Evolution and Innovations in Bone Marrow Cellular Therapy for Musculoskeletal Disorders: Tracing the Historical Trajectory and Contemporary Advances
Abstract
:1. Introduction
1.1. Historical Development, First Concepts, and the Initial Applications of Bone Marrow Mesenchymal Stem Cells Therapies
1.2. Scientific Milestones
2. Biological Characteristics of Bone Marrow Mesenchymal Stem Cells
3. Contemporary Era: Main Clinical Advances on Bone Marrow Mesenchymal Stem Cells Therapies in Humans
3.1. Recent Clinical Trials and Studies
3.2. Standardization Efforts
4. Challenges
4.1. Limitations
4.2. Future Prospects
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hernigou, P.; Homma, Y.; Flouzat Lachaniette, C.H.; Poignard, A.; Allain, J.; Chevallier, N.; Rouard, H. Benefits of Small Volume and Small Syringe for Bone Marrow Aspirations of Mesenchymal Stem Cells. Int. Orthop. 2013, 37, 2279–2287. [Google Scholar] [CrossRef] [PubMed]
- Singer, N.G.; Caplan, A.I. Mesenchymal Stem Cells: Mechanisms of Inflammation. Annu. Rev. Pathol. 2011, 6, 457–478. [Google Scholar] [CrossRef]
- Friedenstein, A.J.; Petrakova, K.V.; Kurolesova, A.I.; Frolova, G.P. Heterotopic of Bone Marrow. Analysis of Precursor Cells for Osteogenic and Hematopoietic Tissues. Transplantation 1968, 6, 230–247. [Google Scholar] [CrossRef] [PubMed]
- Caplan, A.I. Mesenchymal Stem Cells. J. Orthop. Res. 1991, 9, 641–650. [Google Scholar] [CrossRef]
- Gianakos, A.L.; Sun, L.; Patel, J.N.; Adams, D.M.; Liporace, F.A. Clinical Application of Concentrated Bone Marrow Aspirate in Orthopaedics: A Systematic Review. World J. Orthop. 2017, 8, 491–506. [Google Scholar] [CrossRef]
- Hernigou, P.; Beaujean, F. Treatment of Osteonecrosis with Autologous Bone Marrow Grafting. Clin. Orthop. Relat. Res. 2002, 405, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Centeno, C.; Pitts, J.; Al-Sayegh, H.; Freeman, M. Efficacy of Autologous Bone Marrow Concentrate for Knee Osteoarthritis with and without Adipose Graft. BioMed Res. Int. 2014, 2014, 370621. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, S.A.; Kazmerchak, S.E.; Heckman, M.G.; Zubair, A.C.; O’Connor, M.I. A Prospective, Single-Blind, Placebo-Controlled Trial of Bone Marrow Aspirate Concentrate for Knee Osteoarthritis. Am. J. Sports Med. 2017, 45, 82–90. [Google Scholar] [CrossRef]
- Connolly, J.F.; Guse, R.; Tiedeman, J.; Dehne, R. Autologous Marrow Injection as a Substitute for Operative Grafting of Tibial Nonunions. Clin. Orthop. Relat. Res. 1991, 266, 259–270. [Google Scholar] [CrossRef]
- Ellera Gomes, J.L.; da Silva, R.C.; Silla, L.M.R.; Abreu, M.R.; Pellanda, R. Conventional Rotator Cuff Repair Complemented by the Aid of Mononuclear Autologous Stem Cells. Knee Surg. Sports Traumatol. Arthrosc. 2012, 20, 373–377. [Google Scholar] [CrossRef]
- Charbord, P. Bone Marrow Mesenchymal Stem Cells: Historical Overview and Concepts. Hum. Gene Ther. 2010, 21, 1045–1056. [Google Scholar] [CrossRef] [PubMed]
- Steensma, D.P.; Kyle, R.A. James Till and Ernest McCulloch: Hematopoietic Stem Cell Discoverers. Mayo Clin. Proc. 2021, 96, 830–831. [Google Scholar] [CrossRef]
