Deep Learning for Nasopharyngeal Carcinoma Segmentation in Magnetic Resonance Imaging: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Guidelines
2.2. Search of Databases and Selection of Eligible Studies
2.3. Data Extraction and Management
2.4. Methodological Quality Appraisal
2.5. Statistical Analysis
3. Results
3.1. Study Identification and Selection
3.2. Basic Characteristics of Included Studies
3.3. Characteristics of MRI
3.4. Characteristics and Performance of Preprocessing Techniques and DL Algorithms
3.5. Quality Assessment
3.6. Efficacy of DL Model Segmentation of NPC on MRI
4. Discussion
4.1. Summary of Findings
4.2. Comparison with the Existing Literature
4.3. Strengths of Deep Learning Models
4.4. Limitations and Challenges
4.5. Implications for Clinical Practice
4.6. Future Research Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.P.; Chan, A.T.; Le, Q.T.; Blanchard, P.; Sun, Y.; Ma, J. Nasopharyngeal carcinoma. Lancet 2019, 394, 64–80. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Zhou, Y.; Li, W.; Tang, Q.; Chen, R.; Zhu, J.; Feng, Z. T cells expressing a lmp1-specific chimeric antigen receptor mediate antitumor effects against lmp1-positive nasopharyngeal carcinoma cells in vitro and in vivo. J. Biomed. Res. 2014, 28, 468. [Google Scholar]
- Lam, W.K.J.; Chan, J.Y.K. Recent advances in the management of nasopharyngeal carcinoma. F1000Research 2018, 7, 1829. [Google Scholar] [CrossRef]
- Zhou, H.; Shen, G.; Zhang, W.; Cai, H.; Zhou, Y.; Li, L. 18f-fdg pet/ct for the diagnosis of residual or recurrent nasopharyngeal carcinoma after radiotherapy: A metaanalysis. J. Nucl. Med. 2015, 57, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Li, C. Nasopharyngeal carcinoma: Imaging diagnosis and recent progress. J. Nasopharyngeal Carcinoma 2014, 1, e1. [Google Scholar]
- King, A.D.; Bhatia, K.S.S. Magnetic resonance imaging staging of nasopharyngeal carcinoma in the head and neck. World J. Radiol. 2010, 2, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Tian, J.; Dong, D.; Gu, D.; Dong, Y.; Zhang, L.; Lian, Z.; Liu, J.; Luo, X.; Pei, S.; et al. Radiomics features of multiparametric MRI as novel prognostic factors in advanced nasopharyngeal carcinoma. Clin. Cancer Res. 2017, 23, 4259–4269. [Google Scholar] [CrossRef]
- Tang, P.; Zu, C.; Hong, M.; Yan, R.; Peng, X.; Xiao, J.; Wu, X.; Zhou, J.; Zhou, L.; Wang, Y. DA-DSUnet: Dual Attention-based Dense SU-net for automatic head-and-neck tumor segmentation in MRI images. Neurocomputing 2021, 435, 103–113. [Google Scholar] [CrossRef]
- Erickson, B.J.; Korfiatis, P.; Akkus, Z.; Kline, T.; Philbrick, K. Toolkits and Libraries for Deep Learning. J. Digit. Imaging 2017, 30, 400–405. [Google Scholar] [CrossRef]
- Huang, Z.; Li, Q.; Lu, J.; Feng, J.; Hu, J.; Chen, P. Recent Advances in Medical Image Processing. Acta Cytol. 2020, 65, 310–323. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Xu, Y.; Chen, Z.; Liu, D.; Feng, S.-T.; Law, M.; Ye, Y.; Huang, B. Tumor Segmentation in Contrast-Enhanced Magnetic Resonance Imaging for Nasopharyngeal Carcinoma: Deep Learning with Convolutional Neural Network. BioMed. Res. Int. 2018, 2018, 9128527. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Cai, Z.; Huang, B.; He, Y.; Zeng, P.; Zou, G.; Deng, W.; Chen, H.; Huang, B. Fully-Automated Segmentation of Nasopharyngeal Carcinoma on Dual-Sequence MRI Using Convolutional Neural Networks. Front. Oncol. 2020, 10, 166. [Google Scholar] [CrossRef] [PubMed]
- Badrigilan, S.; Nabavi, S.; Abin, A.A.; Rostampour, N.; Abedi, I.; Shirvani, A.; Ebrahimi Moghaddam, M. Deep learning approaches for automated classification and segmentation of head and neck cancers and brain tumors in magnetic resonance images: A meta-analysis study. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 529–542. [Google Scholar] [CrossRef] [PubMed]
- Zamanian, M.; Abedi, I. Convolutional neural networks in auto-segmentation of nasopharyngeal carcinoma tumor—A systematic review and meta-analysis. Oncol. Clin. Pract. 2024, 20, 27–39. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Wang, C.K.; Wang, T.W.; Yang, Y.X.; Wu, Y.T. Deep Learning for Nasopharyngeal Carcinoma Segmentation in Magnetic Resonance Imaging: A Systematic Review and Meta-analysis. INPALSY 2024. [Google Scholar] [CrossRef]
