From Cartilage to Matrix: Protocols for the Decellularization of Porcine Auricular Cartilage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Committee
2.2. Standardization of the Protocol for Auricular Cartilage Decellularization
2.2.1. Auricular Cartilage Samples
2.2.2. Decellularization Protocols
- Protocol 1
- Protocol 2
- Protocol 3
- Protocol 4
2.3. DAPI Fluorescence
2.4. Histological Evaluation
2.5. Scanning Electron Microscopy (SEM)
2.6. Immunohistochemistry
2.7. DNA Quantification
2.8. Semi-Quantification Technique for Collagen and Glycosaminoglycans
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reddy, D. Advances in Tissue Engineering for Organ Transplantation, 3D Bioprinitng Using Induced Pluripotent Stem Cells. Int. J. Adv. Eng. Technol. Innov. 2024, 4, 1–51. Available online: https://ijaeti.com/index.php/Journal/article/view/339 (accessed on 9 November 2024).
- Levin, G.; Belchior, G.G.; Sogayar, M.C.; Carreira, A.C.O. Medicina Regenerativa e Engenharia de Tecidos. Genética Na Esc. 2019, 14, 26–33. [Google Scholar] [CrossRef]
- Khan, M.U.A.; Razak, S.I.A.; Al Arjan, W.S.; Nazir, S.; Joseph Sahaya Anand, T.; Mehboob, H.; Amin, R. Recent Advances in Biopolymeric Composite Materials for Tissue Engineering and Regenerative Medicines: A Review. Molecules 2021, 26, 619. [Google Scholar] [CrossRef] [PubMed]
- Introductory Biomaterials: An Overview of Key Concepts-Lia Stanciu, Susana Diaz-Amaya-Google Livros. Available online: https://books.google.com.br/books?hl=pt-BR&lr=&id=ipDhDwAAQBAJ&oi=fnd&pg=PP1&dq=The+choice+of+biomaterials+depends+on+the+therapeutic+goal+(e.g.,+orthopedic+or+cardiovas-cular+applications),+and+one+of+the+biggest+challenges+is+to+ensure+that+these+biomaterials+are+compatible+with+the+physical+functions+of+the+body&ots=S0US0TmSOu&sig=VleTNcDonDpsboW0L-wOa3gJNlI#v=onepage&q&f=false (accessed on 9 November 2024).
- Vahidi, M.; Rizkalla, A.S.; Mequanint, K. Extracellular Matrix-Surrogate Advanced Functional Composite Biomaterials for Tissue Repair and Regeneration. Adv. Healthc. Mater. 2024, 13, 2401218. [Google Scholar] [CrossRef] [PubMed]
- Silvipriya, K.S.; Krishna Kumar, K.; Bhat, A.R.; Dinesh Kumar, B.; John, A.; Lakshmanan, P. Collagen: Animal Sources and Biomedical Application. J. Appl. Pharm. Sci. 2015, 5, 123–127. [Google Scholar] [CrossRef]
- Shin, S.C.; Park, H.Y.; Shin, N.; Jung, D.W.; Kwon, H.K.; Kim, J.M.; Wang, S.G.; Lee, J.C.; Sung, E.S.; Park, G.C.; et al. Evaluation of Decellularized Xenogenic Porcine Auricular Cartilage as a Novel Biocompatible Filler. J. Biomed. Mater. Res. B Appl. Biomater. 2018, 106, 2708–2715. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, S.; Koerber, L.; Elsaesser, A.F.; Goldberg-Bockhorn, E.; Seitz, A.M.; Dürselen, L.; Ignatius, A.; Walther, P.; Breiter, R.; Rotter, N. Decellularized Cartilage Matrix as a Novel Biomatrix for Cartilage Tissue-Engineering Applications. Tissue Eng. Part. A 2012, 18, 2195–2209. [Google Scholar] [CrossRef]
- Ruediger, T.; Horbert, V.; Reuther, A.; Kumar Kalla, P.; Burgkart, R.H.; Walther, M.; Kinne, R.W.; Mika, J. Thickness of the Stifle Joint Articular Cartilage in Different Large Animal Models of Cartilage Repair and Regeneration. Cartilage 2021, 13, 438S–452S. [Google Scholar] [CrossRef]