- Thomas, E.D.; Storb, R.; Clift, R.A.; Fefer, A.; Johnson, F.L.; Neiman, P.E.; Lerner, K.G.; Glucksberg, H.; Buckner, C.D. Bone-Marrow Transplantation. N. Engl. J. Med. 1975, 292, 895–902. [Google Scholar] [CrossRef]
- Thomas, E.D.; Lochte, H.L.; Lu, W.C.; Ferrebee, J.W. Intravenous Infusion of Bone Marrow in Patients Receiving Radiation and Chemotherapy. N. Engl. J. Med. 1957, 257, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Caplan, A.I. Mesenchymal Stem Cells: Time to Change the Name! Stem Cells Transl. Med. 2017, 6, 1445–1451. [Google Scholar] [CrossRef]
- Lindholm, T.S.; Urist, M.R. A Quantitative Analysis of New Bone Formation by Induction in Compositive Grafts of Bone Marrow and Bone Matrix. Clin. Orthop. Relat. Res. 1980, 150, 288–300. [Google Scholar] [CrossRef]
- Nauta, A.J.; Fibbe, W.E. Immunomodulatory Properties of Mesenchymal Stromal Cells. Blood 2007, 110, 3499–3506. [Google Scholar] [CrossRef]
- Müller, L.; Tunger, A.; Wobus, M.; von Bonin, M.; Towers, R.; Bornhäuser, M.; Dazzi, F.; Wehner, R.; Schmitz, M. Immunomodulatory Properties of Mesenchymal Stromal Cells: An Update. Front. Cell Dev. Biol. 2021, 9, 637725. [Google Scholar] [CrossRef]
- Eggenhofer, E.; Hoogduijn, M.J. Mesenchymal Stem Cell-Educated Macrophages. Transplant. Res. 2012, 1, 12. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, A.; Bhattacharyya, S. Immunomodulation by Mesenchymal Stem Cells during Osteogenic Differentiation: Clinical Implications during Bone Regeneration. Mol. Immunol. 2023, 164, 143–152. [Google Scholar] [CrossRef]
- Everts, P.A.; Lana, J.F.; Onishi, K.; Buford, D.; Peng, J.; Mahmood, A.; Fonseca, L.F.; van Zundert, A.; Podesta, L. Angiogenesis and Tissue Repair Depend on Platelet Dosing and Bioformulation Strategies Following Orthobiological Platelet-Rich Plasma Procedures: A Narrative Review. Biomedicines 2023, 11, 1922. [Google Scholar] [CrossRef]
- Pelletier, L.; Regnard, J.; Fellmann, D.; Charbord, P. An In Vitro Model for the Study of Human Bone Marrow Angiogenesis: Role of Hematopoietic Cytokines. Lab. Investig. 2000, 80, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Menocal, L.; Shareef, S.; Salgado, M.; Shabbir, A.; Van Badiavas, E. Role of Whole Bone Marrow, Whole Bone Marrow Cultured Cells, and Mesenchymal Stem Cells in Chronic Wound Healing. Stem Cell Res. Ther. 2015, 6, 24. [Google Scholar] [CrossRef] [PubMed]
- Walsh, D.A.; McWilliams, D.F.; Turley, M.J.; Dixon, M.R.; Fransès, R.E.; Mapp, P.I.; Wilson, D. Angiogenesis and Nerve Growth Factor at the Osteochondral Junction in Rheumatoid Arthritis and Osteoarthritis. Rheumatology 2010, 49, 1852–1861. [Google Scholar] [CrossRef] [PubMed]
- Kidd, B. Mechanisms of Pain in Osteoarthritis. HSS J. 2012, 8, 26–28. [Google Scholar] [CrossRef]
- Chen, L.; Tredget, E.E.; Wu, P.Y.G.; Wu, Y. Paracrine Factors of Mesenchymal Stem Cells Recruit Macrophages and Endothelial Lineage Cells and Enhance Wound Healing. PLoS ONE 2008, 3, e1886. [Google Scholar] [CrossRef]
- Agung, M.; Ochi, M.; Yanada, S.; Adachi, N.; Izuta, Y.; Yamasaki, T.; Toda, K. Mobilization of Bone Marrow-Derived Mesenchymal Stem Cells into the Injured Tissues after Intraarticular Injection and Their Contribution to Tissue Regeneration. Knee Surg. Sports Traumatol. Arthrosc. 2006, 14, 1307–1314. [Google Scholar] [CrossRef]