- Mongan, J.; Moy, L.; Kahn, C.E. Checklist for Artificial Intelli- gence in Medical Imaging (CLAIM): A Guide for Authors and Reviewers. Radiol. Artif. Intell. 2020, 2, e200029. [Google Scholar] [CrossRef] [PubMed]
- Whiting, P.F.; Rutjes, A.W.S.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.G.; Sterne, J.A.C.; Bossuyt, P.M.M.; QUADAS-2 Group. QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. Ann. In-tern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014, 14, 135. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Wan, X.; Liu, J.; Tong, T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat. Methods Med. Res. 2018, 27, 1785–1805. [Google Scholar] [CrossRef] [PubMed]
- Borenstein, M.; Hedges, L.V.; Rothstein, H.R. Fixed-Effect versus Random-Effects Models. In Introduction to Meta-Analysis; Borenstein, M., Ed.; Wiley: Hoboken, NJ, USA, 2009; pp. 77–86. [Google Scholar]
- Borenstein, M.; Higgins, J.P. Meta-analysis and subgroups. Prev. Sci. 2013, 14, 134–143. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring Inconsistency in Meta-Analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in Meta-Analysis Detected by a Simple, Graphical Test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Cheung MW, L. Modeling dependent effect sizes with three-level meta-analyses: A structural equation modeling approach. Psychol. Methods 2014, 19, 211–229. [Google Scholar] [CrossRef] [PubMed]
- Morton, S.C.; Adams, J.L.; Suttorp, M.J.; Shekelle, P.G. Meta-regression Approaches: What, Why, When, and How? (Technical Reviews, No. 8.) 1, Introduction; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2004. Available online: https://www.ncbi.nlm.nih.gov/books/NBK43897/ (accessed on 20 March 2024).
- McDonald, B.A.; Cardenas, C.E.; O’Connell, N.; Ahmed, S.; Naser, M.A.; Wahid, K.A.; Xu, J.; Thill, D.; Zuhour, R.J.; Mesko, S.; et al. Investigation of autosegmentation techniques on T2-weighted MRI for off-line dose reconstruction in MR-linac workflow for head and neck cancers. Med. Phys. 2024, 51, 278–291. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; He, L.; Chen, C.; Yang, X.; Lin, L.; Yan, Z.; Tian, M.; Sun, Y.; Zhan, Y. Full-scale attention network for automated organ segmentation on head and neck CT and MR images. IET Image Process. 2023, 17, 660–673. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, X.; Ge, J.; Guo, D.; Zheng, D.; Yu, H.; Chen, Y.; Yao, G.; Lu, Z.; Yuille, A.; et al. Deep Learning-Based Multi-Modality Segmentation of Primary Gross Tumor Volume in CT and MRI for Nasopharyngeal Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2023, 117, e498. [Google Scholar] [CrossRef]
- Zeng, Y.; Zeng, P.; Shen, S.; Liang, W.; Li, J.; Zhao, Z.; Zhang, K.; Shen, C. DCTR U-Net: Automatic segmentation algorithm for medical images of nasopharyngeal cancer in the context of deep learning. Front. Oncol. 2023, 13, 1190075. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Peng, X.; Xiao, J.; Wu, X.; Zhou, J.; Wang, Y. Automatic Head-and-Neck Tumor Segmentation in MRI via an End-to-End Adversarial Network. Neural Process. Lett. 2023, 55, 9931–9948. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, H.; Lin, J.; Dong, S.; Zhang, W. Automatic detection and recognition of nasopharynx gross tumour volume (GTVnx) by deep learning for nasopharyngeal cancer radiotherapy through magnetic resonance imaging. Radiat. Oncol. 2023, 18, 76. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, S.; Luo, X.; Liao, W.; Zhu, L. Advancing Delineation of Gross Tumor Volume Based on Magnetic Resonance Imaging by Performing Source-Free Domain Adaptation in Nasopharyngeal Carcinoma. In Computational Mathematics Modeling in Cancer Analysis; Qin, W., Zaki, N., Zhang, F., Wu, J., Yang, F., Li, C., Eds.; CMMCA 2023. Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2023; Volume 14243. [Google Scholar]
