Systematic Review and Meta-Analysis of Remineralizing Agents: Outcomes on White Spot Lesions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Selection of Studies
2.2. Data Extraction
2.3. Risk of Bias Assessment
2.4. Statistical Analysis
3. Results
3.1. Study Selection and Description
3.2. Study Characteristics
3.3. Risk of Bias Assessment
3.4. Summary of Results—Effect of the Interventions
3.4.1. Lesion Depth
Primary Teeth Treated with Fluoride Agents
Primary Teeth Treated with Fluoride-Free Agents
Permanent Teeth Treated with Fluoride Agents
Permanent Teeth Treated with Fluoride-Free Agents
3.4.2. Surface Microhardness
Primary Teeth Treated with Fluoride Agents
Primary Teeth Treated with Fluoride-Free Agents
Permanent Teeth Treated with Fluoride Agents
Permanent Teeth Treated with Fluoride-Free Agents
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sundaram, G.; Wilson, R.; Watson, T.F.; Bartlett, D. Clinical Measurement of Palatal Tooth Wear Following Coating by a Resin Sealing System. Oper. Dent. 2007, 32, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Puleio, F.; Fiorillo, L.; Gorassini, F.; Iandolo, A.; Meto, A.; D’Amico, C.; Cervino, G.; Pinizzotto, M.; Bruno, G.; Portelli, M. Systematic Review on White Spot Lesions Treatments. Eur. J. Dent. 2022, 16, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Yu, L.; Li, S.; Li, J.; Liu, Y. Comparison of Therapies of White Spot Lesions: A Systematic Review and Network Meta-Analysis. BMC Oral Health 2023, 23, 346. [Google Scholar] [CrossRef] [PubMed]
- Cury, J.A.; Tenuta, L.M.A. Enamel Remineralization: Controlling the Caries Disease or Treating Early Caries Lesions? Braz. Oral Res. 2009, 23, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Amaechi, B.T.; Van Loveren, C. Fluorides and Non-Fluoride Remineralization Systems. Toothpastes 2013, 23, 15–26. [Google Scholar]
- Moraes, S.M.; Koshino, L.A.; Carvalho, T.d.S.; de Souza, B.M.; Honorio, H.M.; Magalhães, A.C.; Garib, D.G.; Buzalaf, M.A.R. Effectiveness of Fluoride Varnishes for White Spot Lesion Prevention and Remineralization during Orthodontic Treatment: A Randomized Controlled Trial. Caries Res. 2024, 58, 589–603. [Google Scholar] [CrossRef]
- Singal, K.; Sharda, S.; Gupta, A.; Malik, V.S.; Singh, M.; Chauhan, A.; Agarwal, A.; Pradhan, P.; Singh, M. Effectiveness-of Calcium Phosphate Derivative Agents on the Prevention and Remineralization of Caries among Children-A Systematic Review & Meta-Analysis of Randomized Controlled Trials. J. Evid.-Based Dent. Pract. 2022, 22, 101746. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Syst. Rev. 2021, 10, 372. [Google Scholar] [CrossRef]
- Patak, A.A.; Naim, H.A.; Hidayat, R. Taking Mendeley as Multimedia-Based Application in Academic Writing. Int. J. Adv. Sci. Eng. Inf. Technol. 2016, 6, 557–560. [Google Scholar] [CrossRef]
- Tran, L.; Tam, D.N.H.; Elshafay, A.; Dang, T.; Hirayama, K.; Huy, N.T. Quality Assessment Tools Used in Systematic Reviews of in Vitro Studies: A Systematic Review. BMC Med. Res. Methodol. 2021, 21, 101. [Google Scholar] [CrossRef]
- Sheth, V.H.; Shah, N.P.; Jain, R.; Bhanushali, N.; Bhatnagar, V. Development and Validation of a Risk-of-Bias Tool for Assessing in Vitro Studies Conducted in Dentistry: The QUIN. J. Prosthet. Dent. 2022, 131, 1038–1042. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A. The Cochrane Collaboration’s Tool for Assessing Risk of Bias in Randomised Trials. Bmj 2011, 343, 1–9. [Google Scholar] [CrossRef]
- Huedo-Medina, T.B.; Sánchez-Meca, J.; Marín-Martínez, F.; Botella, J. Assessing Heterogeneity in Meta-Analysis: Q Statistic or I2 Index? Psychol. Methods 2006, 11, 193. [Google Scholar] [CrossRef]
- Soares-Yoshikawa, A.L.; Varanda, T.; Iwamoto, A.S.; Kantovitz, K.R.; Puppin-Rontani, R.M.; Pascon, F.M. Fluoride Release and Remineralizing Potential of Varnishes in Early Caries Lesions in Primary Teeth. Microsc. Res. Tech. 2021, 84, 1012–1021. [Google Scholar] [CrossRef]
- Aras, A.; Celenk, S.; Atas, O. Comparison of Traditional and Novel Remineralization Agents: A Laser Fluorescence Study. J. Oral Health Oral Epidemiol. 2020, 9, 38–44. [Google Scholar]