- Mackay, A.M.; Beck, S.C.; Murphy, J.M.; Barry, F.P.; Chichester, C.O.; Pittenger, M.F. Chondrogenic Differentiation of Cultured Human Mesenchymal Stem Cells from Marrow. Tissue Eng. 1998, 4, 415–428. [Google Scholar] [CrossRef]
- Rastegar, F.; Shenaq, D.; Huang, J.; Zhang, W.; Zhang, B.-Q.; He, B.-C.; Chen, L.; Zuo, G.-W.; Luo, Q.; Shi, Q.; et al. Mesenchymal Stem Cells: Molecular Characteristics and Clinical Applications. World J. Stem Cells 2010, 2, 67–80. [Google Scholar] [CrossRef]
- Department of Orthopaedics and Otorhinolaryngology, Erasmus MC, University Medical Centre, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands; Khatab, S.; Van Osch, G.; Kops, N.; Bastiaansen-Jenniskens, Y.; Bos, P.; Verhaar, J.; Bernsen, M.; Van Buul, G. Mesenchymal Stem Cell Secretome Reduces Pain and Prevents Cartilage Damage in a Murine Osteoarthritis Model. eCM 2018, 36, 218–230. [Google Scholar] [CrossRef]
- Daltro, G.C.; Fortuna, V.A.; Araújo, M.A.S.d.; Lessa, P.I.F.; Batista Sobrinho, U..d.A.; Borojevic, R. Tratamento da Osteonecrose da Cabeça Femoral com celulas progenitoras autólogas em anemia falciforme. Acta Ortop. Bras. 2008, 16, 23–27. [Google Scholar] [CrossRef]
- Tabatabaee, R.M.; Saberi, S.; Parvizi, J.; Mortazavi, S.M.J.; Farzan, M. Combining Concentrated Autologous Bone Marrow Stem Cells Injection with Core Decompression Improves Outcome for Patients with Early-Stage Osteonecrosis of the Femoral Head: A Comparative Study. J. Arthroplast. 2015, 30, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Salamanna, F.; Contartese, D.; Nicoli Aldini, N.; Barbanti Brodano, G.; Griffoni, C.; Gasbarrini, A.; Fini, M. Bone Marrow Aspirate Clot: A Technical Complication or a Smart Approach for Musculoskeletal Tissue Regeneration? J. Cell Physiol. 2018, 233, 2723–2732. [Google Scholar] [CrossRef] [PubMed]
- Purita, J.; Lana, J.F.S.D.; Kolber, M.; Rodrigues, B.L.; Mosaner, T.; Santos, G.S.; Caliari-Oliveira, C.; Huber, S.C. Bone Marrow-Derived Products: A Classification Proposal—Bone Marrow Aspirate, Bone Marrow Aspirate Concentrate or Hybrid? World J. Stem Cells 2020, 12, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Everts, P.; Ferrell, J.; Mahoney, C.; Flanagan, G.; Roman, M.; Paul, R.; Stephens, N.; Mautner, K. A Comparative Quantification in Cellularity of Bone Marrow Aspirated with Two New Harvesting Devices, and The Non-Equivalent Difference Between A Centrifugated Bone Marrow Concentrate And A Bone Marrow Aspirate As Biological Injectates, Using A Bi-Lateral Patient Model. Stem Cell Res. Ther. 2021, 10, 461. [Google Scholar] [CrossRef]
- Mautner, K.; Jerome, M.; Easley, K.; Nanos, K.; Everts, P. Laboratory Quantification of Bone Marrow Concentrate Components in Unilateral Versus Bilateral Posterior Superior Iliac Spine Aspiration. Stem Cell Res. Ther. 2021, 10, 466. [Google Scholar]
- Lana, J.F.; da Fonseca, L.F.; Azzini, G.; Santos, G.; Braga, M.; Cardoso Junior, A.M.; Murrell, W.D.; Gobbi, A.; Purita, J.; Percope de Andrade, M.A. Bone Marrow Aspirate Matrix: A Convenient Ally in Regenerative Medicine. Int. J. Mol. Sci. 2021, 22, 2762. [Google Scholar] [CrossRef]
