Deep Learning of Speech Data for Early Detection of Alzheimer’s Disease in the Elderly
Abstract
:1. Introduction
2. Methods
2.1. Patient Information
2.2. Clinical Data Collection
2.3. Data Preprocessing
2.4. Spectrogram
2.5. Deep Learning Algorithms
3. Results
Performance Comparison
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Appendix A
Model Name | Augmentation | Sensitivity | Specificity | Accuracy | PPV | NPV | F1-Score | AUC |
---|---|---|---|---|---|---|---|---|
Densnet121 | Brightness ±5% | 1.0000 | 0.8571 | 0.9375 | 0.9000 | 1.0000 | 0.9473 | 1.0000 |
Densnet121 | Brightness ±10% | 1.0000 | 0.8000 | 0.8750 | 0.7500 | 1.0000 | 0.8571 | 0.9666 |
Densnet121 | Brightness ±15% | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9682 |
Densnet121 | Brightness ±20% | 1.0000 | 0.8888 | 0.9375 | 0.8750 | 1.0000 | 0.9333 | 0.9523 |
Model Name | Augmentation | Sensitivity | Specificity | Accuracy | PPV | NPV | F1-Score | AUC |
---|---|---|---|---|---|---|---|---|
Densnet121 | Right shift 5% | 1.0000 | 0.8750 | 0.9375 | 0.8888 | 1.0000 | 0.9411 | 0.9375 |
Densnet121 | Right shift 10% | 1.0000 | 0.8571 | 0.9375 | 0.9000 | 1.0000 | 0.9473 | 0.9365 |
Densnet121 | Right shift 15% | 1.0000 | 0.9000 | 0.9375 | 0.8571 | 1.0000 | 0.9230 | 0.9833 |
Densnet121 | Right shift 20% | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Densnet121 | Right shift 25% | 0.8571 | 1.0000 | 0.9375 | 1.0000 | 0.9000 | 0.9230 | 1.0000 |
References
- Palop, J.J.; Chin, J.; Mucke, L. A network dysfunction perspective on neurodegenerative diseases. Nature 2006, 443, 768–773. [Google Scholar] [CrossRef]
- McGeer, P.L.; McGeer, E.G. The inflammatory response system of brain: Implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res. Rev. 1995, 21, 195–218. [Google Scholar] [CrossRef]
- Cho, E.; Park, M. Palmitoylation in Alzheimers disease and other neurodegenerative diseases. Pharmacol. Res. 2016, 111, 133–151. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.-K.; Chao, S.-P.; Hu, C.-J. Clinical trials of new drugs for Alzheimer disease. J. Biomed. Sci. 2020, 27, 18. [Google Scholar] [CrossRef]
- Zanetti, O.; Solerte, S.B.; Cantoni, F. Life expectancy in Alzheimer’s disease (AD). Arch. Gerontol. Geriatr. 2009, 49, 237–243. [Google Scholar] [CrossRef]
- Patwardhan, A.G.; Belemkar, S. An update on Alzheimer’s disease: Immunotherapeutic agents, stem cell therapy and gene editing. Life Sci. 2021, 282, 119790. [Google Scholar] [CrossRef] [PubMed]
- Janoutová, J.; Kovalová, M.; Machaczka, O.; Ambroz, P.; Zatloukalová, A.; Němček, K.; Janout, V. Risk Factors for Alzheimer’s Disease: An Epidemiological Study. Curr. Alzheimer Res. 2021, 18, 372–379. [Google Scholar] [CrossRef]
- Kuang, J.; Zhang, P.; Cai, T.; Zou, Z.; Li, L.; Wang, N.; Wu, L. Prediction of transition from mild cognitive impairment to Alzheimer’s disease based on a logistic regression–artificial neural network–decision tree model. Geriatr. Gerontol. Int. 2020, 21, 43–47. [Google Scholar] [CrossRef]
- Chen, S.; Song, Y.; Xu, W.; Hu, G.; Ge, H.; Xue, C.; Gao, J.; Qi, W.; Lin, X.; Chen, J.; et al. Impaired Memory Awareness and Loss Integration in Self-Referential Network Across the Progression of Alzheimer’s Disease Spectrum. J. Alzheimer’s Dis. 2021, 83, 111–126. [Google Scholar] [CrossRef]
