Development and Validation of a Deep Learning Classifier Using Chest Radiographs to Predict Extubation Success in Patients Undergoing Invasive Mechanical Ventilation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Setting, Population, and Data Sources
2.2. Image Pre-Processing
2.3. Transfer Learning and Fine Tuning
2.4. Pixel Visualization
2.5. Benchmark Model, Model Testing, and Statistical Methods
3. Results
3.1. Study Population and Outcomes
3.2. Final Imaging Classifier and Predictors in the Imaging Classifier
3.3. Predictive Performance of the Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- MacIntyre, N.R. Evidence-Based Guidelines for Weaning and Discontinuing Ventilatory Support: A Collective Task Force Facilitated by the American College of Chest Physicians; the American Association for Respiratory Care; and the American College of Critical Care Medicine. Chest 2001, 120, 375S–395S. [Google Scholar] [CrossRef]
- Thille, A.W.; Richard, J.-C.M.; Brochard, L. The Decision to Extubate in the Intensive Care Unit. Am. J. Respir. Crit. Care Med. 2013, 187, 1294–1302. [Google Scholar] [CrossRef]
- Epstein, S.K.; Nevins, M.L.; Chung, J. Effect of Unplanned Extubation on Outcome of Mechanical Ventilation. Am. J. Respir. Crit. Care Med. 2000, 161, 1912–1916. [Google Scholar] [CrossRef]
- Epstein, S.K. Routine Use of Weaning Predictors: Not so Fast. Crit. Care 2009, 13, 197. [Google Scholar] [CrossRef]
- Yang, K.L.; Tobin, M.J. A Prospective Study of Indexes Predicting the Outcome of Trials of Weaning from Mechanical Ventilation. N. Engl. J. Med. 1991, 324, 1445–1450. [Google Scholar] [CrossRef]
- Hsieh, M.-H.; Hsieh, M.-J.; Chen, C.-M.; Hsieh, C.-C.; Chao, C.-M.; Lai, C.-C. An Artificial Neural Network Model for Predicting Successful Extubation in Intensive Care Units. J. Clin. Med. 2018, 7, 240. [Google Scholar] [CrossRef]
- Kuo, H.-J.; Chiu, H.-W.; Lee, C.-N.; Chen, T.-T.; Chang, C.-C.; Bien, M.-Y. Improvement in the Prediction of Ventilator Weaning Outcomes by an Artificial Neural Network in a Medical ICU. Respir. Care 2015, 60, 1560–1569. [Google Scholar] [CrossRef]
- Parreco, J.; Hidalgo, A.; Parks, J.J.; Kozol, R.; Rattan, R. Using Artificial Intelligence to Predict Prolonged Mechanical Ventilation and Tracheostomy Placement. J. Surg. Res. 2018, 228, 179–187. [Google Scholar] [CrossRef]
- Tandon, P.; Cheng, F.-Y.; Cheetirala, S.N.; Parchure, P.; Levin, M.; Kia, A. Predicting Readiness to Liberate from Mechanical Ventilation Using Machine Learning: Development and Retrospective Validation. In Proceedings of the TP54. TP054 MECHANICAL VENTILATION, American Thoracic Society, Virtual, 14–19 May 2021; p. A2757. [Google Scholar]