- Salamanna, F.; Contartese, D.; Borsari, V.; Pagani, S.; Barbanti Brodano, G.; Griffoni, C.; Ricci, A.; Gasbarrini, A.; Fini, M. Two Hits for Bone Regeneration in Aged Patients: Vertebral Bone Marrow Clot as a Biological Scaffold and Powerful Source of Mesenchymal Stem Cells. Front. Bioeng. Biotechnol. 2022, 9, 807679. [Google Scholar] [CrossRef]
- Salamanna, F.; Tedesco, G.; Sartori, M.; Griffoni, C.; Spinnato, P.; Romeo, P.; Ghermandi, R.; Fini, M.; Giavaresi, G.; Gasbarrini, A.; et al. Safety and Efficacy of Autologous Bone Marrow Clot as a Multifunctional Bioscaffold for Instrumental Posterior Lumbar Fusion: A 1-Year Follow-up Pilot Study. Front. Endocrinol. 2023, 14, 1245344. [Google Scholar] [CrossRef]
- Contartese, D.; Sartori, M.; Tedesco, G.; Gasbarrini, A.; Giavaresi, G.; Salamanna, F. Vertebral Bone Marrow Clot towards the Routine Clinical Scenario in Spine Surgeries: What about the Antimicrobial Properties? Int. J. Mol. Sci. 2023, 24, 1744. [Google Scholar] [CrossRef]
- Muthu, S.; Ramanathan, K.; Alagar Yadav, S.; Jha, S.K.; Ranjan, R. Increased Cellular Dosage of Bone Marrow Aspiration Concentrate Does Not Translate to Increased Clinical Effectiveness in Knee Osteoarthritis: A Phase I Dose Escalation Study. Indian J. Orthop. 2024, 58, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Butala, R.; Agarwal, A.; Khedekar, R.; Gohain, N.; Grover, A.; Garg, A.; Mukherjee, S. Outcome of autologous bone marrow injection at fracture site in delayed union of long bone: A series of 10 cases. J. Med. Dent. Sci. 2016, 5, 3841–3843. [Google Scholar] [CrossRef]
- Hauser, R.A.; Orlofsky, A. Regenerative Injection Therapy with Whole Bone Marrow Aspirate for Degenerative Joint Disease: A Case Series. Clin. Med. Insights Arthritis Musculoskelet. Disord. 2013, 6, 65–72. [Google Scholar] [CrossRef]
- Centeno, C.J.; Al-Sayegh, H.; Bashir, J.; Goodyear, S.; Freeman, M.D. A Prospective Multi-Site Registry Study of a Specific Protocol of Autologous Bone Marrow Concentrate for the Treatment of Shoulder Rotator Cuff Tears and Osteoarthritis. J. Pain Res. 2015, 8, 269–276. [Google Scholar] [CrossRef]
- Lana, J.F.S.D.; da Fonseca, L.F.; Macedo, R.d.R.; Mosaner, T.; Murrell, W.; Kumar, A.; Purita, J.; de Andrade, M.A.P. Platelet-Rich Plasma vs Bone Marrow Aspirate Concentrate: An Overview of Mechanisms of Action and Orthobiologic Synergistic Effects. World J. Stem Cells 2021, 13, 155–167. [Google Scholar] [CrossRef]
- Dwyer, T.; Hoit, G.; Lee, A.; Watkins, E.; Henry, P.; Leroux, T.; Veillette, C.; Theodoropoulos, J.; Ogilvie-Harris, D.; Chahal, J. Injection of Bone Marrow Aspirate for Glenohumeral Joint Osteoarthritis: A Pilot Randomized Control Trial. Arthrosc. Sports Med. Rehabil. 2021, 3, e1431–e1440. [Google Scholar] [CrossRef]
- Salamanna, F.; Contartese, D.; Borsari, V.; Pagani, S.; Sartori, M.; Tschon, M.; Griffoni, C.; Giavaresi, G.; Tedesco, G.; Brodano, G.B.; et al. Gender-Specific Differences in Human Vertebral Bone Marrow Clot. Int. J. Mol. Sci. 2023, 24, 11856. [Google Scholar] [CrossRef] [PubMed]