- Aras, A.; Celenk, S.; Dogan, M.; Bardakci, E. Comparative Evaluation of Combined Remineralization Agents on Demineralized Tooth Surface. Niger. J. Clin. Pract. 2019, 22, 1546–1552. [Google Scholar] [CrossRef]
- Bajaj, M.; Poornima, P.; Praveen, S.; Nagaveni, N.; Roopa, K.; Neena, I.; Bharath, K. Comparison of CPP-ACP, Tri-Calcium Phosphate and Hydroxyapatite on Remineralization of Artificial Caries like Lesions on Primary Enamel-An in Vitro Study. J. Clin. Pediatr. Dent. 2016, 40, 404–409. [Google Scholar] [CrossRef]
- Chandru, T.; Yahiya, M.B.; Peedikayil, F.C.; Dhanesh, N.; Srikant, N.; Kottayi, S. Comparative Evaluation of Three Different Toothpastes on Remineralization Potential of Initial Enamel Lesions: A Scanning Electron Microscopic Study. Indian J. Dent. Res. 2020, 31, 217–223. [Google Scholar]
- Cheng, X.; Xu, P.; Zhou, X.; Deng, M.; Cheng, L.; Li, M.; Li, Y.; Xu, X. Arginine Promotes Fluoride Uptake into Artificial Carious Lesions in Vitro. Aust. Dent. J. 2015, 60, 104–111. [Google Scholar] [CrossRef]
- Cherian, N.M.; Girish, T.; Ponnappa, K. Comparative Evaluation of Remineralizing Potential of Commercially Available Agents MI Paste, Remin pro, and Clinpro Using Scanning Electron Microscope and Energy Dispersive X-Ray: An: In Vitro: Study. J. Conserv. Dent. Endod. 2020, 23, 457–462. [Google Scholar] [CrossRef]
- Gangwar, A.; Jha, K.K.; Thakur, J.; Nath, M. In Vitro Evaluation of Remineralization Potential of Novamin on Artificially Induced Carious Lesions in Primary Teeth Using Scanning Electron Microscope and Vickers Hardness. Indian J. Dent. Res. 2019, 30, 590–594. [Google Scholar] [CrossRef] [PubMed]
- Joshi, C.; Gohil, U.; Parekh, V.; Joshi, S. Comparative Evaluation of the Remineralizing Potential of Commercially Available Agents on Artificially Demineralized Human Enamel: An: In Vitro: Study. Contemp. Clin. Dent. 2019, 10, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Juntavee, A.; Juntavee, N.; Hirunmoon, P. Remineralization Potential of Nanohydroxyapatite Toothpaste Compared with Tricalcium Phosphate and Fluoride Toothpaste on Artificial Carious Lesions. Int. J. Dent. 2021, 2021, 5588832. [Google Scholar] [CrossRef] [PubMed]
- Kasemkhun, P.; Rirattanapong, P. The Efficacy of Non-Fluoridated Toothpastes on Artificial Enamel Caries in Primary Teeth: An: In Vitro: Study. J. Int. Soc. Prev. Community Dent. 2021, 11, 397–401. [Google Scholar] [CrossRef]
- Kooshki, F.; Pajoohan, S.; Kamareh, S. Effects of Treatment with Three Types of Varnish Remineralizing Agents on the Microhardness of Demineralized Enamel Surface. J. Clin. Exp. Dent. 2019, 11, e630. [Google Scholar] [CrossRef]
- Kumar, K.; Sreedharan, S. Comparative Evaluation of the Remineralization Potential of Monofluorophosphate, Casein Phosphopeptide-Amorphous Calcium Phosphate and Calcium Sodium Phosphosilicate on Demineralized Enamel Lesions: An in Vitro Study. Cureus 2018, 10, e3059. [Google Scholar] [CrossRef]
- Lei, J.; Guo, J.; Fu, D.; Wang, Y.; Du, X.; Zhou, L.; Huang, C. Influence of Three Remineralization Materials on Physicochemical Structure of Demineralized Enamel. J. Wuhan Univ. Technol.-Mater Sci Ed 2014, 29, 410–416. [Google Scholar] [CrossRef]
- Majithia, U.; Venkataraghavan, K.; Choudhary, P.; Trivedi, K.; Shah, S.; Virda, M. Comparative Evaluation of Application of Different Fluoride Varnishes on Artificial Early Enamel Lesion: An: In Vitro: Study. Indian J. Dent. Res. 2016, 27, 521–527. [Google Scholar]
- Mielczarek, A.; Michalik, J. The Effect of Nano-Hydroxyapatite Toothpaste on Enamel Surface Remineralization. An in Vitro Study. Am. J. Dent. 2014, 27, 287–290. [Google Scholar]
- Oliveira, G.M.; Ritter, A.V.; Heymann, H.O.; Swift, E., Jr.; Donovan, T.; Brock, G.; Wright, T. Remineralization Effect of CPP-ACP and Fluoride for White Spot Lesions in Vitro. J. Dent. 2014, 42, 1592–1602. [Google Scholar] [CrossRef]