- Song, Y.; Hu, J.; Wang, Q.; Yu, C.; Su, J.; Chen, L.; Jiang, X.; Chen, B.; Zhang, L.; Yu, Q.; et al. Young oncologists benefit more than experts from deep learning-based organs-at-risk contouring modeling in nasopharyngeal carcinoma radiotherapy: A multi-institution clinical study exploring working experience and institute group style factor. Clin. Transl. Radiat. Oncol. 2023, 41, 100635. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, Z.; Qi, X.; Zhou, Q. Objective Boundary Generation for Gross Target Volume and Organs at Risk Using 3D Multi-Modal Medical Images. Int. J. Radiat. Oncol. Biol. Phys. 2023, 117, e476. [Google Scholar] [CrossRef]
- Lin, L.; Peng, P.; Zhou, G.; Huang, S.; Hu, J.; Liu, Y.; He, S.; Sun, Y.; Zhang, W. Deep Learning-Based Synthesis of Contrast-Enhanced MRI for Automated Delineation of Primary Gross Tumor Volume in Radiotherapy of Nasopharyngeal Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2023, 117, e475. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, Y.; Yang, Q.; Luo, Y.; Zhang, P.; Yang, X.; Ren, J.; Ren, Y.; Lang, J.; Xu, G. Automatic tumor segmentation and metachronous single-organ metastasis prediction of nasopharyngeal carcinoma patients based on multi-sequence magnetic resonance imaging. Front. Oncol. 2023, 13, 953893. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Jiang, H.; Diao, Z.; Shi, T.; Liu, L.; Li, H.; Zhang, W. MSU-Net: Multi-scale Sensitive U-Net based on pixel-edge-region level collaborative loss for nasopharyngeal MRI segmentation. Comput. Biol. Med. 2023, 159, 106956. [Google Scholar] [CrossRef]
- Fei, X.; Li, X.; Shi, C.; Ren, H.; Mumtaz, I.; Guo, J.; Wu, Y.; Luo, Y.; Lv, J.; Wu, X. Dual-feature Fusion Attention Network for Small Object Segmentation. Comput. Biol. Med. 2023, 160, 106985. [Google Scholar] [CrossRef]
- Cai, Z.; Ye, Y.; Zhong, Z.; Lin, H.; Xu, Z.; Huang, B.; Deng, W.; Wu, Q.; Lei, K.; Lyu, J.; et al. Automated Segmentation of Nasopharyngeal Carcinoma Based on Dual-Sequence Magnetic Resonance Imaging Using Self-supervised Learning. In Computational Mathematics Modeling in Cancer Analysis; Qin, W., Zaki, N., Zhang, F., Wu, J., Yang, F., Li, C., Eds.; CMMCA 2023. Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2023; Volume 14243. [Google Scholar]
- Zhao, W.; Zhang, D.; Mao, X. Application of Artificial Intelligence in Radiotherapy of Nasopharyngeal Carcinoma with Magnetic Resonance Imaging. J. Healthc. Eng. 2022, 2022, 4132989, Erratum in J. Healthc. Eng. 2023, 2023, 9825710. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, Z.; Peng, Y.; Yin, Y.; Zhou, Q. Patient-Specific Daily Updated Deep Learning Auto-Segmentation for MRI-Guided Adaptive Radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2022, 114, e108–e109. [Google Scholar] [CrossRef]
- Yue, M.; Dai, Z.; He, J.; Xie, Y.; Zaki, N.; Qin, W. MRI-guided Automated Delineation of Gross Tumor Volume for Nasopharyngeal Carcinoma using Deep Learning. In Proceedings of the 2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS), Shenzhen, China, 21–22 July 2022; pp. 292–296. [Google Scholar]
- Yang, G.; Dai, Z.; Zhang, Y.; Zhu, L.; Tan, J.; Chen, Z.; Zhang, B.; Cai, C.; He, Q.; Li, F.; et al. Multiscale Local Enhancement Deep Convolutional Networks for the Automated 3D Segmentation of Gross Tumor Volumes in Nasopharyngeal Carcinoma: A Multi-Institutional Dataset Study. Front. Oncol. 2022, 12, 827991. [Google Scholar] [CrossRef]
- Tao, G.; Li, H.; Huang, J.; Han, C.; Chen, J.; Ruan, G.; Huang, W.; Hu, Y.; Dan, T.; Zhang, B.; et al. SeqSeg: A sequential method to achieve nasopharyngeal carcinoma segmentation free from background dominance. Med. Image Anal. 2022, 78, 102381. [Google Scholar] [CrossRef] [PubMed]
- Hai-Feng, Q.; Fang, Y. Convolutional neural network in evaluation of radiotherapy effect for nasopharyngeal carcinoma. Sci. Program. 2022, 2022, 1509490. [Google Scholar]
- Martin, R.J.; Sharma, U.; Kaur, K.; Kadhim, N.M.; Lamin, M.; Ayipeh, C.S. Multidimensional CNN-Based Deep Segmentation Method for Tumor Identification. Biomed. Res. Int. 2022, 2022, 5061112, Erratum in Biomed. Res. Int. 2024, 2024, 9836130. [Google Scholar] [CrossRef] [PubMed]
- Ling, Z.; Tao, G.; Li, Y.; Cai, H. NPCFORMER: Automatic Nasopharyngeal Carcinoma Segmentation Based on Boundary Attention and Global Position Context Attention. In Proceedings of the 2022 IEEE International Conference on Image Processing (ICIP), Bordeaux, France, 16–19 October 2022; pp. 1981–1985. [Google Scholar]