- Rajpurkar, P.; Irvin, J.; Ball, R.L.; Zhu, K.; Yang, B.; Mehta, H.; Duan, T.; Ding, D.; Bagul, A.; Langlotz, C.P.; et al. Deep Learning for Chest Radiograph Diagnosis: A Retrospective Comparison of the CheXNeXt Algorithm to Practicing Radiologists. PLoS Med. 2018, 15, e1002686. [Google Scholar] [CrossRef]
- Fukuchi, K.; Osawa, I.; Satake, S.; Ito, H.; Shibata, J.; Dohi, E.; Kasugai, D.; Miyamoto, Y.; Ohbe, H.; Tamoto, M.; et al. The Contribution of Chest X-Ray to Predict Extubation Failure in Mechanically Ventilated Patients Using Machine Learning-Based Algorithms. Crit. Care Explor. 2022, 4, e0718. [Google Scholar] [CrossRef]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G.M. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD Statement. BMJ 2015, 350, g7594. [Google Scholar] [CrossRef]
- Selvan, R.; Dam, E.B.; Detlefsen, N.S.; Rischel, S.; Sheng, K.; Nielsen, M.; Pai, A. Lung Segmentation from Chest X-rays Using Variational Data Imputation. arXiv 2020, arXiv:2005.10052. [Google Scholar]
- Bianco, S.; Cadene, R.; Celona, L.; Napoletano, P. Benchmark Analysis of Representative Deep Neural Network Architectures. IEEE Access 2018, 6, 64270–64277. [Google Scholar] [CrossRef]
- Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN Comput. Sci. 2021, 2, 420. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Burns, S.M.; Fisher, C.; Tribble, S.E.S.; Lewis, R.; Merrel, P.; Conaway, M.R.; Bleck, T.P. The Relationship of 26 Clinical Factors to Weaning Outcome. Am. J. Crit. Care Off. Publ. Am. Assoc. Crit.-Care Nurses 2012, 21, 52–58, quiz 59. [Google Scholar] [CrossRef]
- Kulkarni, A.R.; Athavale, A.M.; Sahni, A.; Sukhal, S.; Saini, A.; Itteera, M.; Zhukovsky, S.; Vernik, J.; Abraham, M.; Joshi, A.; et al. Deep Learning Model to Predict the Need for Mechanical Ventilation Using Chest X-Ray Images in Hospitalised Patients with COVID-19. BMJ Innov. 2021, 7, 261–270. [Google Scholar] [CrossRef]
- Aljouie, A.F.; Almazroa, A.; Bokhari, Y.; Alawad, M.; Mahmoud, E.; Alawad, E.; Alsehawi, A.; Rashid, M.; Alomair, L.; Almozaai, S.; et al. Early Prediction of COVID-19 Ventilation Requirement and Mortality from Routinely Collected Baseline Chest Radiographs, Laboratory, and Clinical Data with Machine Learning. J. Multidiscip. Healthc. 2021, 14, 2017–2033. [Google Scholar] [CrossRef]
- Pyrros, A.; Flanders, A.E.; Rodríguez-Fernández, J.M.; Chen, A.; Cole, P.; Wenzke, D.; Hart, E.; Harford, S.; Horowitz, J.; Nikolaidis, P.; et al. Predicting Prolonged Hospitalization and Supplemental Oxygenation in Patients with COVID-19 Infection from Ambulatory Chest Radiographs Using Deep Learning. Acad. Radiol. 2021, 28, 1151–1158. [Google Scholar] [CrossRef]
- Varghese, B.A.; Shin, H.; Desai, B.; Gholamrezanezhad, A.; Lei, X.; Perkins, M.; Oberai, A.; Nanda, N.; Cen, S.; Duddalwar, V. Predicting Clinical Outcomes in COVID-19 Using Radiomics on Chest Radiographs. Br. J. Radiol. 2021, 94, 20210221. [Google Scholar] [CrossRef]