- Chyniak, O.S.; Dubenko, O.Y.; Potapov, O.O. The relationship between decreased cognitive functions and the level of proinflammatory cytokines in patients with Alzheimer’s disease, vascular dementia, and mild cognitive disorder. Eastern Ukr. Med. J. 2021, 9, 247–255. [Google Scholar]
- Bavarsad, K.; Hosseini, M.; Hadjzadeh, M.; Sahebkar, A. The effects of thyroid hormones on memory impairment and Alzheimer’s disease. J. Cell. Physiol. 2019, 234, 14633–14640. [Google Scholar] [CrossRef]
- Perry, R.J.; Watson, P.; Hodges, J.R. The nature and staging of attention dysfunction in early (minimal and mild) Alzheimer’s disease: Relationship to episodic and semantic memory impairment. Neuropsychologia 1999, 38, 252–271. [Google Scholar] [CrossRef] [PubMed]
- Price, B.H.; Gurvit, H.; Weintraub, S.; Geula, C.; Leimkuhler, E.; Mesulam, M. Neuropsychological Patterns and Language Deficits in 20 Consecutive Cases of Autopsy-Confirmed Alzheimer’s Disease. Arch. Neurol. 1993, 50, 931–937. [Google Scholar] [CrossRef] [PubMed]
- Sarazin, M.; Stern, Y.; Berr, C.; Riba, A.; Albert, M.; Brandt, J.; Dubois, B. Neuropsychological predictors of dependency in patients with Alzheimer disease. Neurology 2005, 64, 1027–1031. [Google Scholar] [CrossRef]
- Caramelli, P.; Mansur, L.L.; Nitrini, R. Language and Communication Disorders in Dementia of the Alzheimer Type. In Handbook of Neurolinguistics; Academic Press: New York, NY, USA, 1998; pp. 463–473. [Google Scholar] [CrossRef]
- Mackenzie, T.B.; Robiner, W.N.; Knopman, D.S. Differences between patient and family assessments of depression in Alzheimer’s disease. Am. J. Psychiatry 1989, 146, 1174–1178. [Google Scholar] [CrossRef]
- Sheth, K. Alzheimer’s’ The Family Disease’: Examining the Effects of Resilience on Preparedness and Compassion in Asian Family Caregivers. Ph.D. Thesis, Alliant International University, San Diego, CA, USA, 2020. [Google Scholar]
- Zvěřová, M. Clinical aspects of Alzheimer’s disease. Clin. Biochem. 2019, 72, 3–6. [Google Scholar] [CrossRef]
- Banerjee, S. The macroeconomics of dementia—Will the world economy get Alzheimer’s disease? Arch. Med. Res. 2012, 43, 705–709. [Google Scholar] [CrossRef]
- Thorpe, K.E.; Ogden, L.L.; Galactionova, K. Chronic conditions account for rise in medicare spending from 1987 to 2006. Health Aff. 2010, 29, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Nestor, P.J.; Scheltens, P.; Hodges, J.R. Advances in the early detection of Alzheimer’s disease. Nat. Med. 2004, 10, S34–S41. [Google Scholar] [CrossRef]
- Welsh, K.; Butters, N.; Hughes, J.; Mohs, R.; Heyman, A. Detection of Abnormal Memory Decline in Mild Cases of Alzheimer’s Disease Using CERAD Neuropsychological Measures. Arch. Neurol. 1991, 48, 278–281. [Google Scholar] [CrossRef]
- Bharati, S.; Podder, P.; Thanh, D.N.H.; Prasath, V.B.S. Dementia classification using MR imaging and clinical data with voting based machine learning models. Multimed. Tools Appl. 2022, 81, 25971–25992. [Google Scholar] [CrossRef]