- Liang, S.; Dong, X.; Yang, K.; Chu, Z.; Tang, F.; Ye, F.; Chen, B.; Guan, J.; Zhang, Y. A multi-perspective information aggregation network for automatedT-staging detection of nasopharyngeal carcinoma. Phys. Med. Biol. 2022, 67, 245007. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, W.; Li, B.; Zhu, J.; Peng, Y.; Li, C.; Zhu, J.; Zhou, Q.; Yin, Y. Patient-specific daily updated deep learning auto-segmentation for MRI-guided adaptive radiotherapy. Radiother. Oncol. 2022, 177, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Xiao, H.; Li, T.; Ren, G.; Lam, S.; Teng, X.; Liu, C.; Zhang, J.; Kar-Ho Lee, F.; Au, K.H.; et al. Virtual Contrast-Enhanced Magnetic Resonance Images Synthesis for Patients with Nasopharyngeal Carcinoma Using Multimodality-Guided Synergistic Neural Network. Int. J. Radiat. Oncol. Biol. Phys. 2022, 112, 1033–1044. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Hua, H.L.; Li, F.; Kong, Y.G.; Zhu, Z.L.; Li, S.L.; Chen, X.X.; Deng, Y.Q.; Tao, Z.Z. Anatomical Partition-Based Deep Learning: An Automatic Nasopharyngeal MRI Recognition Scheme. J. Magn. Reason. Imaging 2022, 56, 1220–1229. [Google Scholar] [CrossRef]
- He, Y.; Zhang, S.; Luo, Y.; Yu, H.; Fu, Y.; Wu, Z.; Jiang, X.; Li, P. Quantitative Comparisons of Deep-learning-based and Atlas-based Auto- segmentation of the Intermediate Risk Clinical Target Volume for Nasopharyngeal Carcinoma. Curr. Med. Imaging 2022, 18, 335–345. [Google Scholar] [CrossRef]
- Deng, Y.; Li, C.; Lv, X.; Xia, W.; Shen, L.; Jing, B.; Li, B.; Guo, X.; Sun, Y.; Xie, C.; et al. The contrast-enhanced MRI can be substituted by unenhanced MRI in identifying and automatically segmenting primary nasopharyngeal carcinoma with the aid of deep learning models: An exploratory study in large-scale population of endemic area. Comput. Methods Programs Biomed. 2022, 217, 106702. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Hou, D.; Li, B.; Lv, X.; Ke, L.; Qiang, M.; Li, T.; Jing, B.; Li, C. A Novel Fully Automated MRI-Based Deep-Learning Method for Segmentation of Nasopharyngeal Carcinoma Lymph Nodes. J. Med. Biol. Eng. 2022, 42, 604–612. [Google Scholar] [CrossRef]
- Zhong, Y.; Yang, Y.; Fang, Y.; Wang, J.; Hu, W. A Preliminary Experience of Implementing Deep-Learning Based Auto-Segmentation in Head and Neck Cancer: A Study on Real-World Clinical Cases. Front. Oncol. 2021, 11, 638197. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, Z.; Liang, Z.; Hu, Y.; Zhou, Q. AccuLearning: A User-Friendly Deep Learning Auto-Segmentation Platform for Radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2021, 111, e122. [Google Scholar] [CrossRef]
- Wang, D.; Gong, Z.; Zhang, Y.; Wang, S. Convolutional Neural Network Intelligent Segmentation Algorithm-Based Magnetic Resonance Imaging in Diagnosis of Nasopharyngeal Carcinoma Foci. Contrast Media Mol. Imaging 2021, 2021, 2033806. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Li, Y.; Dong, G.; Lambo, R.; Qin, W.; Wang, Y.; Zhang, G.; Liu, J.; Xie, Y. Artificial intelligence-based bone-enhanced magnetic resonance image-a computed tomography/magnetic resonance image composite image modality in nasopharyngeal carcinoma radiotherapy. Quant. Imaging Med. Surg. 2021, 11, 4709–4720. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Chen, X.; Li, J.; Wang, Y.; Men, K.; Dai, J. MRI-Only Radiotherapy Planning for Nasopharyngeal Carcinoma Using Deep Learning. Front. Oncol. 2021, 11, 713617. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Liao, W.; Chen, J.; Song, T.; Chen, Y.; Zhang, S.; Chen, N.; Wang, G.; Zhang, S. Efficient Semi-supervised Gross Target Volume of Nasopharyngeal Carcinoma Segmentation via Uncertainty Rectified Pyramid Consistency. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2021; de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C., Eds.; MICCAI 2021. Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2021; Volume 12902. [Google Scholar]
- Lo Faso, E.A.; Gambino, O.; Pirrone, R. Head–Neck Cancer Delineation. Appl. Sci. 2020, 11, 2721. [Google Scholar] [CrossRef]
