An Edge-Enhanced Network for Polyp Segmentation
Abstract
:1. Introduction
- 1.
- We propose CEEA, which integrates edge-awareness with covariance-based attention. The CEEA module introduces a learnable Canny kernel [31] for adaptive edge detection, allowing the network to focus on fine-grained boundaries and structures crucial for accurate segmentation. By leveraging a covariance matrix between the feature map and edge-enhanced feature, the module captures both spatial and channel dependencies, enhancing the attention mechanism’s ability to focus on relevant regions.
- 2.
- We introduce CSEE to fuse cross-scale features with edge-enhanced attention. The module uses a shared learnable Canny kernel to extract edge information at different scales, allowing the model to capture fine-grained boundary details across resolutions. By computing a cross-scale attention map, the CSEE module ensures that features from both encoder and decoder paths are aligned, enhancing the representation of critical structures such as object edges.
- 3.
- We design a hybrid loss function that incorporates edge and cross-entropy losses with a handcrafted hyperparameter. By appending the CEEA of each encoder stage and deploying CSEE between the encoder and decoder, the proposed EENet enables the improvement of boundary accuracy while maintaining multi-scale consistency, leading to better segmentation performance.
- 4.
- Through extensive experiments on two benchmark datasets [32,33], EENet demonstrates superior performance over state-of-the-art models. Our results are further validated by an ablation study that highlights the advantages of CEEA over convolution layer and conventional self-attention models. Furthermore, we test the effects of CSEE in EENet.
2. Related Works
2.1. Traditional Methods for Polyp Segmentation
2.2. Deep Learning Methods for Polyp Segmentation
3. Method
3.1. Covariance Analysis
- 1.
- Focusing on boundary regions that are difficult to distinguish due to low contrast;
- 2.
- Assigning attention weights that prioritize channels and spatial regions relevant to polyp boundaries;
- 3.
- Ensuring that both fine-grained details and global contextual information are integrated into the segmentation process, leading to higher accuracy and improved boundary delineation.
3.2. Overview of the Proposed EENet
3.3. Pipeline of the Proposed CEEA
3.4. Pipeline of CSEE
- 1.
- The CSEE module aligns encoder and decoder feature maps across scales, ensuring that high-resolution and low-resolution features contribute equally to segmentation accuracy;
- 2.
- By using channel-wise attention, the CSEE module focuses on the most relevant channels, allowing the network to better capture the edge structures that are critical for precise segmentation;
- 3.
- The use of a learnable Canny kernel ensures that boundary information is consistently extracted and preserved, which is essential for distinguishing polyps from surrounding tissues in medical images.
3.5. Hybrid Loss Function
4. Experiments
4.1. Datasets
4.1.1. Kvasir-SEG
4.1.2. CVC-ClinicDB
4.2. Implement Details
4.3. Evaluation Metrics
4.4. Comparison with State-of-the-Art Models
4.4.1. Numerical Evaluation of Kvasir-SEG
4.4.2. Visual Inspections of Kvasir-SEG
4.4.3. Numerical Evaluation of CVC-ClinicDB
4.4.4. Visual Inspections of CVC-ClinicDB
4.5. Ablation Study of CEEA
4.6. Impacts of CSEE
4.7. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Wagle, N.S.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2023. CA A Cancer J. Clin. 2023, 73, 233–254. [Google Scholar] [CrossRef] [PubMed]
- Lijin, P.; Ullah, M.; Vats, A.; Cheikh, F.A.; Santhosh Kumar, G.; Nair, M.S. PolySegNet: Improving polyp segmentation through swin transformer and vision transformer fusion. Biomed. Eng. Lett. 2024, 1–11. [Google Scholar] [CrossRef]
