Recent Progress in Dental Biomaterials

A special issue of Bioengineering (ISSN 2306-5354). This special issue belongs to the section "Biomedical Engineering and Biomaterials".

Deadline for manuscript submissions: 20 February 2025 | Viewed by 2193

Special Issue Editor


E-Mail Website
Guest Editor

Special Issue Information

Dear Colleagues,

In recent decades, biomaterials have become particularly important in dentistry. One of the goals of research is to improve the clinical performance, biocompatibility, antimicrobial and mechanical properties of products applied in dental offices. On the other hand, every day, new materials, offering enhanced properties and ease of use, are developed and introduced into the market. The focus on biomechanical engineering and interdisciplinary research is of particular importance to provide biomaterials with optimal characteristics and performance. In this light, there has been undisputable progress in the design of biomaterials for different applications in dentistry. Therefore, this Special Issue will focus on novel biomaterials and related techniques.

Reviews and research on both experimental and commercially available products are welcome.

Prof. Dr. Monika Lukomska-Szymanska
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Bioengineering is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biomaterials
  • dental materials
  • tissue engineering
  • bone or soft tissue regeneration
  • dental caries
  • tooth wear
  • dental techniques
  • prosthodontics
  • endodontics
  • restorative dentistry
  • implantology
  • periodontology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 16869 KiB  
Article
An In Vitro Comparative Analysis of Physico–Mechanical Properties of Commercial and Experimental Bioactive Endodontic Sealers
by Abdulmajeed Kashaf, Faisal Alonaizan, Khalid S. Almulhim, Dana Almohazey, Deemah Abdullah Alotaibi, Sultan Akhtar, Ashwin C. Shetty and Abdul Samad Khan
Bioengineering 2024, 11(11), 1079; https://doi.org/10.3390/bioengineering11111079 - 28 Oct 2024
Viewed by 553
Abstract
This study aimed to evaluate the fracture resistance of root and sealer penetration after obturation using an epoxy resin sealer AH plus (AH+) and two different bioactive endodontic sealers, i.e., Totalfill BC Hiflow (TF BC), and experimental injectable bioactive glass (Exp.BG). A thermo-sensitive [...] Read more.
This study aimed to evaluate the fracture resistance of root and sealer penetration after obturation using an epoxy resin sealer AH plus (AH+) and two different bioactive endodontic sealers, i.e., Totalfill BC Hiflow (TF BC), and experimental injectable bioactive glass (Exp.BG). A thermo-sensitive injectable sealer was prepared by using a non-ionic triblock copolymer and bioactive glass. The root canals of human extracted teeth were obturated with the respective sealers. The fracture resistance was analyzed at different time intervals, i.e., days 7, 30, and 90. The morphological and elemental analyses of the fractured roots were conducted with a scanning electron microscopy and a electron dispersive spectroscopy. Sealer penetration depth and the percentage of penetrated sealers into the dentinal tubules were assessed with the confocal laser scanning microscope. Statistical analysis was performed using a one-way ANOVA post hoc Tukey’s test. The mean fracture force in AH+ was significantly higher on day 30 (664.08 ± 138.8 N) compared to day 7 (476.07 ± 173.2 N) and day 90 (493.38 ± 120.18 N). There was no statistically significant difference between the TF BC and Exp.BG at different time intervals. The maximum penetration was observed in the middle region compared to coronal and apical for the Exp.BG, followed by the TF BC and AH+ groups; however, a nonsignificant difference in penetration was found over time. It is concluded that the TF BC group showed overall better fracture resistance than AH+ at day 90. Exp.BG showed comparable sealer penetration to those of TF BC and better than those of AH+. Full article
(This article belongs to the Special Issue Recent Progress in Dental Biomaterials)
Show Figures

Graphical abstract

10 pages, 7217 KiB  
Article
Comparison of De-Torque and Failure Load Evaluation of Selective-Laser-Sintered CoCr, CAD-CAM ZrO, and Machined Implant Abutment/Restoration
by Fahim Vohra, Rawan Alsaif, Rawaiz Khan and Ishfaq A. Bukhari
Bioengineering 2024, 11(5), 448; https://doi.org/10.3390/bioengineering11050448 - 30 Apr 2024
Viewed by 1199
Abstract
Aim: This study aimed to compare the torque loss, fracture load, compressive strength, and failure types of selective-laser-sintered cobalt chromium (SLM-Co-Cr), computer-aided design and computer-aided manufacturing zirconium oxide (CAD-CAM-ZrO), and machined titanium (Ti) implant abutments. Methods: Thirty endosseous dental implants were vertically embedded [...] Read more.
Aim: This study aimed to compare the torque loss, fracture load, compressive strength, and failure types of selective-laser-sintered cobalt chromium (SLM-Co-Cr), computer-aided design and computer-aided manufacturing zirconium oxide (CAD-CAM-ZrO), and machined titanium (Ti) implant abutments. Methods: Thirty endosseous dental implants were vertically embedded with machined Ti (control group), CAD-CAM-ZrO, and SLM-Co-Cr abutments. Abutment fabrication involved CAD-CAM milling and SLM technology. The de-torque assessment included preload reverse torque values (RTVs), cyclic loading, and post-RTVs using a customized protocol. Fracture load assessment employed ISO-14801 standards, and statistical analysis was conducted using ANOVA and Tukey Post hoc tests (p < 0.05). Results: In pre-load RTVs, SLM-Co-Cr showed the lowest mean torque loss (24.30 ± 2.13), followed by machined Ti (27.33 ± 2.74) and CAD-CAM-ZrO (22.07 ± 2.20). Post-load RTVs decreased for all groups. Fracture load and compressive strength were highest for SLM-Co-Cr, with significant differences among groups (p < 0.001). Fracture types included abutment failures in SLM-Co-Cr and machined Ti, while CAD-CAM-ZrO exhibited crown separation with deformation. Conclusion: SLM-Co-Cr-fabricated implant abutments exhibited superior stability and resistance to rotational forces, higher fracture loads, and greater compressive strength compared to CAD-CAM-ZrO and machined Ti. Full article
(This article belongs to the Special Issue Recent Progress in Dental Biomaterials)
Show Figures

Figure 1

Back to TopTop