- Li, Y.; Han, G.; Liu, X. DCNet: Densely Connected Deep Convolutional Encoder-Decoder Network for Nasopharyngeal Carcinoma Segmentation. Sensors 2021, 21, 7877. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Hu, Y.; Gong, G.; Yin, Y.; Xia, Y. A deep learning approach to segmentation of nasopharyngeal carcinoma using computed tomography. Biomed. Signal Process. Control. 2021, 64, 102246. [Google Scholar] [CrossRef]
- Xue, X.; Qin, N.; Hao, X.; Shi, J.; Wu, A.; An, H.; Zhang, H.; Wu, A.; Yang, Y. Sequential and Iterative Auto-Segmentation of High-Risk Clinical Target Volume for Radiotherapy of Nasopharyngeal Carcinoma in Planning CT Images. Front. Oncol. 2020, 10, 1134. [Google Scholar] [CrossRef] [PubMed]
- Vrtovec, T.; Močnik, D.; Strojan, P.; Pernuš, F.; Ibragimov, B. Auto-segmentation of organs at risk for head and neck radiotherapy planning: From atlas-based to deep learning methods. Med. Phys. 2020, 47, e929–e950. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Peng, H.; Dan, T.; Hu, Y.; Tao, G.; Cai, H. Coarse-to-fine Nasopharyngeal Carcinoma Segmentation in MRI via Multi-stage Rendering. In Proceedings of the 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Seoul, Republic of Korea, 16–19 December 2020; pp. 623–628. [Google Scholar]
- Guo, Y.; Yang, Q.; Hu, W.; Zhang, Z.; Wang, J.; Hu, C. Automatic Segmentation of nasopharyngeal carcinoma on MR Images: A Single-Institution Experience. Int. J. Radiat. Oncol. Biol. Phys. 2020, 108, e776. [Google Scholar] [CrossRef]
- Guo, Y.; Qing, Y. PO-1743: Automatic segmentation of nasopharyngeal carcinoma: A solution for single institution. Radiother. Oncol. 2020, 152, S967–S968. [Google Scholar] [CrossRef]
- Guo, F.; Shi, C.; Li, X.; Wu, X.; Zhou, J.; Lv, J. Image segmentation of nasopharyngeal carcinoma using 3D CNN with long-range skip connection and multi-scale feature pyramid. Soft Comput. 2020, 24, 12671–12680. [Google Scholar] [CrossRef]
- Cai, M.; Yang, Q.; Guo, Y.; Zhang, Z.; Wang, J.; Hu, W.; Hu, C. Combining images and clinical diagnostic information to improve automatic segmentation of nasopharyngeal carcinoma tumors on MR images. Int. J. Radiat. Oncol. Biol. Phys. 2020, 108, e308–e309. [Google Scholar] [CrossRef]
- Xiangyu, E.; Hongmei, Y.; Weigang, H.; Jiazhou, W. PO-1003 A deep learning based auto-segmentation for GTVs on NPC MR images. Radiother. Oncol. 2019, 133, S553–S554. [Google Scholar] [CrossRef]
- Wong, L.M.; Ai, Q.; Shi, L.; King, A.D. The Proceedings of the 19th International Cancer Imaging Society Meeting and Annual Teaching Course. Cancer Imaging 2019, 19 (Suppl. S1), 62. [Google Scholar]
- Ma, Z.; Zhou, S.; Wu, X.; Zhang, H.; Yan, W.; Sun, S.; Zhou, J. Nasopharyngeal carcinoma segmentation based on enhanced convolutional neural networks using multi-modal metric learning. Phys. Med. Biol. 2019, 64, 025005. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.B.; Zhuo, E.; Li, H.; Liu, L.; Cai, H.; Ou, Y. Achieving Accurate Segmentation of Nasopharyngeal Carcinoma in MR Images Through Recurrent Attention. Lect. Notes Comput. Sci. 2019, 11768, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zu, C.; Hu, G.; Luo, Y.; Ma, Z.; He, K.; Wu, X.; Zhou, J. Automatic Tumor Segmentation with Deep Convolutional Neural Networks for Radiotherapy Applications. Neural Process. Lett. 2018, 48, 1323–1334. [Google Scholar] [CrossRef]
- Sun, Y.; Lin, L.; Dou, Q.; Chen, H.; Jin, Y.; Zhou, G.Q.; Tang, Y.; Chen, W.; Su, B.; Liu, F.; et al. Development and Validation of A Deep Learning Algorithm for Automated Delineation of Primary Tumor for Nasopharyngeal Carcinoma from Multimodal Magnetic Resonance Images. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, e330–e331. [Google Scholar] [CrossRef]
- Ma, Z.; Wu, X.; Sun, S.; Xia, C.; Yang, Z.; Li, S.; Zhou, J. A discriminative learning based approach for automated nasopharyngeal carcinoma segmentation leveraging multi-modality similarity metric learning. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; pp. 813–816. [Google Scholar]
- Hu, K.; Liu, C.; Yu, X.; Zhang, J.; He, Y.; Zhu, H. A 2.5D Cancer Segmentation for MRI Images Based on U-Net. In Proceedings of the 2018 5th International Conference on Information Science and Control Engineering (ICISCE), Zhengzhou, China, 20–22 July 2018; pp. 6–10. [Google Scholar]
