Computational Lower Limb Simulator Boundary Conditions to Reproduce Measured TKA Loading in a Cohort of Telemetric Implant Patients
Abstract
:1. Introduction
2. Methods
2.1. Lower Limb Finite Element Model
2.2. Telemetric Implant Patient Data
2.3. Optimization of Control Parameters and Estimation of Actuator Loading
2.4. Principal Component Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choi, Y.J.; Ra, H.J. Patient satisfaction after total knee arthroplasty. Knee Surg. Relat. Res. 2016, 28, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Bozic, K.J.; Kurtz, S.M.; Lau, E.; Ong, K.; Chiu, V.; Vail, T.P.; Rubash, H.E.; Berry, D.J. The epidemiology of revision total knee arthroplasty in the united states. Clin. Orthop. Relat. Res. 2010, 468, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Bourne, R.B.; Chesworth, B.M.; Davis, A.M.; Mahomed, N.N.; Charron, K.D.J. Patient satisfaction after total knee arthroplasty: Who is satisfied and who is not? Clin. Orthop. Relat. Res. 2010, 468, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Wolford, M.L.; Palso, K.; Bercovitz, A.; Monica, L. Hospitalization for Total Hip Replacement among Inpatients Aged 45 and over: United States, 2000–2010; NCHS: Hyattsville, MD, USA, 2015; p. 8. ISSN 1941-4935.
- Walker, P.S.; Blunn, G.W.; Broome, D.R.; Perry, J.; Watkins, A.; Sathasivam, S.; Dewart, M.E.; Paul, J.P. A Knee Simulating Machine For Permormance Evaluation of TKR. J. Biomech. 1997, 30, 83–89. [Google Scholar] [CrossRef]
- Willing, R.; Moslemian, A.; Yamomo, G.; Wood, T.; Howard, J.; Lanting, B. Condylar-Stabilized TKR May Not Fully Compensate for PCL-Deficiency: An In Vitro Cadaver Study. J. Orthop. Res. 2019, 37, 2172–2181. [Google Scholar] [CrossRef] [PubMed]
- Behnam, Y.A.; Anantha Krishnan, A.; Wilson, H.; Clary, C.W. Simultaneous Evaluation of Tibiofemoral and Patellofemoral Mechanics in Total Knee Arthroplasty: A Combined Experimental and Computational Approach. J. Biomech. Eng. 2024, 146, 011007. [Google Scholar] [CrossRef] [PubMed]
- Maletsky, L.P.; Hillberry, B.M. Simulating Dynamic Activities Using a Five-Axis Knee Simulator. J. Biomech. Eng. 2005, 127, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Knight, L.A.; Pal, S.; Coleman, J.C.; Bronson, F.; Haider, H.; Levine, D.L.; Taylor, M.; Rullkoetter, P.J. Comparison of long-term numerical and experimental total knee replacement wear during simulated gait loading. J. Biomech. 2007, 40, 1550–1558. [Google Scholar] [CrossRef] [PubMed]
- Godest, A.C.; Beaugonin, M.; Haug, E.; Taylor, M.; Gregson, P.J. Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis. J. Biomech. 2002, 35, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, C.K.; Maag, C.; Clary, C.W.; Metcalfe, A.; Langhorn, J.; Rullkoetter, P.J. Validation of a new computational 6-DOF knee simulator during dynamic activities. J. Biomech. 2016, 49, 3177–3184. [Google Scholar] [CrossRef]
- Baldwin, M.A.; Clary, C.; Maletsky, L.P.; Rullkoetter, P.J. Verification of predicted specimen-specific natural and implanted patellofemoral kinematics during simulated deep knee bend. J. Biomech. 2009, 42, 2341–2348. [Google Scholar] [CrossRef] [PubMed]
- Halloran, J.P.; Clary, C.W.; Maletsky, L.P.; Taylor, M.; Petrella, A.J.; Rullkoetter, P.J. Verification of predicted knee replacement kinematics during simulated gait in the Kansas knee simulator. J. Biomech. Eng. 2010, 132, 081010. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, C.K.; Baldwin, M.A.; Clary, C.W.; Maletsky, L.P.; Rullkoetter, P.J. Evaluating knee replacement mechanics during ADL with PID-controlled dynamic finite element analysis. Comput. Methods Biomech. Biomed. Eng. 2014, 17, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Mell, S.P.; Wimmer, M.A.; Lundberg, H.J. Sensitivity of Total Knee Replacement Wear to Variability in Motion and Load Input: A Parametric Finite Element Analysis Study. J. Orthop. Res. 2020, 38, 1538–1549. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.A.; Clary, C.W.; Smoger, L.M.; Dennis, D.A.; Fitzpatrick, C.K.; Rullkoetter, P.J.; Laz, P.J. Computational framework for population-based evaluation of TKR-implanted patellofemoral joint mechanics. Biomech. Model. Mechanobiol. 2020, 19, 1309–1317. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, G.; Bender, A.; Graichen, F.; Dymke, J.; Rohlmann, A.; Trepczynski, A.; Heller, M.O.; Kutzner, I. Standardized loads acting in knee implants. PLoS ONE 2014, 9, e86035. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, M.A.; Clary, C.W.; Fitzpatrick, C.K.; Deacy, J.S.; Maletsky, L.P.; Rullkoetter, P.J. Dynamic finite element knee simulation for evaluation of knee replacement mechanics. J. Biomech. 2012, 45, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, M.J. The Visible Human Project 1995. Available online: http://www.nlm.nih.gov (accessed on 7 July 2023).