- Wu, Z.; Korntner, S.; Mullen, A.; Skoufos, I.; Tzora, A.; Zeugolis, D. In the Quest of the Optimal Tissue Source (Porcine Male and Female Articular, Tracheal and Auricular Cartilage) for the Development of Collagen Sponges for Articular Cartilage. Biomed. Eng. Adv. 2021, 1, 100002. [Google Scholar] [CrossRef]
- Wong, M.L.; Griffiths, L.G. Immunogenicity in Xenogeneic Scaffold Generation: Antigen Removal vs. Decellularization. Acta Biomater. 2014, 10, 1806–1816. [Google Scholar] [CrossRef]
- Filho, N.R.; Ferreira, M.; Pascoli, A.; Viéra, R.; Pazzini, J.; Oliveira, R.; Salardani, I.; Silva, P.; Rosseto, L.; Albernaz, S.; et al. Epitelização de Enxertos Cutâneos Em Feridas Recentes de Coelhos Tratados Com Membrana Amniótica Canina e/Ou Laserterapia. Arq. Bras. Med. Vet. Zootec. 2017, 69, 603–612. [Google Scholar] [CrossRef]
- Gilpin, A.; Yang, Y. Decellularization Strategies for Regenerative Medicine: From Processing Techniques to Applications. Biomed. Res. Int. 2017, 2017, 9831534. [Google Scholar] [CrossRef]
- Kasravi, M.; Ahmadi, A.; Babajani, A.; Mazloomnejad, R.; Hatamnejad, M.R.; Shariatzadeh, S.; Bahrami, S.; Niknejad, H. Immunogenicity of Decellularized Extracellular Matrix Scaffolds: A Bottleneck in Tissue Engineering and Regenerative Medicine. Biomater. Res. 2023, 27, 10. [Google Scholar] [CrossRef]
- Badylak, S.F.; Freytes, D.O.; Gilbert, T.W. Reprint of: Extracellular Matrix as a Biological Scaffold Material: Structure and Function. Acta Biomater. 2015, 23 (Suppl. 1), S17–S26. [Google Scholar] [CrossRef]
- Zhang, F.X.; Chien, M.H.; Fan, Q.R.; Jiang, D. Advances in Bioadhesive Hydrogels for Musculoskeletal Tissue Application. Adv. Funct. Mater. 2024, 34, 2316540. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, W.; Gao, P.; Cui, P.; Chen, W.; Luo, J.; Sun, Y. Laryngotracheal Reconstruction with Autogenous Rib Cartilage Graft for Complex Laryngotracheal Stenosis and/or Anterior Neck Defect. Eur. Arch. Otorhinolaryngol. 2014, 271, 317–322. [Google Scholar] [CrossRef]
- Nürnberger, S.; Schneider, C.; van Osch, G.V.M.; Keibl, C.; Rieder, B.; Monforte, X.; Teuschl, A.H.; Mühleder, S.; Holnthoner, W.; Schädl, B.; et al. Repopulation of an Auricular Cartilage Scaffold, AuriScaff, Perforated with an Enzyme Combination. Acta Biomater. 2019, 86, 207–222. [Google Scholar] [CrossRef]
- Lehmann, J.; Nürnberger, S.; Narcisi, R.; Stok, K.S.; Van Der Eerden, B.C.J.; Koevoet, W.J.L.M.; Kops, N.; Ten Berge, D.; Van Osch, G.J. Recellularization of Auricular Cartilage via Elastase-Generated Channels. Biofabrication 2019, 11, 035012. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Rajesh, K.; Lalzawmliana, V.; Bavya Devi, K.; Basak, P.; Lahiri, D.; Kundu, B.; Roy, M.; Nandi, S.K. Development and Characterization of Acellular Caprine Choncal Cartilage Matrix for Tissue Engineering Applications. Cartilage 2021, 13, 1292S–1308S. [Google Scholar] [CrossRef]
- Golebiowska, A.A.; Intravaia, J.T.; Sathe, V.M.; Kumbar, S.G.; Nukavarapu, S.P. Decellularized Extracellular Matrix Biomaterials for Regenerative Therapies: Advances, Challenges and Clinical Prospects. Bioact. Mater. 2024, 32, 98–123. [Google Scholar] [CrossRef]