- Peric, T.O.; Markovic, D.L.; Radojevic, V.J.; Heinemann, R.M.J.; Petrovic, B.B.; Lamovec, J.S. Influence of Pastes Containing Casein Phosphopeptide-Amorphous Calcium Phosphate on Surface of Demineralized Enamel. J. Appl. Biomater. Funct. Mater. 2014, 12, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Rai, P.M.; Devadiga, D.; Jain, J.; Nair, R.A. Comparative in Vitro Evaluation of the Novel Remineralizing Agents’ Effects on Enamel Surface Hardness. J. Int. Dent. Med. Res. 2019, 12, 454–459. [Google Scholar]
- Rana, N.; Singh, N.; Shaila; Thomas, A.M.; Jairath, R. A Comparative Evaluation of Penetration Depth and Surface Microhardness of Resin Infiltrant, CPP-ACPF and Novamin on Enamel Demineralization after Banding: An in Vitro Study. Biomater. Investig. Dent. 2021, 8, 64–71. [Google Scholar] [CrossRef]
- Reise, M.; Kranz, S.; Heyder, M.; Jandt, K.D.; Sigusch, B.W. Effectiveness of Casein Phosphopeptide-Amorphous Calcium Phosphate (CPP-ACP) Compared to Fluoride Products in an in-Vitro Demineralization Model. Materials 2021, 14, 5974. [Google Scholar] [CrossRef]
- Rirattanapong, P.; Vongsavan, K.; Saengsirinavin, C.; Pornmahala, T. Effect of Fluoride Varnishes Containing Tri-Calcium Phosphate Sources on Remineralization of Initial Primary Enamel Lesions. Southeast Asian J. Trop. Med. Public Health 2014, 45, 499. [Google Scholar]
- Rirattanapong, P.; Vongsavan, K.; Saengsirinavin, C.; Phuekcharoen, P. Efficacy of Fluoride Mouthrinse Containing Tricalcium Phosphate on Primary Enamel Lesions: A Polarized Light Microscopic Study. Southeast Asian J. Trop. Med. Public Health 2015, 46, 168. [Google Scholar]
- Rirattanapong, P.; Vongsavan, K.; Saengsirinavin, C.; Phuekcharoen, P. Effect of Adding Tricalcium Phosphate to Fluoride Mouthrinse on Microhardness of Demineralized Primary Human Tooth. Southeast Asian J. Trop. Med. Public Health 2015, 46, 539–545. [Google Scholar]
- Rirattanapong, P.; Vongsavan, K.; Saengsirinavin, C.; Khumsub, P. The Efficiency of Child Formula Dentifrices Containing Different Calcium and Phosphate Compounds on Artificial Enamel Caries. J. Int. Soc. Prev. Community Dent. 2016, 6, 559–567. [Google Scholar] [CrossRef]
- Rirattanapong, P.; Vongsavan, K.; Saengsirinavin, C.; Waidee, S. Enhancing Remineralization of Primary Enamel Lesions with Fluoride Dentifrice Containing Tricalcium Phosphate. Southeast Asian J. Trop. Med. Public Health 2017, 48, 494–500. [Google Scholar]
- Rirattanapong, P.; Yimcharoen, V.; Vongsavan, K. Effect of Low Fluoride Concentration Mouthrinse on Demineralized Primary Enamel. Southeast Asian J. Trop. Med. Public Health 2019, 50, 793–797. [Google Scholar]
- Sebastian, R.; Paul, S.T.; Azher, U.; Reddy, D. Comparison of Remineralization Potential of Casein Phosphopeptide: Amorphous Calcium Phosphate, Nano-Hydroxyapatite and Calcium Sucrose Phosphate on Artificial Enamel Lesions: An in Vitro Study. Int. J. Clin. Pediatr. Dent. 2022, 15, 69. [Google Scholar] [PubMed]
- Siripipat, J.; Poonsuk, S.; Singchaidach, N.; Phansaichua, P.; Sampataphakdee, P.; Leelasangsai, W.; Wongkamolchun, N. Effect of Fluoride Varnish on Surface Microhardness of White Spot Lesions on Primary Teeth. Southeast Asian J. Trop. Med. Public Health 2017, 48, 1133–1139. [Google Scholar]
- Tulumbacı, F.; Oba, A.A. Efficacy of Different Remineralization Agents on Treating Incipient Enamel Lesions of Primary and Permanent Teeth. J. Conserv. Dent. Endod. 2019, 22, 281–286. [Google Scholar] [CrossRef]
- Veeramani, R.; Shanbhog, R.; Priyanka, T.; Bhojraj, N. Remineralizing Effect of Calcium-Sucrose-Phosphate with and without Fluoride on Primary and Permanent Enamel: Microhardness and Quantitative-Light-Induced-FluorescenceTM Based in Vitro Study. Pediatr. Dent. J. 2021, 31, 51–59. [Google Scholar] [CrossRef]
- Vyavhare, S.; Sharma, D.S.; Kulkarni, V. Effect of Three Different Pastes on Remineralization of Initial Enamel Lesion: An in Vitro Study. J. Clin. Pediatr. Dent. 2015, 39, 149–160. [Google Scholar] [CrossRef]
- Yu, O.Y.; Mei, M.L.; Zhao, I.S.; Li, Q.-L.; Lo, E.C.-M.; Chu, C.-H. Remineralisation of Enamel with Silver Diamine Fluoride and Sodium Fluoride. Dent. Mater. 2018, 34, e344–e352. [Google Scholar] [CrossRef]
- González-Cabezas, C.; Fernández, C. Recent Advances in Remineralization Therapies for Caries Lesions. Adv. Dent. Res. 2018, 29, 55–59. [Google Scholar] [CrossRef]