- McGeer, P.L.; Kamo, H.; Harrop, R.; McGeer, E.G.; Martin WR, W.; Pate, B.D.; Li DK, B. Comparison of PET, MRI, and CT with pathology in a proven case of Alzheimer’s disease. Neurology 1986, 36, 1569. [Google Scholar] [CrossRef]
- Weiner, M.F. Alzheimer’s Disease: Diagnosis and Treatment. Harv. Rev. Psychiatry 1997, 4, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Jha, A.; Mukhopadhaya, K. Alzheimer’s Disease: Diagnosis and Treatment Guide; Springer Nature: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Kato, S.; Homma, A.; Sakuma, T. Easy Screening for Mild Alzheimer’s Disease and Mild Cognitive Impairment from Elderly Speech. Curr. Alzheimer Res. 2018, 15, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Ashford, J.W. Advances in screening instruments for Alzheimer’s disease. Aging Med. 2019, 2, 88–93. [Google Scholar] [CrossRef]
- De Roeck, E.E.; De Deyn, P.P.; Dierckx, E.; Engelborghs, S. Brief cognitive screening instruments for early detection of Alzheimer’s disease: A systematic review. Alzheimer’s Res. Ther. 2019, 11, 21. [Google Scholar] [CrossRef]
- Monsch, A.U.; Bondi, M.W.; Butters, N.; Salmon, D.P.; Katzman, R.; Thal, L.J. Comparisons of Verbal Fluency Tasks in the Detection of Dementia of the Alzheimer Type. Arch. Neurol. 1992, 49, 1253–1258. [Google Scholar] [CrossRef]
- Cuetos, F.; Arango-Lasprilla, J.C.; Uribe, C.; Valencia, C.; Lopera, F. Linguistic changes in verbal expression: A preclinical marker of Alzheimer’s disease. J. Int. Neuropsychol. Soc. 2007, 13, 433–439. [Google Scholar] [CrossRef]
- Taler, V.; Phillips, N.A. Language performance in Alzheimer’s disease and mild cognitive impairment: A comparative review. J. Clin. Exp. Neuropsychol. 2008, 30, 501–556. [Google Scholar] [CrossRef]
- Reilly, J.; Rodriguez, A.D.; Lamy, M.; Neils-Strunjas, J. Cognition, language, and clinical pathological features of non-Alzheimer’s dementias: An overview. J. Commun. Disord. 2010, 43, 438–452. [Google Scholar] [CrossRef]
- Lopez-De-Ipina, K.; Martinez-De-Lizarduy, U.; Calvo, P.M.; Mekyska, J.; Beitia, B.; Barroso, N.; Estanga, A.; Tainta, M.; Ecay-Torres, M. Advances on Automatic Speech Analysis for Early Detection of Alzheimer Disease: A Non-linear Multi-task Approach. Curr. Alzheimer Res. 2018, 15, 139–148. [Google Scholar] [CrossRef]
- Meilan, J.J.; Martinez-Sanchez, F.; Carro, J.; Carcavilla, N.; Ivanova, O. Voice Markers of Lexical Access in Mild Cognitive Impairment and Alzheimer’s Disease. Curr. Alzheimer Res. 2018, 15, 111–119. [Google Scholar] [CrossRef]
- Martínez-Nicolás, I.; Llorente, T.E.; Martínez-Sánchez, F.; Meilán, J.J.G. Ten Years of Research on Automatic Voice and Speech Analysis of People With Alzheimer’s Disease and Mild Cognitive Impairment: A Systematic Review Article. Front. Psychol. 2021, 12, 620251. [Google Scholar] [CrossRef]
- Ortega, L.V.; Aprahamian, I.; Martinelli, J.E.; Cecchini, M.A.; Cação, J.d.C.; Yassuda, M.S. Diagnostic Accuracy of Usual Cognitive Screening Tests Versus Appropriate Tests for Lower Education to Identify Alzheimer Disease. J. Geriatr. Psychiatry Neurol. 2020, 34, 222–231. [Google Scholar] [CrossRef]
- Amlerova, J.; Laczó, J.; Nedelska, Z.; Laczó, M.; Vyhnálek, M.; Zhang, B.; Sheardova, K.; Angelucci, F.; Andel, R.; Hort, J. Emotional prosody recognition is impaired in Alzheimer’s disease. Alzheimer’s Res. Ther. 2022, 14, 50. [Google Scholar] [CrossRef]