- He, Y.; Yu, X.; Liu, C.; Zhang, J.; Hu, K.; Zhu, H.C. A 3D Dual Path U-Net of Cancer Segmentation Based on MRI. In Proceedings of the 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC), Chongqing, China, 27–29 June 2018; pp. 268–272. [Google Scholar]
- Men, K.; Chen, X.; Zhang, Y.; Zhang, T.; Dai, J.; Yi, J.; Li, Y. Deep Deconvolutional Neural Network for Target Segmentation of Nasopharyngeal Cancer in Planning Computed Tomography Images. Front. Oncol. 2017, 7, 315. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Wu, X.; Zhou, J. Automatic nasopharyngeal carcinoma segmentation in MR images with convolutional neural networks. In Proceedings of the 2017 International Conference on the Frontiers and Advances in Data Science (FADS), Xi’an, China, 23–25 October 2017; pp. 147–150. [Google Scholar]
- Zhang, J.; Li, B.; Qiu, Q.; Mo, H.; Tian, L. SICNet: Learning selective inter-slice context via Mask-Guided Self-knowledge distillation for NPC segmentation. J. Vis. Commun. Image Represent. 2024, 98, 104053. [Google Scholar] [CrossRef]
- Huang, J.; Yang, S.; Zou, L.; Chen, Y.; Yang, L.; Yao, B.; Huang, Z.; Zhong, Y.; Liu, Z.; Zhang, N. Quantitative pharmacokinetic parameter Ktrans map assists in regional segmentation of nasopharyngeal carcinoma in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Biomed. Signal Process. Control. 2023, 87, 105433. [Google Scholar] [CrossRef]
- Meng, D.; Li, S.; Sheng, B.; Wu, H.; Tian, S.; Ma, W.; Wang, G.; Yan, W. 3D reconstruction-oriented fully automatic multi-modal tumor segmentation by dual attention-guided VNet. Vis. Comput. 2023, 39, 3183–3196. [Google Scholar] [CrossRef]
- Luo, X.; Liao, W.; He, Y.; Tang, F.; Wu, M.; Shen, Y.; Huang, H.; Song, T.; Li, K.; Zhang, S.; et al. Deep learning-based accurate delineation of primary gross tumor volume of nasopharyngeal carcinoma on heterogeneous magnetic resonance imaging: A large-scale and multi-center study. Radiother. Oncol. 2023, 180, 109480. [Google Scholar] [CrossRef] [PubMed]
- Gu, R.; Wang, G.; Lu, J.; Zhang, J.; Lei, W.; Chen, Y.; Liao, W.; Zhang, S.; Li, K.; Metaxas, D.N.; et al. CDDSA: Contrastive domain disentanglement and style augmentation for generalizable medical image segmentation. Med. Image Anal. 2023, 89, 102904. [Google Scholar] [CrossRef]
- Zhang, J.; Gu, L.; Han, G.; Liu, X. AttR2U-Net: A Fully Automated Model for MRI Nasopharyngeal Carcinoma Segmentation Based on Spatial Attention and Residual Recurrent Convolution. Front. Oncol. 2022, 11, 816672. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Han, G.; Liu, X. Lightweight Compound Scaling Network for Nasopharyngeal Carcinoma Segmentation from MR Images. Sensors 2022, 22, 5875. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Dan, T.; Li, H.; Chen, J.; Peng, H.; Liu, L.; Cai, H. NPCNet: Jointly Segment Primary Nasopharyngeal Carcinoma Tumors and Metastatic Lymph Nodes in MR Images. IEEE Trans. Med. Imaging 2022, 41, 1639–1650. [Google Scholar] [CrossRef]
- Wong, L.M.; Ai, Q.Y.H.; Poon, D.M.C.; Tong, M.; Ma, B.B.Y.; Hui, E.P.; Shi, L.; King, A.D. A convolutional neural network combined with positional and textural attention for the fully automatic delineation of primary nasopharyngeal carcinoma on non-contrast-enhanced MRI. Quant. Imaging Med. Surg. 2021, 11, 3932–3944. [Google Scholar] [CrossRef]
- Wong, L.M.; Ai, Q.Y.H.; Mo, F.K.F.; Poon, D.M.C.; King, A.D. Convolutional neural network in nasopharyngeal carcinoma: How good is automatic delineation for primary tumor on a non-contrast-enhanced fat-suppressed T2-weighted MRI? Jpn J. Radiol. 2021, 39, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Li, J.; Chen, H.; Guo, Y.; Yin, Y.; Gong, G.; Wang, L. Computer-aided diagnosis and regional segmentation of nasopharyngeal carcinoma based on multi-modality medical images. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 871–882. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Wang, J.; Yang, Q.; Guo, Y.; Zhang, Z.; Ying, H.; Hu, W.; Hu, C. Combining Images and T-Staging Information to Improve the Automatic Segmentation of Nasopharyngeal Carcinoma Tumors in MR Images. IEEE Access 2021, 9, 21323–21331. [Google Scholar] [CrossRef]