- Visscher, D.O.; Lee, H.; van Zuijlen, P.P.M.; Helder, M.N.; Atala, A.; Yoo, J.J.; Lee, S.J. A Photo-Crosslinkable Cartilage-Derived Extracellular Matrix Bioink for Auricular Cartilage Tissue Engineering. Acta Biomater. 2021, 121, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, K.D.; Cardoso, L.D.; Oliveira, L.P.; Franzo, V.S.; Pancotti, A.; Miguel, M.P.; Silva, L.A.F.; Vulcani, V.A.S. Histological Analysis of Elastic Cartilages Treated with Alkaline Solution. Arq. Bras. Med. Vet. Zootec. 2020, 72, 647–654. [Google Scholar] [CrossRef]
- Al-Qurayshi, Z.; Wafa, E.I.; Rossi Meyer, M.K.; Owen, S.; Salem, A.K. Tissue Engineering the Pinna: Comparison and Characterization of Human Decellularized Auricular Biological Scaffolds. ACS Appl. Bio Mater. 2021, 4, 7234–7242. [Google Scholar] [CrossRef]
- Changchen, W.; Hongquan, W.; Bo, Z.; Leilei, X.; Haiyue, J.; Bo, P. The Characterization, Cytotoxicity, Macrophage Response and Tissue Regeneration of Decellularized Cartilage in Costal Cartilage Defects. Acta Biomater. 2021, 136, 147–158. [Google Scholar] [CrossRef]
- Jin, A.; Shao, Y.; Wang, F.; Feng, J.; Lei, L.; Dai, M. Designing Polysaccharide Materials for Tissue Repair and Regeneration. APL Mater. 2024, 12, 080601. [Google Scholar] [CrossRef]
- Eldeeb, A.E.; Salah, S.; Elkasabgy, N.A. Biomaterials for Tissue Engineering Applications and Current Updates in the Field: A Comprehensive Review. AAPS PharmSciTech 2022, 23, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Buma, P.; van Tienen, T.; Veth, R.P. The Collagen Meniscus Implant. Expert. Rev. Med. Devices 2007, 4, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Suamte, L.; Tirkey, A.; Barman, J.; Jayasekhar Babu, P. Various Manufacturing Methods and Ideal Properties of Scaffolds for Tissue Engineering Applications. Smart Mater. Manuf. 2023, 1, 100011. [Google Scholar] [CrossRef]
- Porzionato, A.; Stocco, E.; Barbon, S.; Grandi, F.; Macchi, V.; De Caro, R. Tissue-Engineered Grafts from Human Decellularized Extracellular Matrices: A Systematic Review and Future Perspectives. Int. J. Mol. Sci. 2018, 19, 4117. [Google Scholar] [CrossRef]
- Dong, W.; Han, R.; Fan, F. Diced Cartilage Techniques in Rhinoplasty. Aesthetic Plast. Surg. 2022, 46, 1369–1377. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.; Griffin, M.; Naik, A.; Szarko, M.; Butler, P.E.M. Optimising the Decellularization of Human Elastic Cartilage with Trypsin for Future Use in Ear Reconstruction. Sci. Rep. 2018, 8, 3097. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yan, L.; Chen, S.; Pei, M. Functionality of Decellularized Matrix in Cartilage Regeneration: A Comparison of Tissue versus Cell Sources. Acta Biomater. 2018, 74, 56. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.Y.; Xue, J.X.; Zhang, W.J.; Zhou, G.D.; Liu, W.; Cao, Y. A Sandwich Model for Engineering Cartilage with Acellular Cartilage Sheets and Chondrocytes. Biomaterials 2011, 32, 2265–2273. [Google Scholar] [CrossRef] [PubMed]
- Junqueira, L.C.; Carneiro, J. Histologia Básica: Texto e Atlas, 13th ed.; Guanabara Koogan: Rio de Janeiro, Brazil, 2018. [Google Scholar]
- Eunju, O.; Lee, Y.T.; Ko, E.J.; Kim, K.H.; Lee, Y.N.; Song, J.M.; Kwon, Y.M.; Kim, M.C.; Perez, D.R.; Kang, S.M. Roles of Major Histocompatibility Complex Class II in Inducing Protective Immune Responses to Influenza Vaccination. J. Virol. 2014, 88, 7764. [Google Scholar] [CrossRef]