- Oh, C.; Morris, R.J.; Wang, X. A Systematic Review of Expressive and Receptive Prosody in People With Dementia. J. Speech Lang. Hear. Res. 2021, 64, 3803–3825. [Google Scholar] [CrossRef]
- Tosto, G.; Gasparini, M.; Lenzi, G.L.; Bruno, G. Prosodic impairment in Alzheimer’s disease: Assessment and clinical relevance. J. Neuropsychiatry Clin. Neurosci. 2011, 23, E21–E23. [Google Scholar] [CrossRef]
- Kundaram, S.S.; Pathak, K.C. Deep learning-based alzheimer disease detection. In Proceedings of the Fourth International Conference on Microelectronics, Computing and Communication Systems, Ranchi, India, 11–12 May 2019; Springer: Singapore, 2021. [Google Scholar]
- Pathak, K.C.; Kundaram, S.S. Accuracy-Based Performance Analysis of Alzheimer’s Disease Classification Using Deep Convolution Neural Network. In Soft Computing: Theories and Applications: Proceedings of SoCTA 2019; Springer: Singapore, 2020; pp. 731–744. [Google Scholar] [CrossRef]
- Takeda, C.; Guyonnet, S.; Ousset, P.; Soto, M.; Vellas, B. Toulouse Alzheimer’s Clinical Research Center recovery after the COVID-19 crisis: Telemedicine an innovative solution for clinical research during the coronavirus pandemic. J. Prev. Alzheimer’s Dis. 2020, 7, 301–304. [Google Scholar] [CrossRef]
- Capozzo, R.; Zoccolella, S.; Frisullo, M.E.; Barone, R.; Dell’abate, M.T.; Barulli, M.R.; Musio, M.; Accogli, M.; Logroscino, G. Telemedicine for Delivery of Care in Frontotemporal Lobar Degeneration during COVID-19 Pandemic: Results from Southern Italy. J. Alzheimer’s Dis. 2020, 76, 481–489. [Google Scholar] [CrossRef]
- Nester, C.O.; Mogle, J.; Katz, M.J.; Wang, C.; Lipton, R.B.; Derby, C.A.; Rabin, L. Aging research in the time of COVID-19: A telephone screen for subjective cognitive concerns in community-dwelling ethnically diverse older adults. Alzheimer’s Dement. 2021, 17, e056403. [Google Scholar] [CrossRef]
- Sotaniemi, M.; Pulliainen, V.; Hokkanen, L.; Pirttilä, T.; Hallikainen, I.; Soininen, H.; Hänninen, T. CERAD-neuropsychological battery in screening mild Alzheimer’s disease. Acta Neurol. Scand. 2011, 125, 16–23. [Google Scholar] [CrossRef]
- Gosse, P.J.; Kassardjian, C.D.; Masellis, M.; Mitchell, S.B. Virtual care for patients with Alzheimer disease and related dementias during the COVID-19 era and beyond. Can. Med. Assoc. J. 2021, 193, E371–E377. [Google Scholar] [CrossRef]
- Matamala-Gomez, M.; Bottiroli, S.; Realdon, O.; Riva, G.; Galvagni, L.; Platz, T.; Sandrini, G.; De Icco, R.; Tassorelli, C. Telemedicine and Virtual Reality at Time of COVID-19 Pandemic: An Overview for Future Perspectives in Neurorehabilitation. Front. Neurol. 2021, 12, 646902. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, E.; Zucchella, C.; Bottiroli, S.; Federico, A.; Giugno, R.; Sandrini, G.; Chiamulera, C.; Tamburin, S. Telemedicine and Virtual Reality for Cognitive Rehabilitation: A Roadmap for the COVID-19 Pandemic. Front. Neurol. 2020, 11, 926. [Google Scholar] [CrossRef] [PubMed]