- Walsh, L.J. Contemporary Technologies for Remineralization Therapies: A Review. Int. Dent. SA 2009, 11, 6–16. [Google Scholar]
- Rao, A.; Maihotra, N. The Role of Remineralizing Agents in Dentistry: A Review. Compend. Contin. Educ. Dent. 2011, 32, 26–36. [Google Scholar]
- Shanbhog, R.; Nikitha, B.; Nandlal, B.; Thippeswamy, M. Effect of Dentifrice of Varying Fluoride Concentration on Surface Microhardness of Fluorosed Enamel: An in Vitro Study. Eur. Arch. Paediatr. Dent. 2016, 17, 257–264. [Google Scholar] [CrossRef]
- White, D. Use of Synthetic Polymer Gels for Artificial Carious Lesion Preparation. Caries Res. 1987, 21, 228–242. [Google Scholar] [CrossRef] [PubMed]
- Karlinsey, R.L.; Mackey, A.C.; Walker, E.R.; Frederick, K.E. Surfactant-Modified β-TCP: Structure, Properties, and in Vitro Remineralization of Subsurface Enamel Lesions. J. Mater. Sci. Mater. Med. 2010, 21, 2009–2020. [Google Scholar] [CrossRef]
- Goswami, M.; Saha, S.; Chaitra, T. Latest Developments in Non-Fluoridated Remineralizing Technologies. J. Indian Soc. Pedod. Prev. Dent. 2012, 30, 2–6. [Google Scholar] [CrossRef]
- Tao, S.; Zhu, Y.; Yuan, H.; Tao, S.; Cheng, Y.; Li, J.; He, L. Efficacy of Fluorides and CPP-ACP vs Fluorides Monotherapy on Early Caries Lesions: A Systematic Review and Meta-Analysis. PLoS ONE 2018, 13, e0196660. [Google Scholar] [CrossRef]
- Tantbirojn, D.; Huang, A.; Ericson, M.; Poolthong, S. Change in Surface Hardness of Enamel by a Cola Drink and a CPP–ACP Paste. J. Dent. 2008, 36, 74–79. [Google Scholar] [CrossRef]
- Savas, S.; Kavrìk, F.; Kucukyilmaz, E. Evaluation of the Remineralization Capacity of CPP-ACP Containing Fluoride Varnish by Different Quantitative Methods. J. Appl. Oral Sci. 2016, 24, 198–203. [Google Scholar] [CrossRef]
- Huang, S.; Gao, S.; Yu, H. Effect of Nano-Hydroxyapatite Concentration on Remineralization of Initial Enamel Lesion in Vitro. Biomed. Mater. 2009, 4, 034104. [Google Scholar] [CrossRef]
- Bhat, D.V.; Awchat, K.L.; Singh, P.; Jha, M.; Arora, K.; Mitra, M. Evaluation of Remineralizing Potential of CPP-ACP, CPP-ACP+ F and β TCP+ F and Their Effect on Microhardness of Enamel Using Vickers Microhardness Test: An in Vitro Study. Int. J. Clin. Pediatr. Dent. 2022, 15, S221. [Google Scholar]
- Paris, S.; Meyer-Lueckel, H. Infiltration of natural caries lesions with experimental resins differing in penetration coefficients and ethanol addition. Caries Res. 2009, 43, 408–413. [Google Scholar]
- Tschoppe, P.; Zandim, D.L.; Martus, P.; Kielbassa, A.M. Enamel and dentine remineralization by nano-hydroxyapatite toothpastes. J. Dent. 2011, 39, 430–437. [Google Scholar] [CrossRef]
- Hench, L.L. The story of Bioglass®. J. Mater. Sci. Mater. Med. 2006, 17, 967–978. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, E.C. Casein phosphopeptide-amorphous calcium phosphate: The scientific evidence. Adv. Dent. Res. 2009, 21, 25–29. [Google Scholar] [CrossRef]
- Gungor, A.S.; Dalkılıç, E.; Alkan, E.; Yılmaz-Atalı, P.; Tağtekin, D. Enamel Matrix Derivative, 58S5 Bioactive Glass, and Fluoride Varnish for Enamel Remineralization: A Multi-analysis Approach. Oper. Dent. 2024, 49, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Attin, R.; Periathamby, A.R.; Meyer-Lueckel, H. Fluoride-based vs. calcium-phosphate-based remineralization systems for caries prevention: A systematic review. Caries Res. 2012, 46, 345–352. [Google Scholar]
- Shellis, R.P.; Featherstone, J.D.B. Laboratory models for caries (demineralization) and remineralization studies. Caries Res. 2007, 41, 378–386. [Google Scholar]
- Featherstone, J.D.B.; Lussi, A. Understanding the chemistry of dental erosion. Monogr. Oral Sci. 2006, 20, 66–76. [Google Scholar]
- Amaechi, B.T.; Higham, S.M. Efficacy of fluoride treatments in reducing demineralization and promoting remineralization. J. Dent. Res. 2001, 80, 217–225. [Google Scholar]
- Rai, A.; Sundas, S.; Dhakal, N.; Khapung, A. Assessment of Dental Caries Based on ICDAS and WHO Criteria: A Comparative Study. Int. J. Paediatr. Dent. 2024, 34, 77–84. [Google Scholar] [CrossRef]
Component | Description |
---|---|