- Ke, L.; Deng, Y.; Xia, W.; Qiang, M.; Chen, X.; Liu, K.; Jing, B.; He, C.; Xie, C.; Guo, X.; et al. Development of a self-constrained 3D DenseNet model in automatic detection and segmentation of nasopharyngeal carcinoma using magnetic resonance images. Oral Oncol. 2020, 110, 104862. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Dou, Q.; Jin, Y.M.; Zhou, G.Q.; Tang, Y.Q.; Chen, W.L.; Su, B.A.; Liu, F.; Tao, C.J.; Jiang, N.; et al. Deep Learning for Automated Contouring of Primary Tumor Volumes by MRI for Nasopharyngeal Carcinoma. Radiology 2019, 291, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Wu, X.; Song, Q.; Luo, Y.; Wang, Y.; Zhou, J. Automated nasopharyngeal carcinoma segmentation in magnetic resonance images by combination of convolutional neural networks and graph cut. Exp. Ther. Med. 2018, 16, 2511–2521. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Deng, Y.; Zhu, Z.; Hua, H.; Tao, Z. A Comprehensive Review on Radiomics and Deep Learning for Nasopharyngeal Carcinoma Imaging. Diagnostics 2021, 11, 1523. [Google Scholar] [CrossRef]
- Ng, W.T.; But, B.; Choi, H.C.W.; de Bree, R.; Lee, A.W.M.; Lee, V.H.F.; López, F.; Mäkitie, A.A.; Rodrigo, J.P.; Saba, N.F.; et al. Application of Artificial Intelligence for Nasopharyngeal Carcinoma Management—A Systematic Review. Cancer Manag. Res. 2022, 14, 339–366. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Fang, M.; Zhang, J.; Tang, L.; Zhong, L.; Li, H.; Cao, R.; Zhao, X.; Liu, S.; Zhang, R.; et al. Radiomics and Deep Learning in Nasopharyngeal Carcinoma: A Review. IEEE Rev. Biomed. Eng. 2024, 17, 118–135. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Bai, J.; Han, D.; Bhatia, S.; Sun, W.; Rockey, W.; Bayouth, J.E.; Buatti, J.M.; Wu, X. Optimal co-segmentation of tumor in PET-CT images with context information. IEEE Trans. Med. Imag. 2013, 32, 1685–1697. [Google Scholar] [CrossRef]
- Isensee, F.; Jaeger, P.F.; Kohl, S.A.A.; Petersen, J.; Maier-Hein, K.H. nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 2021, 18, 203–211. [Google Scholar] [CrossRef] [PubMed]
First Author | Study Design | Patients | Series (Train/Valid/Test) | Reference | Validation | Data Source | Indicator Standard |
---|---|---|---|---|---|---|---|
Zhang et al. (2024) [83] | Retrospective | 130 | 130 (90/15/25) | Manual | Train/Test | Guangdong Provincial People’s Hospital | Experienced clinician |
Huang et al. (2024) [84] | Retrospective | 96 | 96 (76/10/10) | Manual | Train/Test | Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Hospital. | Two radiologists |
Meng et al. (2023) [85] | Retrospective | 161 | 161 (129/0/32) | Manual | Train/Test | Cancer Hospital | Radiation oncologists |
Luo et al. (2023) [86] | Retrospective | 1057 | 1057 (600/259/198) | Manual | Train/Test | Southern Medical University, West China Hospital, Sichuan Provincial People’s Hospital, Anhui Provincial Hospital, Sichuan Cancer Hospital | Two oncologists |
Gu et al. (2023) [87] | Retrospective | 189 | 189 (114/0/75) | Manual | Train/Test | Sichuan Provincial People’s Hospital, West China Hospital | Radiation oncologists |
Zhang et al. (2022) [88] | Retrospective | 93 | 93 (75/9/9) | Manual | Train/Test | Sun Yat-sen University | NR |
Liu et al. (2022) [89] | Retrospective | 92 | 92 (74/9/9) | Manual | Train/Test | Sun Yat-sen University | NR |
Li et al. (2022) [90] | Retrospective | 754 | 754 (604/150/0) | Manual | Cross-validation | Sun Yat-sen University | Three radiologists |
Wong et al. (2021) I [91] | Retrospective | 404 | 404 (303/101/0) | Manual | Cross-validation | Joint Chinese University of Hong Kong | Expert |
Wong et al. (2021) II [92] | Retrospective | 201 | 201 (130/6/65) | Manual | Cross-validation | Joint Chinese University of Hong Kong | Expert |
Qi et al. (2021) [93] | Retrospective | 149 | 149 (119/30/0) | Manual | Cross-validation | Shandong Cancer Hospital Affiliated to Shandong University | Experienced radiologists |
Cai et al. (2021) [94] | Retrospective | 251 | 251 (226/25/0) | Manual | Cross-validation | Fudan University Shanghai Cancer Center | Radiation oncologist |
Ye et al. (2020) [12] | Retrospective | 44 | 44 (40/4/0) | Manual | Cross-validation | Panyu Central Hospital | Radiologist |