- O’Shea, A.; Li, M.D.; Mercaldo, N.D.; Balthazar, P.; Som, A.; Yeung, T.; Succi, M.D.; Little, B.P.; Kalpathy-Cramer, J.; Lee, S.I. Intubation and Mortality Prediction in Hospitalized COVID-19 Patients Using a Combination of Convolutional Neural Network-Based Scoring of Chest Radiographs and Clinical Data. BJR Open 2022, 4, 20210062. [Google Scholar] [CrossRef]
- Chung, J.; Kim, D.; Choi, J.; Yune, S.; Song, K.D.; Kim, S.; Chua, M.; Succi, M.D.; Conklin, J.; Longo, M.G.F.; et al. Prediction of Oxygen Requirement in Patients with COVID-19 Using a Pre-Trained Chest Radiograph xAI Model: Efficient Development of Auditable Risk Prediction Models via a Fine-Tuning Approach. Sci. Rep. 2022, 12, 21164. [Google Scholar] [CrossRef]
- Wang, R.; Chen, L.-C.; Moukheiber, L.; Seastedt, K.P.; Moukheiber, M.; Moukheiber, D.; Zaiman, Z.; Moukheiber, S.; Litchman, T.; Trivedi, H.; et al. Enabling Chronic Obstructive Pulmonary Disease Diagnosis through Chest X-rays: A Multi-Site and Multi-Modality Study. Int. J. Med. Inform. 2023, 178, 105211. [Google Scholar] [CrossRef]
- Huang, S.-C.; Pareek, A.; Seyyedi, S.; Banerjee, I.; Lungren, M.P. Fusion of Medical Imaging and Electronic Health Records Using Deep Learning: A Systematic Review and Implementation Guidelines. NPJ Digit. Med. 2020, 3, 136. [Google Scholar] [CrossRef]
Overall (n = 2288) | Extubation Success (n = 2017, 88.2%) | Extubation Failure (n = 271, 11.8%) | p-Value | |
---|---|---|---|---|
Age | 0.77 | |||
Mean (SD) | 61.8 (16.4) | 61.9 (16.4) | 61.6 (16.2) | |
Median [Min, Max] | 63.3 [18, 104] | 63.4 [18, 104] | 51.8 [20, 101] | |
Gender | 0.52 | |||
Male | 1195 (52.2%) | 1048 (52.0%) | 147 (54.2%) | |
Female | 1093 (47.8%) | 969 (48.0%) | 124 (45.8%) | |
Race and Ethnicity | 0.15 | |||
White | 704 (30.8%) | 623 (30.9%) | 81 (29.9%) | |
African American | 561 (24.5%) | 495 (24.5%) | 66 (24.4%) | |
Hispanic | 250 (10.9%) | 231 (11.5%) | 19 (7.0%) | |
Asian | 99 (4.3%) | 89 (4.4%) | 10 (3.7%) | |
Other | 514 (22.5%) | 440 (21.8%) | 74 (27.3%) | |
Unspecified | 160 (7.0%) | 139 (6.9%) | 21 (7.7%) | |
BMI | 0.23 | |||
Mean (SD) | 27.9 (9.8) | 27.8 (9.7) | 28.7 (10.9) | |
Median [Min, Max] | 28.3 [10.8, 181.8] | 25.9 [10.8, 181.8] | 26.8 [14.3, 130.6] | |
Ideal Body Weight | 0.87 | |||
Mean (SD) | 60.7 (11.1) | 60.8 (11.2) | 60.6 [10.6] | |
Median [Min, Max] | 59.6 [36.0, 98.3] | 59.3 [36, 98.3] | 61.5 [36.0, 85.0] | |
Smoking history | 0.53 | |||
Current Smoker | 50 (2.2%) | 44 (2.2%) | 6 (2.2%) | |
Past smoker | 675 (29.5%) | 603 (29.9%) | 72 (26.6%) | |
Never smoked | 252 (11.0%) | 216 (10.7%) | 36 (13.3%) | |
Missing | 1311 (57.3%) | 1154 (57.2%) | 157 (57.9%) | |
Hypertension | 0.32 | |||
Yes | 754 (33.0%) | 670 (33.2%) | 84 (31.0%) | |
No | 407 (17.8%) | 350 (17.4%) | 57 (21.0%) | |
Missing | 1127 (49.3%) | 997 (49.4%) | 130 (48.0%) | |
