue, Q.; Guo, T.; Mei, Z.; Long, E.; Wen, Q.; Huang, W.; Luo, T.; Huang, R. A review on CFD simulating method for biogas fermentation material fluid. Renew. Sustain. Energy Rev. 2018, 97, 64–73. [Google Scholar] [CrossRef]
- Wang, G.; Li, Q.; Gao, X.; Wang, X.C. Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar: Performance and associated mechanisms. Bioresour. Technol. 2018, 250, 812–820. [Google Scholar] [CrossRef]
- Ye, M.; Liu, J.Y.; Ma, C.N.; Li, Y.Y.; Zou, L.P.; Qian, G.R.; Xu, Z.P. Improving the stability and efficiency of anaerobic digestion of food waste using additives: A critical review. J. Clean. Prod. 2018, 192, 316–326. [Google Scholar] [CrossRef]
- Bu, J.; Hu, B.B.; Wu, H.Z.; Zhu, M.J. Improved methane production with redox-active/conductive biochar amendment by establishing spatial ecological niche and mediating electron transfer. Bioresour. Technol. 2022, 351, 127072. [Google Scholar] [CrossRef]
- Luo, C.H.; Lu, F.; Shao, L.M.; He, P.J. Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes. Water Res. 2015, 68, 710–718. [Google Scholar] [CrossRef]
- Chen, L.; Fang, W.; Liang, J.S.; Nabi, M.; Cai, Y.J.; Wang, Q.Y.; Zhang, P.Y.; Zhang, G.M. Biochar application in anaerobic digestion: Performances, mechanisms, environmental assessment and circular economy. Resour. Conserv. Recycl. 2023, 188, 106720. [Google Scholar] [CrossRef]
- Fagbohungbe, M.O.; Herbert, B.M.J.; Hurst, L.; Ibeto, C.N.; Li, H.; Usmani, S.Q.; Semple, K.T. The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion. Waste Manag. 2017, 61, 236–249. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.F.; Zhao, Z.Q.; Zhang, Y.B. Enhancing anaerobic digestion of kitchen wastes with biochar: Link between different properties and critical mechanisms of promoting interspecies electron transfer. Renew. Energy 2021, 167, 791–799. [Google Scholar] [CrossRef]
- Saif, I.; Thakur, N.; Zhang, P.; Zhang, L.H.; Xing, X.H.; Yue, J.W.; Song, Z.Z.; Nan, L.; Yujun, S.; Usman, M.; et al. Biochar assisted anaerobic digestion for biomethane production: Microbial symbiosis and electron transfer. J. Environ. Chem. Eng. 2022, 10, 107960. [Google Scholar] [CrossRef]
- Park, J.H.; Kang, H.J.; Park, K.H.; Park, H.D. Direct interspecies electron transfer via conductive materials: A perspective for anaerobic digestion applications. Bioresour. Technol. 2018, 254, 300–311. [Google Scholar] [CrossRef]
- Qiu, L.; Deng, Y.F.; Wang, F.; Davaritouchaee, M.; Yao, Y.Q. A review on biochar-mediated anaerobic digestion with enhanced methane recovery. Renew. Sustain. Energy Rev. 2019, 115, 109373. [Google Scholar] [CrossRef]
- Zhuang, H.F.; Zhu, H.; Zhang, J.; Shan, S.D.; Fang, C.R.; Tang, H.J.; Xie, Q.N. Enhanced 2,4,6-trichlorophenol anaerobic degradation by Fe3O4 supported on water hyacinth biochar for triggering direct interspecies electron transfer and its use in coal gasification wastewater treatment. Bioresour. Technol. 2020, 296, 122306. [Google Scholar] [CrossRef]
- Jeyakumar, R.B.; Vincent, G.S. Recent Advances and Perspectives of Nanotechnology in Anaerobic Digestion: A New Paradigm towards Sludge Biodegradability. Sustainability 2022, 14, 7191. [Google Scholar] [CrossRef]
- Jadhav, P.; Nasrullah, M.; Zularisam, A.W.; Bhuyar, P.; Krishnan, S.; Mishra, P. Direct interspecies electron transfer performance through nanoparticles (NPs) for biogas production in the anaerobic digestion process. Int. J. Environ. Sci. Technol. 2022, 19, 10427–10439. [Google Scholar] [CrossRef]
- Chiappero, M.; Norouzi, O.; Hu, M.; Demichelis, F.; Berruti, F.; Di Maria, F.; Mašek, O.; Fiore, S. Review of biochar role as additive in anaerobic digestion processes. Renew. Sustain. Energy Rev. 2020, 131, 110037. [Google Scholar] [CrossRef]