- Prins, S.; Zhuparris, A.; Hart, E.P.; Doll, R.J.; Groeneveld, G.J. A cross-sectional study in healthy elderly subjects aimed at development of an algorithm to increase identification of Alzheimer pathology for the purpose of clinical trial participation. Alzheimer’s Res. Ther. 2021, 13, 132. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Mano, T.; Ihara, R.; Suzuki, K.; Niimi, Y.; Toda, T.; Iwatsubo, T.; Iwata, A.; Alzheimer’s Disease Neuroimaging Initiative; Japanese Alzheimer’s Disease Neuroimaging Initiative; et al. Cohort-specific optimization of models predicting preclinical Alzheimer’s disease, to enhance screening performance in the middle of preclinical Alzheimer’s disease clinical studies. J. Prev. Alzheimer’s Dis. 2021, 8, 503–512. [Google Scholar] [CrossRef]
- Kwon, S.J.; Kim, H.S.; Han, J.H.; Bin Bae, J.; Kim, K.W. Reliability and Validity of Alzheimer’s Disease Screening With a Semi-automated Smartphone Application Using Verbal Fluency. Front. Neurol. 2021, 12, 684902. [Google Scholar] [CrossRef]
- Bae, M.; Chang, K.J. Cognitive function of the elderly without dementia in Korea: Cross-sectional study. Alzheimer’s Dement. 2021, 17, e051714. [Google Scholar] [CrossRef]
- Jung, Y.-S.; Park, T.; Kim, E.-K.; Jeong, S.-H.; Lee, Y.-E.; Cho, M.-J.; Song, K.-B.; Choi, Y.-H. Influence of Chewing Ability on Elderly Adults’ Cognitive Functioning: The Mediating Effects of the Ability to Perform Daily Life Activities and Nutritional Status. Int. J. Environ. Res. Public Health 2022, 19, 1236. [Google Scholar] [CrossRef]
- Suh, H.-W.; Seol, J.-H.; Bae, E.-J.; Kwak, H.-Y.; Hong, S.; Park, Y.-S.; Lim, J.H.; Chung, S.-Y. Effectiveness and Safety of the Korean Medicine Senior Health Promotion Program Using Herbal Medicine and Acupuncture for Mild Cognitive Impairment: A Retrospective Study of 500 Patients in Seoul, Korea. Evid.-Based Complement. Altern. Med. 2021, 2021, 8820705. [Google Scholar] [CrossRef]
- Park, Y.-S.; Jee, Y.-J. The Effects on Cognitive, Emotional, and Physical Functions of the Elderly at Local Senior Center from Dementia Prevention Program for the Dementia Safety Village. J. Med. Imaging Health Inform. 2021, 11, 508–512. [Google Scholar] [CrossRef]
- Kim, M.; Kim, H.; Lim, J.S. Classification of Diagnosis of Alzheimer’s Disease Based on Convolutional Layers of VGG16 Model using Speech Data. In Proceedings of the 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Republic of Korea, 21–23 October 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar] [CrossRef]
- Ha, J.-H.; Kwak, M.; Han, J.W.; Lee, H.J.; Ingersoll-Dayton, B.; Spencer, B.; Kim, K.W. The effectiveness of a couple-based intervention for people living with mild Alzheimer’s disease and their spousal caregivers in Korea. Dementia 2018, 20, 831–847. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Jhoo, J.H.; Park, J.H.; Kim, J.L.; Ryu, S.H.; Moon, S.W.; Choo, I.H.; Lee, D.W.; Yoon, J.C.; Do, Y.J.; et al. Korean Version of Mini Mental Status Examination for Dementia Screening and Its’ Short Form. Psychiatry Investig. 2010, 7, 102–108. [Google Scholar] [CrossRef]
- HAMMINJOO; Lee, J.; Kim, S.; Yoo, D. The effects of a multimodal interventional program on cognitive function, instrumental activities of daily living in patients with mild Alzheimer’s disease. Korean J. Occup. Ther. 2018, 26, 91–102. [Google Scholar]
