Dexamethasone-Functionalized PLLA Membranes: Effects of Layer-by-Layer Coating and Electrospinning on Osteogenesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Membranes by Electrospinning
2.2. Incorporation of Dexamethasone by the Layer-by-Layer Technique
2.3. Membranes Characterization
2.4. Isolation of Periodontal Ligament Stem Cells
2.5. Cell Culture
2.6. Cell Proliferation Assay
2.7. Alkaline Phosphatase Assay
2.8. Alizarin Red Assay
2.9. Statistical Analysis
3. Results
3.1. Membranes Characterization
3.2. Dexamethasone Cumulative Release
3.3. Cell Proliferation Assay
3.4. Alkaline Phosphatase Assay
3.5. Alizarin Red Assay
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Higino, T.; França, R. Drug-delivery nanoparticles for bone-tissue and dental applications. Biomed. Phys. Eng. Express 2022, 8, 042001. [Google Scholar] [CrossRef] [PubMed]
- Anupama Devi, V.K.; Ray, S.; Arora, U.; Mitra, S.; Sionkowska, A.; Jaiswal, A.K. Dual drug delivery platforms for bone tissue engineering. Front. Bioeng. Biotechnol. 2022, 10, 969843. [Google Scholar]
- Bharathi, R.; Ganesh, S.S.; Harini, G.; Vatsala, K.; Anushikaa, R.; Aravind, S.; Abinaya, S.; Selvamurugan, N. Chitosan-based scaffolds as drug delivery systems in bone tissue engineering. Int. J. Biol. Macromol. 2022, 222, 132–153. [Google Scholar] [CrossRef] [PubMed]
- Mikami, Y.; Lee, M.; Irie, S.; Honda, M.J. Dexamethasone modulates osteogenesis and adipogenesis with regulation of osterix expression in rat calvaria-derived cells. J. Cell Physiol. 2011, 226, 739–748. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, X.; Jia, Y.; Zu, S.; Han, S.; Xiao, D.; Sun, H.; Wang, Y. Dexamethasone induces osteogenesis via regulation of hedgehog signalling molecules in rat mesenchymal stem cells. Int. Orthop. 2013, 37, 1399–1404. [Google Scholar] [CrossRef]
- Shimasaki, M.; Ichiseki, T.; Ueda, S.; Hirata, H.; Kawahara, N.; Ueda, Y. Mesenchymal Stem Cells Preconditioned with Hypoxia and Dexamethasone Promote Osteoblast Differentiation Under Stress Conditions. Int. J. Med. Sci. 2024, 21, 1511–1517. [Google Scholar] [CrossRef]
- Kim, H.J.; Zhao, H.; Kitaura, H.; Bhattacharyya, S.; Brewer, J.A.; Muglia, L.J.; Ross, F.P.; Teitelbaum, S.L. Glucocorticoids suppress bone formation via the osteoclast. J. Clin. Investig. 2006, 116, 2152–2160. [Google Scholar] [CrossRef]
- Tabassum, A. Effect of dexamethasone on the growth and differentiation of osteoblast-like cells derived from the human alveolar bone. J. Taibah Univ. Med. Sci. 2022, 17, 707–714. [Google Scholar] [CrossRef]
- Chen, S.M.; Peng, Y.J.; Wang, C.C.; Su, S.L.; Salter, D.M.; Lee, H.S. Dexamethasone Down-regulates Osteocalcin in Bone Cells through Leptin Pathway. Int. J. Med. Sci. 2018, 15, 507–516. [Google Scholar] [CrossRef]
- Kondo, T.; Kitazawa, R.; Yamaguchi, A.; Kitazawa, S. Dexamethasone promotes osteoclastogenesis by inhibiting osteoprotegerin through multiple levels. J. Cell. Biochem. 2008, 103, 335–345. [Google Scholar] [CrossRef]