- Ji, Z.; Li, X.; Liu, J.; Chen, R.; Liao, Q.; Lyu, T.; Zhao, L. LightCF-Net: A Lightweight Long-Range Context Fusion Network for Real-Time Polyp Segmentation. Bioengineering 2024, 11, 545. [Google Scholar] [CrossRef]
- Ding, W.; Li, Z. Curriculum Consistency Learning and Multi-Scale Contrastive Constraint in Semi-Supervised Medical Image Segmentation. Bioengineering 2023, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- Vleugels, J.L.; Van Lanschot, M.C.; Dekker, E. Colorectal cancer screening by colonoscopy: Putting it into perspective. Dig. Endosc. 2016, 28, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Dekker, E.; Rex, D.K. Advances in CRC prevention: Screening and surveillance. Gastroenterology 2018, 154, 1970–1984. [Google Scholar] [CrossRef]
- Yue, G.; Han, W.; Li, S.; Zhou, T.; Lv, J.; Wang, T. Automated polyp segmentation in colonoscopy images via deep network with lesion-aware feature selection and refinement. Biomed. Signal Process. Control 2022, 78, 103846. [Google Scholar] [CrossRef]
- Yue, G.; Li, S.; Cong, R.; Zhou, T.; Lei, B.; Wang, T. Attention-guided pyramid context network for polyp segmentation in colonoscopy images. IEEE Trans. Instrum. Meas. 2023, 72, 1–13. [Google Scholar] [CrossRef]
- Pan, X.; Ma, C.; Mu, Y.; Bi, M. GLSNet: A Global Guided Local Feature Stepwise Aggregation Network for polyp segmentation. Biomed. Signal Process. Control 2024, 87, 105528. [Google Scholar] [CrossRef]
- Leming, M.J.; Bron, E.E.; Bruffaerts, R.; Ou, Y.; Iglesias, J.E.; Gollub, R.L.; Im, H. Challenges of implementing computer-aided diagnostic models for neuroimages in a clinical setting. NPJ Digit. Med. 2023, 6, 129. [Google Scholar] [CrossRef]
- Hassan, C.; Misawa, M.; Rizkala, T.; Mori, Y.; Sultan, S.; Facciorusso, A.; Antonelli, G.; Spadaccini, M.; Houwen, B.B.S.L.; Rondonotti, E.; et al. Computer-Aided Diagnosis for Leaving Colorectal Polyps In Situ: A Systematic Review and Meta-analysis. Ann. Intern. Med. 2024, 177, 7. [Google Scholar] [CrossRef] [PubMed]
- Rizkala, T.; Hassan, C.; Mori, Y.; Spadaccini, M.; Antonelli, G.; Dekker, E.; Houwen, B.B.S.L.; Pech, O.; Baumer, S.; Rondonotti, E.; et al. Accuracy of Computer-aided Diagnosis in Colonoscopy Varies according to Polyp Location. A Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2024. [Google Scholar] [CrossRef]
- Li, X.; Xu, F.; Yong, X.; Chen, D.; Xia, R.; Ye, B.; Gao, H.; Chen, Z.; Lyu, X. SSCNet: A spectrum-space collaborative network for semantic segmentation of remote sensing images. Remote Sens. 2023, 15, 5610. [Google Scholar] [CrossRef]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef]
- Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. Unet++: Redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 2019, 39, 1856–1867. [Google Scholar] [CrossRef] [PubMed]
- Jha, D.; Smedsrud, P.H.; Riegler, M.A.; Johansen, D.; De Lange, T.; Halvorsen, P.; Johansen, H.D. Resunet++: An advanced architecture for medical image segmentation. In Proceedings of the 2019 IEEE International Symposium on Multimedia (ISM), San Diego, CA, USA, 9–11 December 2019; pp. 225–2255. [Google Scholar]
- Li, X.; Yong, X.; Li, T.; Tong, Y.; Gao, H.; Wang, X.; Xu, Z.; Fang, Y.; You, Q.; Lyu, X. A spectral–spatial context-boosted network for semantic segmentation of remote sensing images. Remote Sens. 2024, 16, 1214. [Google Scholar] [CrossRef]
- Yue, G.; Han, W.; Jiang, B.; Zhou, T.; Cong, R.; Wang, T. Boundary constraint network with cross layer feature integration for polyp segmentation. IEEE Biomed. Health Inform. 2022, 26, 4090–4099. [Google Scholar] [CrossRef]
- Wang, S.; Cong, Y.; Zhu, H.; Chen, X.; Qu, L.; Fan, H.; Zhang, Q.; Liu, M. Multi-scale context-guided deep network for automated lesion segmentation with endoscopy images of gastrointestinal tract. IEEE J. Biomed. Health Inform. 2020, 25, 514–525. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Hu, Q. Transfuse: Fusing transformers and cnns for medical image segmentation. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, 27 September–1 October 2021; pp. 14–24. [Google Scholar]