- Muthu, S.; Jeyaraman, M.; Narula, A.; Ravi, V.; Gandi, A.; Khanna, M.; Maffulli, N.; Gupta, A. Factors Influencing the Yield of Progenitor Cells in Bone Marrow Aspiration Concentrate-A Retrospective Analysis of 58 Patients. Biomedicines 2023, 11, 738. [Google Scholar] [CrossRef]
- Jeyaraman, M.; Bingi, S.K.; Muthu, S.; Jeyaraman, N.; Packkyarathinam, R.P.; Ranjan, R.; Sharma, S.; Jha, S.K.; Khanna, M.; Rajendran, S.N.S.; et al. Impact of the Process Variables on the Yield of Mesenchymal Stromal Cells from Bone Marrow Aspirate Concentrate. Bioengineering 2022, 9, 57. [Google Scholar] [CrossRef]
- Jeyaraman, M.; Karthik, K.S.; Choudary, D.; Jeyaraman, N.; Nallakumarasamy, A.; Ramasubramian, S. Autologous Bone Marrow Aspiration Concentrate (BMAC) Therapy for Primary Knee Osteoarthritis—An Observational and Dose Escalation Study. Indian J. Orthop. 2024, 58, 1016–1026. [Google Scholar] [CrossRef]
- Jeyaraman, M.; Muthu, S.; Jain, R.; Khanna, M. Autologous Bone Marrow Derived Mesenchymal Stem Cell Therapy for Osteonecrosis of Femoral Head: A Systematic Overview of Overlapping Meta-Analyses. J. Clin. Orthop. Trauma. 2021, 13, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Muthu, S.; Saravanakumar, T.P.; Ganie, P.A.; Yadav, V.; Baghel, P.K.; Jeyaraman, M. Thematic Trend Mapping and Hotspot Analysis in Bone Marrow Aspirate Concentrate Therapy: A Scientometric Literature Analysis and Advances in Osteoarthritis. Cytotherapy 2022, 24, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Bachir, R.M.; Zaia, I.M.; Santos, G.S.; Fonseca, L.F.d.; Boni, G.; Guercia, R.F.; Ferreira, G.F.; Lana, J.F.S.D. Bone Marrow Aspirate Concentrate Improves Outcomes in Adults With Osteochondral Dissecans of the Talus and Achilles Rupture. Arthroscopy 2023, 39, 881–886. [Google Scholar] [CrossRef] [PubMed]
- Kruel, A.V.S.; Ribeiro, L.L.; Gusmão, P.D.; Huber, S.C.; Lana, J.F.S.D. Orthobiologics in the Treatment of Hip Disorders. World J. Stem Cells 2021, 13, 304–316. [Google Scholar] [CrossRef]
- Lana, J.F.S.D.; Sugano, A.A.; De Barros, H.V.; Mosaner, T.; Santos, G.S.; Lana, J.V.B.; Vicente, R.; De Andrade, M.A.P. Full Recovery from O’Donoghue’s Triad with Autologous Bone Marrow Aspirate Matrix: A Case Report. J. Funct. Morphol. Kinesiol. 2022, 7, 100. [Google Scholar] [CrossRef]
Year | Researcher(s) | Key Contributions |
---|---|---|
2014 | Centeno [7] | Compared BMAC alone vs. BMAC with fat grafting for knee osteoarthritis and concluded that addition of fat grafting has not exhibited an additional regenerative effect than BMAC alone |
2017 | Salamanna [33] | Conducted a systematic review on the use of BMA clot as a scaffold for tissue regeneration where he described the usage of the BMA clot in eight pre-clinical and three clinical studies and concluded that the BMA clot as a plausible scaffold for tissue regeneration |
2020 | Lana and Purita [34] | Proposed an ACH classification system for bone marrow-derived products, which emphasizes the quality control of bone marrow-derived products in clinical usage |
2020 | Everts et al. [35] | Centrifugal density separation facilitates higher BMAC cellular yields than low volume BMA where they described the factors responsible for higher BMAC cellular yields |