- Deng, S.; Dai, G.; Chen, S.; Nie, Z.; Zhou, J.; Fang, H.; Peng, H. Dexamethasone induces osteoblast apoptosis through ROS-PI3K/AKT/GSK3β signaling pathway. Biomed. Pharmacother. 2019, 110, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Liu, P.; Nie, W.; Peng, C.; Li, T.; Qiang, L.; He, C.; Wang, J. Incorporation of dexamethasone-loaded mesoporous silica nanoparticles into mineralized porous biocomposite scaffolds for improving osteogenic activity. Int. J. Biol. Macromol. 2020, 149, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Zhao, H.; Kitaura, H.; Bhattacharyya, S.; Brewer, J.A.; Muglia, L.J.; Ross, F.P.; Teitelbaum, S.L. Dexamethsone suppresses bone formation via the osteoclast. Adv. Exp. Med. Biol. 2007, 602, 43–46. [Google Scholar] [PubMed]
- Chen, Y.H.; Peng, S.Y.; Cheng, M.T.; Hsu, Y.P.; Huang, Z.X.; Cheng, W.T.; Wu, S.C. Different susceptibilities of osteoclasts and osteoblasts to glucocorticoid-induced oxidative stress and mitochondrial alterations. Chin. J. Physiol. 2019, 62, 70–79. [Google Scholar] [CrossRef]
- Hu, X.; Liu, S.; Zhou, G.; Huang, Y.; Xie, Z.; Jing, X. Electrospinning of polymeric nanofibers for drug delivery applications. J. Control. Release 2014, 185, 12–21. [Google Scholar] [CrossRef]
- Alkekhia, D.; Hammond, P.T.; Shukla, A. Layer-by-Layer Biomaterials for Drug Delivery. Annu. Rev. Biomed. Eng. 2020, 22, 1–24. [Google Scholar] [CrossRef]
- Delechiave, G.; Naves, A.F.; Kolanthai, E.; Silva, R.A.; Vlasman, R.C.; Petri, D.F.S.; Torresi, R.M.; Catalani, L.H. Tuning protein delivery from different architectures of layer-by-layer assemblies on polymer. Mater. Adv. 2020, 1, 2043–2056. [Google Scholar] [CrossRef]
- Freshney, R.I. Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications, 4th ed.; Wiley-Blackwell: New York, NY, USA, 2000; Volume 1, p. 624. [Google Scholar]
- Vacant, N.M.; Cheng, H.; Hill, P.S.; Guerreiro, J.D.T.; Dang, T.T.; Ma, M.; Watson, S.; Hwang, N.S.; Langer, R.; Anderson, D.G. Localized Delivery of Dexamethasone from Electrospun Fibers Reduces the Foreign Body Response. Biomacromolecules 2012, 13, 3031–3038. [Google Scholar] [CrossRef]
- Nguyen, L.T.H.; Liao, S.; Chan, C.K.; Ramakrishna, S. Electrospun Poly (L-Lactic Acid) Nanofibres Loaded with Dexamethasone to Induce Osteogenic Differentiation of Human Mesenchymal Stem Cells. J. Biomater. Science. Polym. Ed. 2012, 23, 1771–1791. [Google Scholar] [CrossRef]
- Ding, S.; Li, J.; Luo, C.; Li, L.; Yang, G.; Zhou, S. Sinergistic effect of released dexamethasone and surface nanoroughness on mesenchymal stem cell differentiation. Biomater. Sci. 2013, 1, 1091–1100. [Google Scholar] [CrossRef]
- Beresford, J.N.; Joyner, C.J.; Devlin, C.; Triffitt, J.T. The effects of dexamethasone and 1,25-dihydroxyvitamin D3 on osteogenic differentiation of human marrow stromal cells in vitro. Arch. Oral. Biol. 1994, 39, 941–947. [Google Scholar] [CrossRef] [PubMed]
- Yuasa, M.; Yamada, T.; Taniyama, T.; Masaoka, T.; Xuetao, W.; Yoshii, T.; Horie, M.; Yasuda, H.; Uemura, T.; Okawa, A.; et al. Dexamethasone enhances osteogenic differentiation of bone marrow- and muscle-derived stromal cells and augments ectopic bone formation induced by bone morphogenetic protein-2. PLoS ONE 2015, 10, e0116462. [Google Scholar] [CrossRef] [PubMed]