- Loi, I.; Stanev, D.; Moustakas, K. Total Knee Replacement: Subject-Specific Modeling, Finite Element Analysis, and Evaluation of Dynamic Activities. Front. Bioeng. Biotechnol. 2021, 9, 648356. [Google Scholar] [CrossRef] [PubMed]
- Castellarin, G.; Bori, E.; Rapallo, L.; Pianigiani, S.; Innocenti, B. Biomechanical analysis of different levels of constraint in TKA during daily activities. Arthroplasty 2023, 5, 3. [Google Scholar] [CrossRef] [PubMed]
Average Hip AP and Pelvic Rotation | Activity and Patient-Specific Pelvic Rotation and Hip AP Motion | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
AP Force | IE Torque | Compressive Load | VV Torque | Flexion | AP Force | IE Torque | Compressive Load | VV Torque | Flexion | |
Gait | 52.22 ± 45.16 N | 0.89 ± 0.90 N×m | 223.81 ± 118.80 N | 4.20 ± 3.95 N×m | 0.69 ± 0.16 Deg | 29.35 ± 11.81 N | 0.74 ± 0.20 N×m | 151.54 ± 55.48 N | 2.77 ± 0.64 N×m | 0.61 ± 0.09 Deg |
SD | 23.46 ± 22.71 N | 0.81 ± 0.47 N×m | 185.48 ± 46.73 N | 2.69 ± 0.61 N×m | 2.11 ± 0.39 Deg | 25.16 ± 18.69 N | 0.57 ± 0.34 N×m | 97.26 ± 53.82 N | 2.07 ± 0.58 N×m | 2.08 ± 0.45 Deg |
DKB | 39.95 ± 29.40 N | 1.15 ± 1.22 N×m | 189.07 ± 98.88 N | 1.67 ± 0.73 N×m | 1.69 ± 0.40 Deg | 31.17 ± 19.63 N | 0.65 ± 0.54 N×m | 44.37 ± 22.03 N | 0.81 ± 0.32 N×m | 1.63 ± 0.37 Deg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maag, C.; Fitzpatrick, C.K.; Rullkoetter, P.J. Computational Lower Limb Simulator Boundary Conditions to Reproduce Measured TKA Loading in a Cohort of Telemetric Implant Patients. Bioengineering 2024, 11, 503. https://doi.org/10.3390/bioengineering11050503
Maag C, Fitzpatrick CK, Rullkoetter PJ. Computational Lower Limb Simulator Boundary Conditions to Reproduce Measured TKA Loading in a Cohort of Telemetric Implant Patients. Bioengineering. 2024; 11(5):503. https://doi.org/10.3390/bioengineering11050503
Chicago/Turabian StyleMaag, Chase, Clare K. Fitzpatrick, and Paul J. Rullkoetter. 2024. "Computational Lower Limb Simulator Boundary Conditions to Reproduce Measured TKA Loading in a Cohort of Telemetric Implant Patients" Bioengineering 11, no. 5: 503. https://doi.org/10.3390/bioengineering11050503
APA StyleMaag, C., Fitzpatrick, C. K., & Rullkoetter, P. J. (2024). Computational Lower Limb Simulator Boundary Conditions to Reproduce Measured TKA Loading in a Cohort of Telemetric Implant Patients. Bioengineering, 11(5), 503. https://doi.org/10.3390/bioengineering11050503