Diabetes | 0.9 | |||
Yes | 447 (19.5%) | 393 (19.5%) | 54 (20.0%) | |
No | 714 (31.2%) | 627 (31.1%) | 87 (32.0%) | |
Missing | 1127 (49.3%) | 997 (49.4%) | 130 (48.0%) | |
COPD | 0.71 | |||
Yes | 366 (16.0%) | 318 (15.8%) | 48 (17.7%) | |
No | 795 (34.7%) | 702 (34.8%) | 93 (34.3%) | |
Missing | 1127 (49.3%) | 997 (49.4%) | 130 (48.0%) | |
Obesity | 0.29 | |||
Yes | 226 (9.8%) | 192 (9.5%) | 34 (12.5%) | |
No | 935 (40.9%) | 828 (41.1%) | 107 (34.5%) | |
Missing | 1127 (49.3%) | 997 (49.4%) | 130 (48.0%) | |
ICU Length of Stay (days) | <0.001 | |||
Mean (SD) | 6.2 (5.0) | 5.5 (4.4) | 11.1 (6.2) | |
Median [Min, Max] | 4.7 [0.1–37.8] | 4.3 [0.1–37.7] | 10.3 [0.1–37.8] |
Model Name | Sensitivity | Specificity | Accuracy | PPV | NPV | F1 Score | AUROC | AUPRC |
---|---|---|---|---|---|---|---|---|
RSBI Benchmark | 0.92 [0.88, 0.96] | 0.16 [0.04, 0.33] | 0.84 [0.79, 0.88] | 0.90 [0.85, 0.94] | 0.20 [0.05, 0.39] | 0.91 [0.88, 0.94] | 0.61 [0.49, 0.73] | 0.93 [0.87, 0.96] |
Imaging classifier | 0.62 [0.56, 0.69] | 0.60 [0.39, 0.79] | 0.62 [0.60, 0.68] | 0.93 [0.88, 0.97] | 0.17 [0.09, 0.25] | 0.75 [0.69, 0.80] | 0.66 [0.54, 0.76] | 0.94 [0.90, 0.97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tandon, P.; Nguyen, K.-A.-N.; Edalati, M.; Parchure, P.; Raut, G.; Reich, D.L.; Freeman, R.; Levin, M.A.; Timsina, P.; Powell, C.A.; et al. Development and Validation of a Deep Learning Classifier Using Chest Radiographs to Predict Extubation Success in Patients Undergoing Invasive Mechanical Ventilation. Bioengineering 2024, 11, 626. https://doi.org/10.3390/bioengineering11060626
Tandon P, Nguyen K-A-N, Edalati M, Parchure P, Raut G, Reich DL, Freeman R, Levin MA, Timsina P, Powell CA, et al. Development and Validation of a Deep Learning Classifier Using Chest Radiographs to Predict Extubation Success in Patients Undergoing Invasive Mechanical Ventilation. Bioengineering. 2024; 11(6):626. https://doi.org/10.3390/bioengineering11060626
Chicago/Turabian StyleTandon, Pranai, Kim-Anh-Nhi Nguyen, Masoud Edalati, Prathamesh Parchure, Ganesh Raut, David L. Reich, Robert Freeman, Matthew A. Levin, Prem Timsina, Charles A. Powell, and et al. 2024. "Development and Validation of a Deep Learning Classifier Using Chest Radiographs to Predict Extubation Success in Patients Undergoing Invasive Mechanical Ventilation" Bioengineering 11, no. 6: 626. https://doi.org/10.3390/bioengineering11060626
APA StyleTandon, P., Nguyen, K. -A. -N., Edalati, M., Parchure, P., Raut, G., Reich, D. L., Freeman, R., Levin, M. A., Timsina, P., Powell, C. A., Fayad, Z. A., & Kia, A. (2024). Development and Validation of a Deep Learning Classifier Using Chest Radiographs to Predict Extubation Success in Patients Undergoing Invasive Mechanical Ventilation. Bioengineering, 11(6), 626. https://doi.org/10.3390/bioengineering11060626