- Meghanani, A.; Anoop, C.S.; Ramakrishnan, A.G. An Exploration of Log-Mel Spectrogram and MFCC Features for Alzheimer’s Dementia Recognition from Spontaneous Speech. In Proceedings of the 2021 IEEE Spoken Language Technology Workshop (SLT), Shenzhen, China, 19–22 January 2021; IEEE: Piscataway, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Mirzaei, S.; El Yacoubi, M.; Garcia-Salicetti, S.; Boudy, J.; Kahindo, C.; Cristancho-Lacroix, V.; Kerhervé, H.; Rigaud, A.-S. Two-Stage Feature Selection of Voice Parameters for Early Alzheimer’s Disease Prediction. IRBM 2018, 39, 430–435. [Google Scholar] [CrossRef]
- Dash, T.K.; Mishra, S.; Panda, G.; Satapathy, S.C. Detection of COVID-19 from speech signal using bio-inspired based cepstral features. Pattern Recognit. 2021, 117, 107999. [Google Scholar] [CrossRef]
- Huang, L.; Pun, C.M. Audio replay spoof attack detection using segment-based hybrid feature and densenet-LSTM network. In Proceedings of the ICASSP 2019-2019 IEEE international conference on acoustics, speech and signal processing (ICASSP), Brighton, UK, 12–17 May 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Doshi, S.; Patidar, T.; Gautam, S.; Kumar, R. Acoustic Scene Analysis and Classification Using Densenet Convolutional Neural Network; No. 8056; EasyChair: Stockport, UK, 2022. [Google Scholar]
- Cui, S.; Huang, B.; Huang, J.; Kang, X. Synthetic Speech Detection Based on Local Autoregression and Variance Statistics. IEEE Signal Process. Lett. 2022, 29, 1462–1466. [Google Scholar] [CrossRef]
- Wang, P.; Li, Y.; Vasconcelos, N. Rethinking and improving the robustness of image style transfer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021. [Google Scholar]
- Pandhi, T.; Kapoor, T.; Gupta, B. An Improved Technique for Preliminary Diagnosis of COVID-19 via Cough Audio Analysis. In Proceedings of the International Conference on Recent Trends in Image Processing and Pattern Recognition, Msida, Malta, 8–10 December 2021; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Malov, D.; Shumskaya, O. Fatigue recognition based on audiovisual content. In Proceedings of the 2019 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency (SUMMA), Lipetsk, Russia, 20–22 November 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Ouyang, D.; Theurer, J.; Stein, N.R.; Hughes, J.W.; Elias, P.; He, B.; Yuan, N.; Duffy, G.; Sandhu, R.K.; Ebinger, J.; et al. Electrocardiographic Deep Learning for Predicting Post-Procedural Mortality. arXiv 2022, arXiv:2205.03242. [Google Scholar]
- Carpenter, C.R.; Bassett, E.R.; Fischer, G.M.; Shirshekan, J.; Galvin, J.E.; Morris, J.C. Four sensitive screening tools to detect cognitive dysfunction in geriatric emergency department patients: Brief Alzheimer’s Screen, Short Blessed Test, Ottawa 3DY, and the Caregiver-Completed AD8. Acad. Emerg. Med. 2011, 18, 374–384. [Google Scholar] [CrossRef]
- So, J.-H.; Madusanka, N.; Choi, H.-K.; Choi, B.-K.; Park, H.-G. Deep Learning for Alzheimer’s Disease Classification using Texture Features. Curr. Med. Imaging Former. Curr. Med. Imaging Rev. 2019, 15, 689–698. [Google Scholar] [CrossRef]