- Della Bellac, E.; Buetti-Dinh, A.; Licandro, G.; Ahmad, P.; Basoli, V.; Alini, M.; Stoddart, M.J. Dexamethasone Induces Changes in Osteogenic Differentiation of Human Mesenchymal Stromal Cells via SOX9 and PPARG, but Not RUNX2. Int. J. Mol. Sci. 2021, 22, 4785. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Feng, X.; Wang, K.; Song, Y.; Luo, R.; Yang, C. Dexamethasone promotes mesenchymal stem cell apoptosis and inhibits osteogenesis by disrupting mitochondrial dynamics. FEBS Open Bio 2020, 10, 211–220. [Google Scholar] [CrossRef]
- Pan, J.M.; Wu, L.G.; Cai, J.W.; Wu, L.T.; Liang, M. Dexamethasone suppresses osteogenesis of osteoblast via the PI3K/Akt signaling pathway in vitro and in vivo. J. Recept. Signal Transduct. Res. 2019, 39, 80–86. [Google Scholar] [CrossRef]
- Titorencu, I.; Jinga, V.; Constantinescu, E.; Gafencu, A.; Ciohodaru, C.; Manolescu, I.; Zaharia, C.; Simionescu, M. Proliferation, differentiation and characterization of osteoblasts from human BM mesenchymal cells. Cytotherapy. 2007, 9, 682–696. [Google Scholar] [CrossRef]
- Porter, R.M.; Huckle, W.R.; Goldstein, A.S. Effect of dexamethasone withdrawal on osteoblastic differentiation of bone marrow stromal cells. J. Cell. Biochem. 2003, 90, 13–22. [Google Scholar] [CrossRef]
- Hong, D.; Chen, H.X.; Xue, Y.; Li, D.M.; Wan, X.C.; Ge, R.; Li, J.C. Osteoblastogenic effects of dexamethasone through upregulation of TAZ expression in rat mesenchymal stem cells. J. Steroid Biochem. Mol. Biol. 2009, 116, 86–92. [Google Scholar] [CrossRef]
- Tenenbaum, H.C.; Heersche, J.N. Dexamethasone stimulates osteogenesis in chick periosteum in vitro. Endocrinology 1985, 117, 2211–2217. [Google Scholar] [CrossRef]
Groups | Bioactive Molecule | Incorporation Technique | Concentration/Number of Layers |
---|---|---|---|
PLLA | - | - | - |
Dex_e | Dexamethasone | Electrospinning | 0.175 mg/mL |
4 LBL_dex | Dexamethasone | Layer-by-layer | 0.05 mg/mL/ 4 layers |
10 LBL_dex | Dexamethasone | Layer-by-layer | 0.05 mg/mL/ 10 layers |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, F.; Letomai, R.M.; Gomes, M.M.; Remédios Aguiar Araújo, M.d.; Muniz, Y.S.; Moreira, M.S.; Boaro, L.C. Dexamethasone-Functionalized PLLA Membranes: Effects of Layer-by-Layer Coating and Electrospinning on Osteogenesis. Bioengineering 2025, 12, 130. https://doi.org/10.3390/bioengineering12020130
Gonçalves F, Letomai RM, Gomes MM, Remédios Aguiar Araújo Md, Muniz YS, Moreira MS, Boaro LC. Dexamethasone-Functionalized PLLA Membranes: Effects of Layer-by-Layer Coating and Electrospinning on Osteogenesis. Bioengineering. 2025; 12(2):130. https://doi.org/10.3390/bioengineering12020130
Chicago/Turabian StyleGonçalves, Flavia, Roberta Molisani Letomai, Marjory Muraro Gomes, Maria dos Remédios Aguiar Araújo, Yasmin Silva Muniz, Maria Stella Moreira, and Leticia Cidreira Boaro. 2025. "Dexamethasone-Functionalized PLLA Membranes: Effects of Layer-by-Layer Coating and Electrospinning on Osteogenesis" Bioengineering 12, no. 2: 130. https://doi.org/10.3390/bioengineering12020130
APA StyleGonçalves, F., Letomai, R. M., Gomes, M. M., Remédios Aguiar Araújo, M. d., Muniz, Y. S., Moreira, M. S., & Boaro, L. C. (2025). Dexamethasone-Functionalized PLLA Membranes: Effects of Layer-by-Layer Coating and Electrospinning on Osteogenesis. Bioengineering, 12(2), 130. https://doi.org/10.3390/bioengineering12020130