- Fan, D.P.; Ji, G.P.; Zhou, T.; Chen, G.; Fu, H.; Shen, J.; Shao, L. Pranet: Parallel reverse attention network for polyp segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Lima, Peru, 4–8 October 2020; pp. 263–273. [Google Scholar]
- Kim, T.; Lee, H.; Kim, D. Uacanet: Uncertainty augmented context attention for polyp segmentation. In Proceedings of the 29th ACM International Conference on Multimedia, Virtual, China, 20–24 October 2021; pp. 2167–2175. [Google Scholar]
- Nguyen, T.C.; Nguyen, T.P.; Diep, G.H.; Tran-Dinh, A.H.; Nguyen, T.V.; Tran, M.T. CCBANet: Cascading context and balancing attention for polyp segmentation. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, 27 September–1 October 2021; pp. 633–643. [Google Scholar]
- Li, X.; Xu, F.; Gao, H.; Liu, F.; Lyu, X. A Frequency Domain Feature-Guided Network for Semantic Segmentation of Remote Sensing Images. IEEE Signal Process. Lett. 2024, 31, 1369–1373. [Google Scholar] [CrossRef]
- Zhang, R.; Lai, P.; Wan, X.; Fan, D.J.; Gao, F.; Wu, X.J.; Li, G. Lesion-aware dynamic kernel for polyp segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Singapore, 18–22 September 2022; pp. 99–109. [Google Scholar]
- Dong, B.; Wang, W.; Fan, D.P.; Li, J.; Fu, H.; Shao, L. Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers. CAAI Artif. Intell. Res. 2023, 2, 9150015. [Google Scholar] [CrossRef]
- Xia, Y.; Yun, H.; Liu, Y.; Luan, J.; Li, M. MGCBFormer: The multiscale grid-prior and class-inter boundary-aware transformer for polyp segmentation. Comput. Biol. Med. 2023, 167, 107600. [Google Scholar] [CrossRef]
- Li, W.; Zhao, Y.; Li, F.; Wang, L. MIA-Net: Multi-information aggregation network combining transformers and convolutional feature learning for polyp segmentation. Knowl.-Based Syst. 2022, 247, 108824. [Google Scholar] [CrossRef]
- Liu, G.; Yao, S.; Liu, D.; Chang, B.; Chen, Z.; Wang, J.; Wei, J. CAFE-Net: Cross-attention and feature exploration network for polyp segmentation. Expert Syst. Appl. 2024, 238, 121754. [Google Scholar] [CrossRef]
- Guo, X.; Yang, C.; Liu, Y.; Yuan, Y. Learn to threshold: Thresholdnet with confidence-guided manifold mixup for polyp segmentation. IEEE Trans. Med Imaging 2020, 40, 1134–1146. [Google Scholar] [CrossRef] [PubMed]
- Sabah, M.; Sundaraguru, R. A Survey on Improved Canny-Edge Detection Algorithm. Perspect. Commun. Embed.-Syst. Signal-Process. 2018, 2, 73–78. [Google Scholar]
- Jha, D.; Smedsrud, P.H.; Riegler, M.A.; Halvorsen, P.; De Lange, T.; Johansen, D.; Johansen, H.D. Kvasir-seg: A segmented polyp dataset. In Proceedings of the MultiMedia Modeling: 26th International Conference, MMM 2020, Daejeon, Republic of Korea, 5–8 January 2020; pp. 451–462. [Google Scholar]
- Bernal, J.; Sánchez, F.J.; Fernández-Esparrach, G.; Gil, D.; Rodríguez, C.; Vilariño, F. WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Comput. Med Imaging Graph. 2015, 43, 99–111. [Google Scholar] [CrossRef]
- Li, X.; Xu, F.; Liu, F.; Lyu, X.; Tong, Y.; Xu, Z.; Zhou, J. A Synergistical Attention Model for Semantic Segmentation of Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–16. [Google Scholar] [CrossRef]
- Wu, Z.; Lv, F.; Chen, C.; Hao, A.; Li, S. Colorectal Polyp Segmentation in the Deep Learning Era: A Comprehensive Survey. arXiv 2024, arXiv:2401.11734. [Google Scholar]
- Salpea, N.; Tzouveli, P.; Kollias, D. Medical image segmentation: A review of modern architectures. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; pp. 691–708. [Google Scholar]
- Xia, S.; Krishnan, S.M.; Tjoa, M.P.; Goh, P.M. A novel methodology for extracting colon’s lumen from colonoscopic images. J. Syst. Cybern. Inform. 2003, 1, 7–12. [Google Scholar]