- Liu, Z.; Proctor, L.; Collier, P.; Casenhiser, D.; Paek, E.J.; Yoon, S.O.; Zhao, X. Machine learning of transcripts and audio recordings of spontaneous speech for diagnosis of Alzheimer’s disease. Alzheimer’s Dement. 2021, 17, e057556. [Google Scholar] [CrossRef]
- Mittal, A.; Dua, M.; Dua, S. Classical and Deep Learning Data Processing Techniques for Speech and Speaker Recognitions. In Deep Learning Approaches for Spoken and Natural Language Processing; Springer: Cham, Switzerland, 2021; pp. 111–126. [Google Scholar] [CrossRef]
- Mahmood, A.; Utku, K.Ö.S.E. Speech recognition based on convolutional neural networks and MFCC algorithm. Adv. Artif. Intell. Res. 2021, 1, 6–12. [Google Scholar]
- Ayvaz, U.; Gürüler, H.; Khan, F.; Ahmed, N.; Whangbo, T.; Bobomirzaevich, A.A. Automatic Speaker Recognition Using Mel-Frequency Cepstral Coefficients Through Machine Learning. Comput. Mater. Contin. 2022, 71, 5511–5521. [Google Scholar] [CrossRef]
- Mistry, D.S.; Kulkarni, A.V. Overview: Speech recognition technology, mel-frequency cepstral coefficients (mfcc), artificial neural network (ann). Int. J. Eng. Res. Technol. 2013, 2, 10. [Google Scholar]
- Duc, N.T.; Ryu, S.; Qureshi, M.N.I.; Choi, M.; Lee, K.H.; Lee, B. 3D-Deep Learning Based Automatic Diagnosis of Alzheimer’s Disease with Joint MMSE Prediction Using Resting-State fMRI. Neuroinformatics 2019, 18, 71–86. [Google Scholar] [CrossRef]
- Liu, M.; Cheng, D.; Yan, W.; Alzheimer’s Disease Neuroimaging Initiative. Classification of Alzheimer’s Disease by Combination of Convolutional and Recurrent Neural Networks Using FDG-PET Images. Front. Aging Neurosci. 2018, 12, 35. [Google Scholar] [CrossRef]
Age | AD Patients | Healthy Adults | ||
---|---|---|---|---|
Male | Female | Male | Female | |
50–59 | 0 | 0 | 1 | 8 |
60–69 | 6 | 12 | 7 | 12 |
70–75 | 2 | 20 | 4 | 8 |
Total | 8 | 32 | 12 | 28 |
40 | 40 |
Number | Items | Individual Questions |
---|---|---|
1-1 | Temporal orientation | What year are we in now? |
1-2 | What is the season? | |
1-3 | What is the date today? | |
1-4 | What day of the week is it? | |
1-5 * | What month are we in now? | |
2-1 | Spatial orientation | What city are we in? |
2-2 | What borough are we in? | |
2-3 | What ‘dong’ (one of the administrative divisions) are we in? | |
2-4 | What floor of the building are we on? | |
6 | What is the name of this place? | |
10 | Following a three-stage command | Please follow what I say and as it will be told only once, please listen carefully and follow accordingly. |
I will give you a piece of paper. Please take this piece of paper in your right hand, fold it in half with both hands, and place it on your lap. | ||
11 * | Memory registration | I am going to name three objects. After I have said them, I want you to repeat them. Please remember what they are because I will ask you to name them again in a few minutes: tree (11-1 *), car (11-2 *), hat (11-3 *). Could you name the three items you have just heard? |
12-1 * | Attention and calculation | What is one hundred minus seven? |
12-2 * | Yes. Then, what is the result after subtracting seven from the value? | |
12-3 * | Yes. Then, what is the result after subtracting seven from the value? | |