Ke et al. (2020) [95] | Retrospective | 4100 | 4100 (3285/411/404) | Manual | Train/Test | Sun Yat-sen University | Radiation oncologist |
Lin et al. (2019) [96] | Retrospective | 1021 | 1021 (715/103/203) | Manual | Train/Test | Sun Yat-sen University | Radiation oncologist |
Ma et al. (2018) [97] | Retrospective | 30 | 30 (29/1/0) | Manual | Cross-validation | West China Hospital | Radiation oncologist |
Li et al. (2018) [11] | Retrospective | 29 | 29 (28/1/0) | Manual | Cross-validation | Sun Yat-sen University | Radiologists |
First Author | Tesla | Sequence | Hardware |
---|---|---|---|
Zhang et al. (2024) [83] | NR | T1c | NR |
Huang et al. (2024) [84] | 3T | DCE, Ktrans | GE Discovery MR 750w |
Meng et al. (2023) [85] | NR | T2w | Siemens Magnetom Skyra |
Luo et al. (2023) [86] | 1.5T/3T | T1c | GE, Siemens, Philips |
Gu et al. (2023) [87] | NR | T1w, T1c, T1 water, T2 water | NR |
Zhang et al. (2022) [88] | NR | T1c | Siemens Aera |
Liu et al. (2022) [89] | NR | T1c | Siemens Aera |
Li et al. (2022) [90] | 1.5T/3T | T1, T2, T1c | NR |
Wong et al. (2021) I [91] | 3T | T2w | Philips Achieva TX |
Wong et al. (2021) II [92] | 3T | T1W, fs-T2W, T1c and fs-ce-T1W | Philips Achieva TX |
Qi et al. (2021) [93] | NR | T1, T2, T1c | NR |
Cai et al. (2021) [94] | 1.5T | T1, T2, T1c | GE, Milwaukee |
Ye et al. (2020) [12] | 1.5T | T1w, T2w | Siemens Avanto |
Ke et al. (2020) [95] | 3T | T1c | Trio Tim; SIEMENS, Achieva, PHILIPS; Discovery MR750; GE; Discovery MR750w; GE, USA |
Lin et al. (2019) [96] | NR | T1, T2, T1c, T1w-fs | NR |
Ma et al. (2018) [97] | 3T | T1w | Philips Achieva |
Li et al. (2018) [11] | 3T | DCE | Magnetom Trio, Siemens |
First Author | Intensity Normalization | Resolution Adjustment | Image Augmentation | Image Cropping | Training Size | Input Dimension | Algorithms | Dice Score |
---|---|---|---|---|---|---|---|---|
Zhang et al. (2024) [83] | Yes | Yes | Yes | Yes | 90 | 2D/3D | SICNet | 0.74 |
Huang et al. (2024) [84] | Yes | No | Yes | Yes | 76 | 2D | ResU-Net | 0.66 |
Meng et al. (2023) [85] | Yes | Yes | Yes | Yes | 129 | 3D | Attention-guided Vnet | 0.72 |
Luo et al. (2023) [86] | Yes | Yes | Yes | Yes | 600 | 3D | nnUNet | 0.88 |
Gu et al. (2023) [87] | Yes | No | Yes | Yes | 114 | 2D | CDDSA | 0.92 |
Zhang et al. (2022) [88] | No | No | Yes | Yes | 75 | 2D | AttR2U-Net | 0.82 |
Liu et al. (2022) [89] | Yes | No | Yes | Yes | 74 | 2D | LW-UNet-3 | 0.81 |
Li et al. (2022) [90] | Yes | No | Yes | No | 604 | 2D | NPCNet | 0.73 |
Wong et al. (2021) I [91] | Yes | No | Yes | Yes | 303 | 2D | CNN | 0.79 |
Wong et al. (2021) II [92] | No | No | Yes | No | 130 | 2D | U-net | 0.73 |
Qi et al. (2021) [93] | Yes | No | Yes | Yes | 149 | 3D | MMFNet | 0.68 |
Cai et al. (2021) [94] | No | No | No | No | 226 | 2D | T-U-Net | 0.85 |
Ye et al. (2020) [12] | Yes | No | Yes | Yes | 40 | 2D | DEU | 0.72 |
Ke et al. (2020) [95] | No | No | No | No | 3285 | 3D | SC-DenseNet | 0.77 |
Lin et al. (2019) [96] | Yes | No | Yes | No | 715 | 3D | VoxResNet | 0.79 |
Ma et al. (2018) [97] | Yes | Yes | No | No | 29 | 2D/3D | CNN | 0.85 |
Li et al. (2018) [11] | Yes | No | Yes | Yes | 28 | 2D | CNN | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.-K.; Wang, T.-W.; Yang, Y.-X.; Wu, Y.-T. Deep Learning for Nasopharyngeal Carcinoma Segmentation in Magnetic Resonance Imaging: A Systematic Review and Meta-Analysis. Bioengineering 2024, 11, 504. https://doi.org/10.3390/bioengineering11050504
Wang C-K, Wang T-W, Yang Y-X, Wu Y-T. Deep Learning for Nasopharyngeal Carcinoma Segmentation in Magnetic Resonance Imaging: A Systematic Review and Meta-Analysis. Bioengineering. 2024; 11(5):504. https://doi.org/10.3390/bioengineering11050504
Chicago/Turabian StyleWang, Chih-Keng, Ting-Wei Wang, Ya-Xuan Yang, and Yu-Te Wu. 2024. "Deep Learning for Nasopharyngeal Carcinoma Segmentation in Magnetic Resonance Imaging: A Systematic Review and Meta-Analysis" Bioengineering 11, no. 5: 504. https://doi.org/10.3390/bioengineering11050504
APA StyleWang, C. -K., Wang, T. -W., Yang, Y. -X., & Wu, Y. -T. (2024). Deep Learning for Nasopharyngeal Carcinoma Segmentation in Magnetic Resonance Imaging: A Systematic Review and Meta-Analysis. Bioengineering, 11(5), 504. https://doi.org/10.3390/bioengineering11050504