- Neishabouri, A.; Soltani Khaboushan, A.; Daghigh, F.; Kajbafzadeh, A.M.; Majidi Zolbin, M. Decellularization in Tissue Engineering and Regenerative Medicine: Evaluation, Modification, and Application Methods. Front. Bioeng. Biotechnol. 2022, 10, 805299. [Google Scholar] [CrossRef] [PubMed]
- Moffat, D.; Ye, K.; Jin, S. Decellularization for the Retention of Tissue Niches. J. Tissue Eng. 2022, 13, 20417314221101150. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Bian, Y.; Su, W.; Shi, L.; Li, S.; Song, Y.; Zheng, G.; Xie, A.; Xue, J. Comparison of Various Reagents for Preparing a Decellularized Porcine Cartilage Scaffold. Am. J. Transl. Res. 2019, 11, 1417. [Google Scholar] [PubMed]
- Ahangar Salehani, A.; Rabbani, M.; Biazar, E.; Heidari Keshel, S.; Pourjabbar, B. The Effect of Chemical Detergents on the Decellularization Process of Olive Leaves for Tissue Engineering Applications. Eng. Rep. 2023, 5, e12560. [Google Scholar] [CrossRef]
- Elder, S.; Chenault, H.; Gloth, P.; Webb, K.; Recinos, R.; Wright, E.; Moran, D.; Butler, J.; Borazjani, A.; Cooley, A. Effects of Antigen Removal on a Porcine Osteochondral Xenograft for Articular Cartilage Repair. J. Biomed. Mater. Res. A 2018, 106, 2251–2260. [Google Scholar] [CrossRef] [PubMed]
- Mendibil, U.; Ruiz-Hernandez, R.; Retegi-Carrion, S.; Garcia-Urquia, N.; Olalde-Graells, B.; Abarrategi, A. Tissue-Specific Decellularization Methods: Rationale and Strategies to Achieve Regenerative Compounds. Int. J. Mol. Sci. 2020, 21, 5447. [Google Scholar] [CrossRef]
- Conconi, M.T.; De Coppi, P.; Di Liddo, R.; Vigolo, S.; Zanon, G.F.; Parnigotto, P.P.; Nussdorfer, G.G. Tracheal Matrices, Obtained by a Detergent-Enzymatic Method, Support in Vitro the Adhesion of Chondrocytes and Tracheal Epithelial Cells. Transpl. Int. 2005, 18, 727–734. [Google Scholar] [CrossRef]
- Kang, D.W.; Shin, S.C.; Jang, J.Y.; Park, H.Y.; Lee, J.C.; Wang, S.G.; Lee, B.J. Decellularization of Human Nasal Septal Cartilage for the Novel Filler Material of Vocal Fold Augmentation. J. Voice 2017, 31, 127.e1–127.e6. [Google Scholar] [CrossRef] [PubMed]
- Hong, P.; Bezuhly, M.; Graham, M.E.; Gratzer, P.F. Efficient decellularization of rabbit trachea to generate a tissue engineering scaffold biomatrix. Int. J. Pediatr. Otorhinolaryngol. 2018, 112, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Kuntz, L.A.; Foehr, P.; Kuempel, K.; Wagner, A.; Tuebel, J.; Deimling, C.V.; Burgkart, R.H. Efficient Decellularization for Tissue Engineering of the Tendon-Bone Interface with Preservation of Biomechanics. PLoS ONE 2017, 12, e0171577. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, T.W.; Sellaro, T.L.; Badylak, S.F. Decellularization of Tissues and Organs. Biomaterials 2006, 27, 3675–3683. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, K.D. Cartilagem Auricular de Bovinos Tratada Com Solução Alcalina: Avaliação Histológica Pré-Implantação e Termográfica Pós-Implantação Na Parede Abdominal de Coelhos (Oryctolagus Cuniculus). 2017. Available online: https://repositorio.bc.ufg.br/tede/items/b1b50b4e-6dd3-4602-a647-879a1a3b1d91 (accessed on 9 November 2024).