2020 | Mautner et al. [36] | Multi-site low volume BMA aspirations increase CFU-fs and other cells when compared to single site high volume aspirations |
2021 | Lana et al. [37] | Introduced the BMA matrix technique mixed with hyaluronic acid where BMA Matrix represents a suitable alternative, indicated for the enhancement of tissue repair mechanisms by modulating inflammation and acting as a natural biological scaffold as well as a reservoir of cytokines and growth factors that support cell activity |
2022 | Salamanna [38] | Studied the age-related efficacy of BMA clot in bone regeneration and concluded that the donor age does not affect functional and phenotypical characteristics of clotted BMA |
2023 | Salamanna [39] | Safety and efficacy of autologous bone marrow clot as a multifunctional bio-scaffold for instrumental posteriolateral lumbar fusion where the results indicate a successful posterolateral lumbar fusion rate of 100% at the 12-month follow-up, along with an increase in bone density from 6 to 12 months of follow-up |
2023 | Contartese [40] | Ability of BMA clot to provide a local combined delivery system not only of stem cells, signalling biomolecules, and anti-inflammatory factors but also of molecules and proteins endowed with antimicrobial properties |
2024 | Jeyaraman and Muthu [41] | Dose stratification of BMAC [minimal clinically important differences (MCID)—2 million BMAC cells per kilogram body weight] in the management of knee osteoarthritis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lana, J.F.; de Brito, G.C.; Kruel, A.; Brito, B.; Santos, G.S.; Caliari, C.; Salamanna, F.; Sartori, M.; Barbanti Brodano, G.; Costa, F.R.; et al. Evolution and Innovations in Bone Marrow Cellular Therapy for Musculoskeletal Disorders: Tracing the Historical Trajectory and Contemporary Advances. Bioengineering 2024, 11, 979. https://doi.org/10.3390/bioengineering11100979
Lana JF, de Brito GC, Kruel A, Brito B, Santos GS, Caliari C, Salamanna F, Sartori M, Barbanti Brodano G, Costa FR, et al. Evolution and Innovations in Bone Marrow Cellular Therapy for Musculoskeletal Disorders: Tracing the Historical Trajectory and Contemporary Advances. Bioengineering. 2024; 11(10):979. https://doi.org/10.3390/bioengineering11100979
Chicago/Turabian StyleLana, José Fábio, Gabriela Caponero de Brito, André Kruel, Benjamim Brito, Gabriel Silva Santos, Carolina Caliari, Francesca Salamanna, Maria Sartori, Giovanni Barbanti Brodano, Fábio Ramos Costa, and et al. 2024. "Evolution and Innovations in Bone Marrow Cellular Therapy for Musculoskeletal Disorders: Tracing the Historical Trajectory and Contemporary Advances" Bioengineering 11, no. 10: 979. https://doi.org/10.3390/bioengineering11100979
APA StyleLana, J. F., de Brito, G. C., Kruel, A., Brito, B., Santos, G. S., Caliari, C., Salamanna, F., Sartori, M., Barbanti Brodano, G., Costa, F. R., Jeyaraman, M., Dallo, I., Bernaldez, P., Purita, J., Andrade, M. A. P. d., & Everts, P. A. (2024). Evolution and Innovations in Bone Marrow Cellular Therapy for Musculoskeletal Disorders: Tracing the Historical Trajectory and Contemporary Advances. Bioengineering, 11(10), 979. https://doi.org/10.3390/bioengineering11100979