Population | White Spot Lesion on permanent and deciduous teeth |
Intervention | Chemical Remineralizing agent (non-organic agents). |
Comparison | Distilled and deionized water without treatment with subsequent application of distilled water |
Outcome | Depth of injury Microhardness |
Study desing | In vitro studies |
Database | Search Strategy | Articles Retrieved |
---|---|---|
PubMed | (White spot lesion on enamel OR Early enamel lesion OR Artificial enamel caries OR) AND (Enamel Remineralization) AND (Lesion depth OR Microhardness) | 1911 |
Web of Science | TS = (White spot lesion on enamel OR Early enamel lesion OR Artificial enamel caries) TS = (Enamel Remineralization) TS = (Lesion depth OR Microhardness) | 1470 |
Scielo | TS = (White spot lesion on enamel OR Early enamel lesion OR Artificial enamel caries) TS = (Enamel Remineralization) TS = (Lesion depth OR Microhardness) | 62 |
SCOPUS | ALL (“White spot lesion on enamel” OR “Early enamel lesion” OR “Artificial enamel caries” AND ALL (“Enamel Remineralization”) AND ALL (“Lesion depth” OR “Microhardness”) | 1867 |
EMBASE | ‘White spot lesion on enamel’ OR ‘Early enamel lesion’ OR ‘Artificial enamel caries’ ‘Enamel Remineralizing’ ‘Depth of injury’ OR ‘Microhardness’ | 126 |
Author/Year/Country | Sample Teeth | Making White Spot Lesion | Intervention Group (n) | Comparison Group (n) | Follow- Up Remineralization Period | Examination Methods |
---|---|---|---|---|---|---|
Aline Laignier Soares/2020/Brazil [14] | Human primary teeth | early caries lesions | 5% NaF (16) 5% NaF with CPP-ACP (16) 5% NaF with TCP (16) | purified water (16) | 8 days | Polarized Light Microscopy (PLM) Knoop Hardeness (KHN) |
Aras, A./2019/Turkey [15] | Fifty freshly extracted third molar teeth | artificial incipient enamel caries | CPP-ACPF MI Paste Plus cream (10) NovaMin-fluoride toothpaste (10) Xilitol–fluoride cream (10) | without treatment and washed with desionized wáter (10) | 9 days | Vickers Microhardness (VHN) |
Aras, A./2019/Turkey [16] | Fourty-four extracted, impacted human wisdom teeth | artificial incipient enamel caries 9 days | Fluoride gel: Topex® APF gel. (10) CPP-ACP MI Paste (10) CPP-ACPF MI Paste Plus (10) Sensodyne- NovaMin-Fluoride toothpaste (10) Ksilitol-Hydroxyapatite-Fluoride cream (10) Ozone-Fluoride (10) | without treatment and washed with distilled wáter (10) | 9 days | Laser Fluorescence (DIAGNOdent) |
Bajaj, M./2016/India [17] | Ten primary molars | demineralizing solution for 96 h to produce artificial caries like lesions, approximately 150–200 μm thick | CPP-ACP MI Paste (10) f-TCP (Clinpro Tooth Creme) (10) Remin Pro (10) | without treatment and washed with desionized water (10) | 10 days | Polarized Light Microscopy (PLM) |
Chandru, T./2020/India [18] | Sixty-two permanent maxillary and mandibular incisors | initial enamel lesions, after 72 h of demineralization | Colgate Sensitive Plus® Pro-Argina (15) Regenerate Enamel Science tooth paste NR-5 Technology (15) BioRepair® tooth paste (15) Spectrum Reagents and Chemicals (15) | deionized wáter (15) | 12th days | Vickers Hardness (VHN) |
Cheng, X./2015/China [19] | Sixty human permanent molars | early artificial enamel carious lesions | 0.5% arginine solution (8) Arginine/NaF solution (2.5% arginine, 500 ppmF) (8) NaF solution (500 ppmF) (8) Toothpaste A slurry (8) Toothpaste B slurr (8) | deionized water (8) | 10 days | Polarized Light Microscopy (PLM) Knoop Hardness (KHN) |
Cherian, N.M./2020/India [20] | Forty extracted human permanente premolar teeth | Artificial lesión for 4 days | CPP-ACP MI Paste (10) Remin Pro (10) f-TCP (Clinpro Tooth Creme) (10) | Without treatment and washed with desionized wáter (10) | 21 days | Scanning electron microscopy with an energy dispersive X-ray analysis |
Gangwar, A./2019/India [21] | Forty freshly extracted sound human primary anterior teeth | artificial carious lesions | Novamin (10) | without treatment and washed with desionized wáter (10) | 10 days | Vickers Hardness (VHN) |
Joshi, C./2020/India [22] | Sixty teeth Permanent premolars | enamel lesions for 48 h | BAG Novamin nHAp (12) f-TCP (Clinpro Tooth Creme) (12) GSE: Fluoride (1000 ppm) (12) | distilled wáter (12) | 21 days | Vickers Microhardness (VHN) |