12-4 * | Yes. Then, what is the result after subtracting seven from the value? | |
12-5 * | Yes. Then, what is the result after subtracting seven from the value? | |
13 * | Delayed recall | What are the three objects I asked you to remember a few moments ago? Tree (13-1 *), car (13-2 *), hat (13-3 *). |
14-1 | Visual denomination | (Showing a watch) What is this called? |
14-2 | (Showing a pencil) What is this called? | |
15 | Phrase repetition | Please listen carefully to what I say and repeat accordingly. Please note that only one attempt will be allowed. Please listen carefully and repeat after I finish. Ganjang Gonjang Gongjangjang (Translation: head of the soy source factory, used for checking pronunciation) |
16 | Visuospatial construction (Copying interlocking pentagons) | Please see the interlocking pentagons here and copy the drawing in the following blank section. |
18 | Judgment | Why do you need to wash your clothes? |
19 | Could you explain what “many a mickle makes a muckle” means? |
Model Name | Sensitivity | Specificity | Accuracy | PPV | NPV | F1-Score | AUC |
---|---|---|---|---|---|---|---|
Densenet121 | 0.9550 | 0.8333 | 0.9000 | 0.8791 | 0.9314 | 0.9139 | 0.9243 |
Inception v3 | 0.9305 | 0.8099 | 0.8750 | 0.8556 | 0.9179 | 0.8887 | 0.9177 |
VGG19 | 0.9750 | 0.8236 | 0.9000 | 0.8494 | 0.9778 | 0.9013 | 0.8886 |
Xception | 0.9455 | 0.3183 | 0.6000 | 0.5855 | 0.9143 | 0.6997 | 0.8349 |
Resnet50 | 0.8944 | 0.8979 | 0.9000 | 0.8994 | 0.9042 | 0.8956 | 0.9286 |
Model Name | Sensitivity | Specificity | Accuracy | PPV | NPV | F1-Score | AUC |
---|---|---|---|---|---|---|---|
Densenet121 | 1.0000 | 0.7143 | 0.8750 | 0.8182 | 1.0000 | 0.9000 | 0.9048 |
Inception v3 | 0.9000 | 0.8333 | 0.8750 | 0.9000 | 0.8333 | 0.9000 | 0.9500 |
VGG19 | 1.0000 | 0.6250 | 0.8125 | 0.7273 | 1.0000 | 0.8421 | 0.9219 |
Xception | 1.0000 | 0.2500 | 0.6250 | 0.5714 | 1.0000 | 0.7273 | 0.8594 |
Resnet50 | 0.8889 | 1.0000 | 0.9375 | 1.0000 | 0.8750 | 0.9412 | 0.9524 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, K.; Cho, M.; Kim, S.W.; Lee, K.E.; Song, Y.; Yoo, S.; Jeon, S.Y.; Kim, J.L.; Yoon, D.H.; Kong, H.-J. Deep Learning of Speech Data for Early Detection of Alzheimer’s Disease in the Elderly. Bioengineering 2023, 10, 1093. https://doi.org/10.3390/bioengineering10091093
Ahn K, Cho M, Kim SW, Lee KE, Song Y, Yoo S, Jeon SY, Kim JL, Yoon DH, Kong H-J. Deep Learning of Speech Data for Early Detection of Alzheimer’s Disease in the Elderly. Bioengineering. 2023; 10(9):1093. https://doi.org/10.3390/bioengineering10091093
Chicago/Turabian StyleAhn, Kichan, Minwoo Cho, Suk Wha Kim, Kyu Eun Lee, Yoojin Song, Seok Yoo, So Yeon Jeon, Jeong Lan Kim, Dae Hyun Yoon, and Hyoun-Joong Kong. 2023. "Deep Learning of Speech Data for Early Detection of Alzheimer’s Disease in the Elderly" Bioengineering 10, no. 9: 1093. https://doi.org/10.3390/bioengineering10091093
APA StyleAhn, K., Cho, M., Kim, S. W., Lee, K. E., Song, Y., Yoo, S., Jeon, S. Y., Kim, J. L., Yoon, D. H., & Kong, H. -J. (2023). Deep Learning of Speech Data for Early Detection of Alzheimer’s Disease in the Elderly. Bioengineering, 10(9), 1093. https://doi.org/10.3390/bioengineering10091093