- Wang, Z.; Li, L.; Anderson, J.; Harrington, D.P.; Liang, Z. Computer-aided detection and diagnosis of colon polyps with morphological and texture features. In Proceedings of the Medical Imaging 2004: Image Processing; SPIE: Bellingham, WA, USA, 2004; Volume 5370, pp. 972–979. [Google Scholar]
- Jerebko, A.; Lakare, S.; Cathier, P.; Periaswamy, S.; Bogoni, L. Symmetric curvature patterns for colonic polyp detection. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Copenhagen, Denmark, 1–6 October 2006; pp. 169–176. [Google Scholar]
- Eriyanti, N.A.; Sigit, R.; Harsono, T. Classification of colon polyp on endoscopic image using support vector machine. In Proceedings of the 2021 International Electronics Symposium (IES), Surabaya, Indonesia, 29–30 September 2021; pp. 244–250. [Google Scholar]
- Sasmal, P.; Bhuyan, M.K.; Dutta, S.; Iwahori, Y. An unsupervised approach of colonic polyp segmentation using adaptive markov random fields. Pattern Recognit. Lett. 2022, 154, 7–15. [Google Scholar] [CrossRef]
- Condessa, F.; Bioucas-Dias, J. Segmentation and detection of colorectal polyps using local polynomial approximation. In Proceedings of the Image Analysis and Recognition: 9th International Conference, ICIAR 2012, Aveiro, Portugal, 25–27 June 2012; pp. 188–197. [Google Scholar]
- Sadagopan, R.; Ravi, S.; Adithya, S.V.; Vivekanandhan, S. PolyEffNetV1: A CNN based colorectal polyp detection in colonoscopy images. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2023, 237, 406–418. [Google Scholar] [CrossRef]
- Gupta, M.; Mishra, A. A systematic review of deep learning based image segmentation to detect polyp. Artif. Intell. Rev. 2024, 57, 7. [Google Scholar] [CrossRef]
- Mei, J.; Zhou, T.; Huang, K.; Zhang, Y.; Zhou, Y.; Wu, Y.; Fu, H. A survey on deep learning for polyp segmentation: Techniques, challenges and future trends. arXiv 2023, arXiv:2311.18373. [Google Scholar]
- Sanchez-Peralta, L.F.; Bote-Curiel, L.; Picon, A.; Sanchez-Margallo, F.M.; Pagador, J.B. Deep learning to find colorectal polyps in colonoscopy: A systematic literature review. Artif. Intell. Med. 2020, 108, 101923. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical image computing and computer-assisted intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Li, X.; Xu, F.; Li, L.; Xu, N.; Liu, F.; Yuan, C.; Chen, Z.; Lyu, X. AAFormer: Attention-Attended Transformer for Semantic Segmentation of Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2024, 21, 5002805. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Q.; Wang, Y. Road extraction by deep residual u-net. IEEE Geosci. Remote Sens. Lett. 2018, 15, 749–753. [Google Scholar] [CrossRef]
- Zhou, T.; Zhou, Y.; Gong, C.; Yang, J.; Zhang, Y. Feature aggregation and propagation network for camouflaged object detection. IEEE Trans. Image Process. 2022, 31, 7036–7047. [Google Scholar] [CrossRef]
- Zhang, Z.; Lin, Z.; Xu, J.; Jin, W.D.; Lu, S.P.; Fan, D.P. Bilateral attention network for RGB-D salient object detection. IEEE Trans. Image Process. 2021, 30, 1949–1961. [Google Scholar] [CrossRef]
- Dosovitskiy, A. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Wang, W.; Xie, E.; Li, X.; Fan, D.P.; Song, K.; Liang, D.; Lu, T.; Luo, P.; Shao, L. Pyramid vision transformer: A versatile backbone for dense prediction without convolutions. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 568–578. [Google Scholar]
- Mahmud, T.; Paul, B.; Fattah, S.A. PolypSegNet: A modified encoder-decoder architecture for automated polyp segmentation from colonoscopy images. Comput. Biol. Med. 2021, 128, 104119. [Google Scholar] [CrossRef]
- Si, C.; Rahim, M.S.M.; Mianzhou, Y.; Li, N.; Hongyu, C. UNet-Based Polyp Segmentation: A Survey. In Proceedings of the 2023 IEEE International Conference on Computing (ICOCO), Langkawi, Malaysia, 9–12 October 2023; pp. 154–159. [Google Scholar]
- Li, X.; Xu, F.; Liu, F.; Tong, Y.; Lyu, X.; Zhou, J. Semantic segmentation of remote sensing images by interactive representation refinement and geometric prior-guided inference. IEEE Trans. Geosci. Remote Sens. 2023, 62, 5400318. [Google Scholar] [CrossRef]
- Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Adeli, E.; Wang, Y.; Lu, L.; Yuille, A.L.; Zhou, Y. Transunet: Transformers make strong encoders for medical image segmentation. arXiv 2021, arXiv:2102.04306. [Google Scholar]
- Du, J.; Karimi, A.; Wu, Y.; Korosec, F.R.; Grist, T.M.; Mistretta, C.A. Automated vessel segmentation using cross-correlation and pooled covariance matrix analysis. Magn. Reson. Imaging 2011, 29, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Lu, M.; Fang, L. Deep Covariance Alignment for Domain Adaptive Remote Sensing Image Segmentation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [Google Scholar] [CrossRef]
- Xiong, Z.; Li, H.; Zhu, X.X. Doubly deformable aggregation of covariance matrices for few-shot segmentation. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; pp. 133–150. [Google Scholar]
- Zhou, Y.; Huang, J.; Wang, C.; Song, L.; Yang, G. Xnet: Wavelet-based low and high frequency fusion networks for fully-and semi-supervised semantic segmentation of biomedical images. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 21085–21096. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
Dataset | Size | Total | Training Set | Validation Set | Test Set |
---|---|---|---|---|---|
Kvasir-SEG [32] | 487 × 332 to 1920 × 1072 | 1000 | 600 | 200 | 200 |
CVC-ClinicDB [33] | 288 × 368 | 612 | 368 | 122 | 122 |
Items | Settings |
---|---|
Learning strategy | Poly decay |
Initial learning rate | 0.002 |
Loss function | Cross-entropy |
Max epoch | 500 |
GPU memory | 48 GB |
Optimizer | SGD |
Sub-patch size | |
Batch size | 64 |
Methods | Dice | IoU | Sensitivity | Specificity |
---|---|---|---|---|
UNet [47] | 0.8120 | 0.7405 | 0.9430 | 0.8507 |
DeepLab V3+ [14] | 0.8149 | 0.7432 | 0.9464 | 0.8538 |
UNet++ [15] | 0.8109 | 0.7349 | 0.9739 | 0.7971 |
ResUNet [49] | 0.8179 | 0.7459 | 0.9499 | 0.8569 |
ResUNet++ [16] | 0.8245 | 0.7734 | 0.8937 | 0.8299 |
PraNet [21] | 0.8876 | 0.8303 | 0.9667 | 0.9015 |
XNet [61] | 0.8583 | 0.8076 | 0.9239 | 0.8686 |
Polyp-PVT [26] | 0.8907 | 0.8354 | 0.9792 | 0.9088 |
EENet (ours) | 0.9208 | 0.8664 | 0.9912 | 0.9319 |
Methods | Dice | IoU | Sensitivity | Specificity |
---|---|---|---|---|
UNet [47] | 0.7618 | 0.6988 | 0.8766 | 0.7729 |
DeepLab V3+ [14] | 0.7984 | 0.7325 | 0.9187 | 0.8101 |
UNet++ [15] | 0.7940 | 0.7290 | 0.9270 | 0.7950 |
ResUNet [49] | 0.7957 | 0.7299 | 0.9155 | 0.8073 |
ResUNet++ [16] | 0.8590 | 0.7881 | 0.9885 | 0.8716 |
PraNet [21] | 0.8990 | 0.8490 | 0.9901 | 0.9110 |
XNet [61] | 0.8943 | 0.8204 | 0.9910 | 0.9073 |
Polyp-PVT [26] | 0.9178 | 0.8667 | 0.9921 | 0.9300 |
EENet (ours) | 0.9316 | 0.8817 | 0.9915 | 0.9586 |
Models | Kvasir-SEG | CVC-ClinicDB |
---|---|---|
EENet-C | 0.8687/0.8175 | 0.8508/0.8052 |
EENet-A | 0.9023/0.8491 | 0.8977/0.8496 |
EENet | 0.9208/0.8664 | 0.9316/0.8817 |
Models | Kvasir-SEG | CVC-ClinicDB |
---|---|---|
EENet w/o CSEE | 0.8795/0.8276 | 0.8945/0.8465 |
EENet | 0.9208/0.8664 | 0.9316/0.8817 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, Y.; Chen, Z.; Zhou, Z.; Hu, Y.; Li, X.; Qiao, X. An Edge-Enhanced Network for Polyp Segmentation. Bioengineering 2024, 11, 959. https://doi.org/10.3390/bioengineering11100959
Tong Y, Chen Z, Zhou Z, Hu Y, Li X, Qiao X. An Edge-Enhanced Network for Polyp Segmentation. Bioengineering. 2024; 11(10):959. https://doi.org/10.3390/bioengineering11100959
Chicago/Turabian StyleTong, Yao, Ziqi Chen, Zuojian Zhou, Yun Hu, Xin Li, and Xuebin Qiao. 2024. "An Edge-Enhanced Network for Polyp Segmentation" Bioengineering 11, no. 10: 959. https://doi.org/10.3390/bioengineering11100959
APA StyleTong, Y., Chen, Z., Zhou, Z., Hu, Y., Li, X., & Qiao, X. (2024). An Edge-Enhanced Network for Polyp Segmentation. Bioengineering, 11(10), 959. https://doi.org/10.3390/bioengineering11100959