- Araújo, D.P.; Araujo, G.H.M.; Oliveira, L.P.; Leite, L.B.M.; Franzo, V.S.; Santos, G.P.; Souza, T.R.; Vulcani, V.A.S. Biocompatibility in Vivo of Elastic Cartilage Treated in Alkaline Solutions. Arq. Bras. Med. Vet. Zootec. 2022, 74, 11–20. [Google Scholar] [CrossRef]
- Sengyoku, H.; Tsuchiya, T.; Obata, T.; Doi, R.; Hashimoto, Y.; Ishii, M.; Sakai, H.; Matsuo, N.; Taniguchi, D.; Suematsu, T.; et al. Sodium Hydroxide Based Non-Detergent Decellularizing Solution for Rat Lung. Organogenesis 2018, 14, 94–106. [Google Scholar] [CrossRef]
- Liu, M.; Zeng, X.; Ma, C.; Yi, H.; Ali, Z.; Mou, X.; Li, S.; Deng, Y.; He, N. Injectable Hydrogels for Cartilage and Bone Tissue Engineering. Bone Res. 2017, 5, 1–20. [Google Scholar] [CrossRef]
- Peng, Z.; Sun, H.; Bunpetch, V.; Koh, Y.; Wen, Y.; Wu, D.; Ouyang, H. The Regulation of Cartilage Extracellular Matrix Homeostasis in Joint Cartilage Degeneration and Regeneration. Biomaterials 2021, 268, 120555. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.; Ding, F.; Gong, L.; Gu, X. Extracellular Matrix Scaffolds for Tissue Engineering and Regenerative Medicine. Curr. Stem Cell Res. Ther. 2017, 12, 233–246. [Google Scholar] [CrossRef]
- Ricard-Blum, S. The Collagen Family. Cold Spring Harb. Perspect. Biol. 2011, 3, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Batioglu-Karaaltin, A.; Ovali, E.; Karaaltin, M.V.; Yener, M.; Yılmaz, M.; Eyüpoğlu, F.; Yılmaz, Y.Z.; Bozkurt, E.R.; Demir, N.; Konuk, E.; et al. Decellularization of Trachea With Combined Techniques for Tissue-Engineered Trachea Transplantation. Clin. Exp. Otorhinolaryngol. 2018, 12, 86. [Google Scholar] [CrossRef]
- Law, J.X.; Liau, L.L.; Aminuddin, B.S.; Ruszymah, B.H.I. Tissue-Engineered Trachea: A Review. Int. J. Pediatr. Otorhinolaryngol. 2016, 91, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, S.; Elsaesser, A.F.; Koerber, L.; Goldberg-Bockhorn, E.; Seitz, A.M.; Bermueller, C.; Dürselen, L.; Ignatius, A.; Breiter, R.; Rotter, N. Processed Xenogenic Cartilage as Innovative Biomatrix for Cartilage Tissue Engineering: Effects on Chondrocyte Differentiation and Function. J. Tissue Eng. Regen. Med. 2015, 9, E239–E251. [Google Scholar] [CrossRef] [PubMed]
Protocol | Subprotocols |
---|---|
Protocol 1 | - Group 1: 1% SDS solution |
- Group 2: 0.5% SDS + 0.5% Triton X-100 solution | |
Protocol 2 | Two Detergents: |
- 1% SDS + 1% Triton X-100 in distilled water at −150 °C | |
- 1% SDS + 1% Triton X-100 in distilled water at −80 °C | |
- 1% SDS + 1% Triton X-100 + 1% EDTA in distilled water at −150 °C | |
- 1% SDS + 1% Triton X-100 + 1% EDTA in distilled water at −80 °C | |
- 1% SDS + 1% Triton X-100 in 1× PBS at −150 °C | |
- 1% SDS + 1% Triton X-100 in 1× PBS at −80 °C | |