Juntavee, A./2021/Thailand [23] | Sixty extracted human premolars | carious lesion on the enamel for 12 h | Nano-HA toothpaste (15) f-TCP (Clinpro Tooth Creme) (15) Fluoride toothpaste (1000 ppm) (15) | deionized wáter (15) | 10 days | Polarized light microscopy (PLM) |
Kasemkhun, P./2021/Thailand [24] | Fifty coronal parts of sound primary incisors | for 4 days to produce 60–100 μm depth of carious lesion | 0.22% sodium fluoride (NaF) or 1000 ppm F toothpaste (10) non-fluoridated toothpaste CaGP and CL (10) CPP-ACP MI Paste (10) non-fluoridated toothpaste containing NHA (10) | deionized water (10) | 7 days | Vickers Hardness (VHN) |
Kooshki, F./2019/Iran [25] | Sixty intact human pre-molars | caries-like lesions on the enamels for two days | Duraphat varnish (15) Nano Paste (15) CPP-ACP MI Paste (15) | without treatment and washed with desionized wáter (15) | 10 days | Vickers Hardness (VHN) |
Kumar, K./2018/Alappuzha [26] | Thirty maxillary first and second premolars | lesion formation for 72 h | Monofluorophosphate dentifrice (30) CPP-ACPF MI Paste Plus (30) Calcium Sodium Phosphosilicate (CSP) (30) | without treatment and washed with distilled wáter (30) | 5 days | Confocal Laser Microscopic Analysis |
Lei/2014/China [27] | Fifty caries-free human upper premolars | enamel lesion formation (34% phosphoric acid for 15 s) | CPP-ACP MI Paste (10) Calcium Sodium Phosphosilicate (CSP) (10) Sodium Fluoride varnish (NaF) (10) | distilled and deionized wáter (10) | 10 days | Vickers Hardness (VHN) |
Majithia, U./2016/India [28] | Forty premolars | enamel lesions | Flor-Opal Varnish White (10) Premier Enamel Pro (10) MI Varnish (10) | without treatment and washed with desionized wáter (10) | 5 days | Vickers Hardness (VHN) |
Mielczarek A./2014/Poland [29] | Ninety human extracted teeth | enamel lesions according to the Carbopol method as described by White | NHAPF–Apa Cared toothpaste (30) F–Blend-a Mede toothpaste (30) | distilled wáter (30) | 3-week | Vickers Hardness (VHN) |
Oliveira, G.M. S./2014/United States [30] | Thirty-five extracted human third molars | artificial white spot lesions | CPP-ACP MI Paste (35) F5000 ControlRx (35) CPP-ACPF MI Paste Plus (35) | without treatment and washed with desionized wáter (35) | 30 days | QLF análisis |
Peric, T.O./2014/Serbia [31] | Ten buccal or lingual surfaces obtained from sound extracted third molars | artificial carious lesion | CPP-ACP MI Paste (10) CPP-ACPF MI Paste Plus (10) 0.05% NaF (Curasept ADS 205) (10) | without treatment and washed with distilled water (10) | 10 days | Vickers Microhardness (VHN) |
Rai, P.M./2019/India [32] | Sixty human maxillary premolar teeth | artificial caries formation | CPP-ACPF MI Paste Plus (10) Beta-TCP (ClinPro) (10) Hydroxyapatite (ReminPro) (10) | without treatment and washed with desionized water (10) | 14 days | Vickers Microhardness (VHN) |
Rana, N./2021/Punjab [33] | Eighty extracted caries-free permanent premolars | Silverstone’s cariogenic solution for four weeks to induce artificial demineralization | Infiltrante de resina (Icon Infiltrant) (10) CPP-ACPF MI Paste Plus (10) NovaMin-fluoride toothpaste (10) | without treatment and washed with desionized water (10) | 14 days | Scanning electron microscopy with an energy dispersive X-ray analysis attachment (SEM-EDAX) testing Vickers Microhardness (VHN) |
Reise, M./2021/Germany [34] | Two hundred -forty caries-free human teeth (thirdmolars) | artificial demineralization for 14 days | CPP-ACP MI Paste (20) CPP-ACPF MI Paste Plus (20) amine fluoride (ElmexCariesProtection 1400 pp) (20) NaF (Sensodyne Pronamel 1450 ppm) (20) | distilled wáter (20) | 7 days | Polarized Light Microscopy (PLM) |
Rirattanapong, P./2014/Thailand [35] | Forty-eight sound extracted or naturally exfoliated human primary incisor | caries like lesion formation 60–150 μm deep | Duraphat® Varnish (12) ClinproTM White Varnish (12) TCP-fluoride varnish (12) | deionized water (12) | 7 days | Polarized Light Microscopy (PLM) |