- Aslam, A.; Khan, S.J.; Shahzad, H.M.A. Anaerobic membrane bioreactors (AnMBRs) for municipal wastewater treatment-potential benefits, constraints, and future perspectives: An updated review. Sci. Total Environ. 2022, 802, 149612. [Google Scholar] [CrossRef] [PubMed]
Strategies for Enhancing Mass Transfer | Operating Conditions | Substrates | AD Efficiency | Ref. | ||
---|---|---|---|---|---|---|
Substrate pretreatment | High-thermal pretreatment | 140 °C for 3 h | Dewatered sludge | Increase in CH4 yield at 81% | [62] | |
High-thermal pretreatment | 121 °C at 103.4 kPa for 30 min | Food waste and cattle manure | Increase in CH4 yield at 139% | [63] | ||
Low-thermal pretreatment | 70 °C for 3 days | Swine manure | Increase in CH4 yield at 39.5% | [64] | ||
Low-thermal pretreatment | 60 °C for 3 h | Dewatered sludge | Increase in CH4 yield at 547% | [65] | ||
Mechanical pretreatment with grinding/chopping | Using a Wiley Mill, 1, 12.7 mm particle size | Corn stover | Increase in CH4 yield at 26.8 | [66] | ||
Mechanical pretreatment with grinding/chopping | Using a cutting mill, 2.0, 1.0, 0.5, 0.25, 0.12 mm particle size | Wheat straw | Increase in CH4 yield at 37.8 | [67] | ||
Enzyme | peroxidase; 6 h–24 h; 30 °C | Corn stover | Improved lignin degradation at 15% | [68] | ||
Mixing optimization | Mechanical mixing | Mixer type: stirrer | Mixing interval: continuous | Cattle manure | Biogas production rate at 0.67 L/L | [69] |
Mixing interval: minimal | Biogas production rate at 0.75 L/L | |||||
Mixing interval: intermittent | Biogas production rate at 0.68 L/L | |||||
Mixer type: impeller | Mixing interval: continuous | Biogas production rate at 1.20 L/L | ||||
Mixing interval: minimal | Biogas production rate at 1.21 L/L | |||||
Pneumatic mixing | Biogas mixed with intermittent | Cattle manure | Increase in biogas production rate at 45.1% | [70] | ||
Hydraulic mixing | Slurry with intermittent | Cattle manure | Biogas production rate at 1.64 L/L | |||
Sludge recirculation with intermittent | Food waste | Biogas production rate at 16.20 m3/d | [71] | |||
Biochar addition | Manganese oxide-modified biochar (2.36 g/g VS) | Pyrolysis temperature at 600 °C for 120 min | Sludge dewatering | Increase in CH4 yield at 121.97 | [72] | |
Granular biochar (10 g/L) | Pyrolysis temperature at 800 °C for 8 h | Oil | Increase in CH4 yield at 32.5 | [72] | ||
Fruitwood biochar | Pyrolysis temperature at 550 °C for 120 min | Chicken manure | Increase in CH4 yield at 69 | [73] | ||
Corn stover biochar (0.25–1.0 g/day) | Pyrolysis temperature at 500 °C for 120 min | Primary sludge and waste-activated sludge | Increase in CH4 yield at 25 | [74] | ||
Manure-derived biochar (10 g/L) | Pyrolysis temperature at 350 °C for 3 h | Dry dairy manure | Increase in CH4 yield at 24.9 | [75] | ||
Citrus peel (0.5–1.5 g/g VS) | Pyrolysis temperature at 500 °C | Food waste and sludge | Increase in CH4 yield at about 89–151% | [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Q.; Li, L.; Wang, K.; Zhao, Q. Mass Transfer Enhancement in High-Solids Anaerobic Digestion of Organic Fraction of Municipal Solid Wastes: A Review. Bioengineering 2023, 10, 1084. https://doi.org/10.3390/bioengineering10091084
Gao Q, Li L, Wang K, Zhao Q. Mass Transfer Enhancement in High-Solids Anaerobic Digestion of Organic Fraction of Municipal Solid Wastes: A Review. Bioengineering. 2023; 10(9):1084. https://doi.org/10.3390/bioengineering10091084
Chicago/Turabian StyleGao, Qingwei, Lili Li, Kun Wang, and Qingliang Zhao. 2023. "Mass Transfer Enhancement in High-Solids Anaerobic Digestion of Organic Fraction of Municipal Solid Wastes: A Review" Bioengineering 10, no. 9: 1084. https://doi.org/10.3390/bioengineering10091084
APA StyleGao, Q., Li, L., Wang, K., & Zhao, Q. (2023). Mass Transfer Enhancement in High-Solids Anaerobic Digestion of Organic Fraction of Municipal Solid Wastes: A Review. Bioengineering, 10(9), 1084. https://doi.org/10.3390/bioengineering10091084