One Detergent: | |
- 1% SDS in distilled water at −150 °C | |
- 1% SDS in distilled water at −80 °C | |
- 1% SDS + 1% EDTA in distilled water at −150 °C | |
- 1% SDS + 1% EDTA in distilled water at −80 °C | |
- 1% SDS in 1× PBS at −150 °C | |
- 1% SDS in 1× PBS at −80 °C | |
Protocol 3 | - Group A (No Freezing): 0.25% trypsin + 0.2% EDTA solution for 16 h, followed by 1% SDS + 0.2N NaOH for 36 h, then 1% SDS + Triton X-100 in 1× PBS for 48 h. |
- Group B (Frozen and Thawed): 0.25% trypsin + 0.2% EDTA solution for 16 h, followed by 1% SDS + 0.2N NaOH for 36 h, then 1% SDS + Triton X-100 in 1× PBS for 48 h. | |
Protocol 4 | - Trypsin + EDTA for 14 h |
- 1% SDS + 0.2N NaOH for 48 h | |
- 1% SDS + Triton X-100 in 1× PBS for 48 h |
Use of Two Detergents | SDS 1% + Triton X-100 1% (−150 °C) | SDS 1% + Triton X-100 1% (−80 °C) | SDS 1% + Triton X-100 1% + EDTA 1% (−150 °C) | SDS 1% + Triton X-100 1% + EDTA 1% (−80 °C) | SDS 1% + Triton X-100 1% in 1× PBS (−150 °C) | SDS 1% + Triton X-100 1% in 1× PBS (−80 °C) |
Use of One Detergent | SDS 1% (−150 °C) | SDS 1% (−80 °C) | SDS 1% + EDTA 1% (−150 °C) | SDS 1% + EDTA 1% (−80 °C) | SDS 1% in 1× PBS (−150 °C) | SDS 1% in 1× PBS (−80 °C) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos, A.C.; de Andrade, L.M.B.; Candelária, R.A.Q.; de Carvalho, J.C.; Valbão, M.C.M.; Barreto, R.d.S.N.; de Faria, M.D.; Buchaim, R.L.; Buchaim, D.V.; Miglino, M.A. From Cartilage to Matrix: Protocols for the Decellularization of Porcine Auricular Cartilage. Bioengineering 2025, 12, 52. https://doi.org/10.3390/bioengineering12010052
dos Santos AC, de Andrade LMB, Candelária RAQ, de Carvalho JC, Valbão MCM, Barreto RdSN, de Faria MD, Buchaim RL, Buchaim DV, Miglino MA. From Cartilage to Matrix: Protocols for the Decellularization of Porcine Auricular Cartilage. Bioengineering. 2025; 12(1):52. https://doi.org/10.3390/bioengineering12010052
Chicago/Turabian Styledos Santos, Ana Caroline, Livia Maria Barbosa de Andrade, Raí André Querino Candelária, Juliana Casanovas de Carvalho, Maria Carolina Miglino Valbão, Rodrigo da Silva Nunes Barreto, Marcelo Domingues de Faria, Rogerio Leone Buchaim, Daniela Vieira Buchaim, and Maria Angelica Miglino. 2025. "From Cartilage to Matrix: Protocols for the Decellularization of Porcine Auricular Cartilage" Bioengineering 12, no. 1: 52. https://doi.org/10.3390/bioengineering12010052
APA Styledos Santos, A. C., de Andrade, L. M. B., Candelária, R. A. Q., de Carvalho, J. C., Valbão, M. C. M., Barreto, R. d. S. N., de Faria, M. D., Buchaim, R. L., Buchaim, D. V., & Miglino, M. A. (2025). From Cartilage to Matrix: Protocols for the Decellularization of Porcine Auricular Cartilage. Bioengineering, 12(1), 52. https://doi.org/10.3390/bioengineering12010052