Rirattanapong, P./2015/Thailand [36] | Thirty-six sound human primary incisors | artificial caries lesion formation 60–100 μm deep | 0.05%NaF plus TCP (12) 0.05%NaF (12) | deionized water (12) | 7 days | Polarized Light Microscopy (PLM) |
Rirattanapong, P./2015/Thailand [37] | Thirty-six human primary incisors | artificial caries lesion formation | 0.05% sodium fluoride 20 ppm tricalcium phosphate mouthrinse (12) 0.05% sodium fluoride mouthrinse (12) | deionized water (12) | 7 days | Vickers Hardness (VHN) |
Rirattanapong, P./2016/Thailand [38] | Fifty anterior teeth | artificial carious lesions approximately 60–100 μm deep | CPP-ACP MI Paste (10) 0.11% Sodium fluoride (500 ppm F) Toothpaste (Colgate® Ultimate Spiderman, Colgate Palmolive Ltd., New York, NY, USA) (10) Nonfluoridated children toothpaste containing DCPD, calcium lactate, and calcium pyrophosphate (Pureen®, AmLion Toothpaste) (10) TCP toothpaste (Faculty of Dentistry, Mahidol University, Thailand) (10) | deionized water (10) | 7 days | Polarized Light Microscopy (PLM) |
Rirattanapong, P./2017/Thailand [39] | Forty human primary incisors | artificial caries lesion formation for 4 days to produce carious lesions 60–100 μm deep | 1000 ppm F dentifrice (10) 500 ppm F+TCP dentifrice (10) 1000 ppm F+TCP dentifrice (10) | deionized wáter (10) | 7 days | Polarized Light Microscopy (PLM) |
Rirattanapong, P./2019/Thailand [40] | Thirty-six human sound primary incisors | for 4 days to produce carious lesions with a depth of 60–100 µm | 0.02% sodium fluoride mouthrinse (12) 0.05% fluoride mouthrinse (12) | deionized wáter (12) | 7 days | Polarized Light Microscopy (PLM) |
Sebastian, R./2022/India [41] | Twenty sound human primary molars | incipient lesions for 2 days | CPP-ACP MI Paste (10) Nano-Hydroxyapatite paste (nano-HAP) (10) Calcium Sucrose Phosphate paste (10) | without treatment and washed with distilled wáter (10) | 7 days | Knoop Hardeness (KHN) |
Siripipat, J./2017/Thailand [42] | Thirty human primary incisor | white spot lesion formation | 5% sodium fluoride with ACP (Enamel Pro®) single application (10) 5% sodium fluoride with ACP (Enamel Pro®) three applications (10) | distilled wáter (10) | 7 days | Vickers Microhardness (VHN) |
Tulumbaci, F./2019/Turkey [43] | Seventy primary and Seventy permanent freshly extruded molar | artificial caries | Colgate Cavity Protection (20) Sensodyne Rapid Relief (20) GC MI Paste Plus (20) Clinpro Tooth Creme (20) Clinpro 5000 (20) Sensodyne Repaır and Protect (20) | deionized water (20) | 4-week | DIAGNOdent laser fluorescence Polarized Light Microscopy (PLM) |
Veeramani, R./2021/India [44] | Sixty Premolars | white spot lesions for a period of 96 h (demineralization cycle) to produce lesions of 0.2 × 10−1 mm mmdepth | CaSP (20) CaSPþ0.2% NaF (20) | distilled wáter (20) | 21 days | Vickers Microhardness (VHN) |
Vyavhare, S./2015/India [45] | Twenty-six freshly extracted human permanent maxillary incisor teeth | early artificial carious lesions, according to Ten Cate and Duijsters | Nano hydroxyapatite 10% (24) CPP-ACP MI Paste (24) Fluoride 1000 ppm (24) | deionized wáter (24) | 3, 6, 9 y 12 days | Vickers Microhardness (VHN) |
Yu, O.Y./2018/China [46] | Forty-eight human enamel | six days to create subsurface caries lesions | 38% SDF solution (Saforide) followed by 5% NaF varnish (Duraphat; Colgate-Palmolive Co.) (12) 38% SDF solution (12) 5% NaF varnish (12) | deionized water (12) | 21 days | SEM, EDS, XRD, TEM, XPS |
Agent | Company | Presentation | Active Ingredient |
Duraphat® | Duraphat®, Colgate-Palmolive GmbH, Waltrop, Germany | varnish | 5% NaF Sodium Fluoride (500 ppmF) |
MI Varnish™ | MI Varnish™, GC Corporation, Hongo, Tokyo, Japan) | varnish | 5% NaF with CPP-ACP Sodium Fluoride (500 ppmF) with Casein Phosphopeptide Amorphous Calcium Phosphate |
White Vanish™ | VanishTM, 3M ESPE, St. Paul, MN, USA | varnish | 5% NaF with TCP Sodium Fluoride (500 ppmF) with Tri-calcium Phosphate with Sodium Fluoride |
MI Paste | GC, Tokyo, Japan | mousse | CPP-ACP 10% Casein Phosphopeptide Amorphous Calcium Phosphate |
MI Paste Plus | GC, Japan | mousse | CPP-ACPF 0.2% (w/w) (900 ppm) Sodium Fluoride in addition to 10% Casein Phosphopeptide Amorphous Calcium Phosphate |
Sensodyne Repair and Protect | Haleon, GlaxoSmithKline, Brentford, UK | toothpaste | Fluoride estanoso Contains NovaMin Technology |
Sensodyne Rapid Relief | Haleon, GlaxoSmithKline, UK | toothpaste | Fluoride estanoso |
Clinpro | 3M ESPE | cream | NaF/fTC 0.21% sodium fluoride with Tri-calcium Phosphate |
Clinpro 5000 | 3M ESPE | cream | NaF/fTC 1.1% sodium fluoride with Tri-calcium Phosphate |
ReminPro | Voco, DE | cream | NaF/NHA Fluoride (1450 ppm), Hydroxyapatite and Xilitol |
Colgate Sensitive Plus Pro-ArginTM | Colgate-Palmolive | toothpaste | 8% Arginine bicarbonate, sodium monofluorophosphate, and 1450 ppm calcium carbonate |
Colgate® Cavity Protection (Regular) | Colgate-Palmolive | toothpaste | NaF 0.22% sodium fluoride or 1000 ppm F |
Colgate® Ultimate Spiderman | Colgate Palmolive | toothpaste | NaF 0.11% Sodium fluoride (500 ppm F) |
Regenerate Enamel Science NR-5 Technology | Grupo Unilever | toothpaste | Calcium silicate, sodium phosphate, and sodium monofluorophosphate |
BioRepair® | Biobel | toothpaste | Zinc hydroxyapatite crystals |
2.5% arginine solution | National Basic Research Program of China | solution | 2.5% arginine |
NaF | National Basic Research Program of China | solution | 500 ppm F |
Arginine with Sodium Fluoride | National Basic Research Program of China | solution | 2.5% arginine/NaF 500 ppmF |
Novamin | SHY NM, Group Pharmaceuticals Ltd., Mumbai, India | toothpaste | CSP calcium sodium phosphosilicate |
Nano-HAP paste | FGM Brezil | toothpaste | NaF/NHA Hydroxyapatite and 9000 ppm of fluoride |
Topex® APF gel | Sultan Healtcare | Fluoride gel | 2.0% Sodium Fluoride 0.9% Fluoride Ion |
Fluor Opal Varnish White | Ultradent | varnish | xylitol sweetened, 5% sodium fluoride |
Enamel Pro | Laboratorios Zeyco S.A. de C.V. | professional prophylactic paste | NaF/ACP 5% sodium fluoride with and amorphous calcium phosphate |
Apagard® | Sangi, Tokyo, Japan | toothpaste | nano-HA Nano hidroxyapatite |
Pureen® | AmLion Toothpaste Mfg., Petaling Jaya, Malaysia | nonfluoridated children toothpast | 8% Xylitol, calcium lactate, and calcium pyrophosphate |
Dokbuaku® | Kids, Twinlotus Co., Ltd., Bangkok, Thailand | non-fluoridated toothpaste | CaGP and CL Calcium glycerophosphate (CaGP), an organic polyphosphate |
Apa Cared | Flüssiger Zahnschmelz | toothpaste | NHAPF 1% nano-HAP + 1450 ppm F/ NaF |
Blend-a Mede | Blend-a Mede | toothpaste | 1450 ppm F/NaF |
F5000 ControlRx | 3M ESPE | toothpaste | NaF 1.1% NaF dentifrice, 5000 ppm |
Enafix | Global Calcium | toothpaste | CaSP Calcium Sucrose Phosphate |
Curasept ADS 205 | Curaden International AG, Kriens, Switzerland | mouthwash | NaF 0.05% NaF and chlorhexidine 0.05% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monjarás-Ávila, A.J.; Hardan, L.; Cuevas-Suárez, C.E.; Alonso, N.V.Z.; Fernández-Barrera, M.Á.; Moussa, C.; Jabr, J.; Bourgi, R.; Haikel, Y. Systematic Review and Meta-Analysis of Remineralizing Agents: Outcomes on White Spot Lesions. Bioengineering 2025, 12, 93. https://doi.org/10.3390/bioengineering12010093
Monjarás-Ávila AJ, Hardan L, Cuevas-Suárez CE, Alonso NVZ, Fernández-Barrera MÁ, Moussa C, Jabr J, Bourgi R, Haikel Y. Systematic Review and Meta-Analysis of Remineralizing Agents: Outcomes on White Spot Lesions. Bioengineering. 2025; 12(1):93. https://doi.org/10.3390/bioengineering12010093
Chicago/Turabian StyleMonjarás-Ávila, Ana Josefina, Louis Hardan, Carlos Enrique Cuevas-Suárez, Norma Verónica Zavala Alonso, Miguel Ángel Fernández-Barrera, Carol Moussa, Jamal Jabr, Rim Bourgi, and Youssef Haikel. 2025. "Systematic Review and Meta-Analysis of Remineralizing Agents: Outcomes on White Spot Lesions" Bioengineering 12, no. 1: 93. https://doi.org/10.3390/bioengineering12010093
APA StyleMonjarás-Ávila, A. J., Hardan, L., Cuevas-Suárez, C. E., Alonso, N. V. Z., Fernández-Barrera, M. Á., Moussa, C., Jabr, J., Bourgi, R., & Haikel, Y. (2025). Systematic Review and Meta-Analysis of Remineralizing Agents: Outcomes on White Spot Lesions. Bioengineering, 12(1), 93. https://doi.org/10.3390/bioengineering12010093