Muscle-Driven Total Knee Replacement Stability with Virtual Ligaments
Abstract
:1. Introduction and Background
2. Methods
2.1. Phantom Joints and TKR Implants
2.2. Simulating Joint Motion
2.3. Virtual Ligament Models
2.4. Test Conditions
2.5. Data Recording, Processing, and Analysis
3. Results
3.1. Neutral Path Kinematics
3.1.1. Effect of Joint Control Methods
3.1.2. Effect of Virtual Ligaments
3.2. Laxity Testing
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3D | Three-dimensional |
AMTI | Advanced Mechanical Technology, Inc. |
AP | Anterior–posterior |
DoF | Degree of freedom |
IE | Internal–external |
MAS | Muscle actuator system |
ML | Medial–lateral |
RKTS | Robotic knee testing system |
TF | Tibiofemoral |
TKR | Total knee replacement |
VV | Varus–valgus |
Appendix A
Appendix A.1. Contributions of Virtual Ligaments During Baseline Testing
- Z-axis: pointing vertically upwards, parallel with gravity.
- X-axis: perpendicular to the Z-axis, pointing towards the right.
- Y-axis: perpendicular to both Z- and X-axes, pointing forward.
- : Force along (or moment about) the Z-axis. Superior/inferior forces (internal/external moments)
- : Force along (or moment about) the X-axis. Medial/lateral forces (flexion/extension moments).
- : Force along (or moment about) the Y-axis. Anterior/posterior forces (varus/valgus moments).
Appendix A.2. Mean Ligament Force Measurements and Effect of Ligament Models on Quadriceps Forces
References
- Public Health Agency of Canada (PHAC). Life with Arthritis in Canada: A Personal and PUBLIC health Challenge; PHAC: Ottawa, ON, Canada, 2010. [Google Scholar]
- MacDonald, K.V.; Sanmartin, C.; Langlois, K.; Marshall, D.A. Symptom Onset, Diagnosis and Management of Osteoarthritis. Health Rep. Stat. Can. 2014, 25, 10–17. [Google Scholar]
- Canadian Institute for Health Information. Hip and Knee Replacements in Canada: CJRR Annual Statistics Summary, 2018–2019; CIHI: Ottawa, ON, Canada, 2020; Available online: http://www.cihi.ca/CIHI-ext-portal/internet/EN/TabbedContent/types+of+care/specialized+services/joint+replacements/cihi021359 (accessed on 11 November 2020).
- Nikolaus, O.B.; Lewallen, D.G. Instability After Total Knee Arthroplasty: Wobble and Buckle. Semin. Arthroplast. 2017, 28, 82–90. [Google Scholar] [CrossRef]
- Ho, K.K.-W.; Chau, W.-W.; Lau, L.C.-M.; Ng, J.P.; Chiu, K.-H.; Ong, M.T.-Y. Long-Term Survivorship and Results in Lower Limb Arthroplasty: A Registry-Based Comparison Study. BMC Musculoskelet. Disord. 2023, 24, 307. [Google Scholar] [CrossRef] [PubMed]
- Bourne, R.B.; Chesworth, B.M.; Davis, A.M.; Mahomed, N.N.; Charron, K.D.J. Patient Satisfaction after Total Knee Arthroplasty: Who Is Satisfied and Who Is Not? Clin. Orthop. Relat. Res. 2010, 468, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Bryan, S.; Goldsmith, L.J.; Davis, J.C.; Hejazi, S.; MacDonald, V.; McAllister, P.; Randall, E.; Suryaprakash, N.; Wu, A.D.; Sawatzky, R. Revisiting Patient Satisfaction Following Total Knee Arthroplasty: A Longitudinal Observational Study. BMC Musculoskelet. Disord. 2018, 19, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kahlenberg, C.A.; Nwachukwu, B.U.; McLawhorn, A.S.; Cross, M.B.; Cornell, C.N.; Padgett, D.E. Patient Satisfaction After Total Knee Replacement: A Systematic Review. HSS J. 2018, 14, 192–201. [Google Scholar] [CrossRef]
- Su, E.P. Instability After TKA: Wobble & Buckle. Curr. Concepts Jt. Replace. (CCJR) 2015, 97-B (Suppl. 13), 64. [Google Scholar]
- Chang, M.J.; Lim, H.; Lee, N.R.; Moon, Y.-W. Diagnosis, Causes and Treatments of Instability Following Total Knee Arthroplasty. Knee Surg. Relat. Res. 2014, 26, 61–67. [Google Scholar] [CrossRef]
- Hunt, N.C.; Ghosh, K.M.; Blain, A.P.; Athwal, K.K.; Rushton, S.P.; Amis, A.A.; Longstaff, L.M.; Deehan, D.J. How Does Laxity After Single Radius Total Knee Arthroplasty Compare with the Native Knee?: Single Radius CR-TKA Laxity. J. Orthop. Res. 2014, 32, 1208–1213. [Google Scholar] [CrossRef]
- Schroer, W.C.; Berend, K.R.; Lombardi, A.V.; Barnes, C.L.; Bolognesi, M.P.; Berend, M.E.; Ritter, M.A.; Nunley, R.M. Why Are Total Knees Failing Today? Etiology of Total Knee Revision in 2010 and 2011. J. Arthroplast. 2013, 28, 116–119. [Google Scholar] [CrossRef]
- ASTM F1223-20; Standard Test Method for Determination of Total Knee Replacement Constraint. ASTM International: West Conshohocken, PA, USA, 2020. [CrossRef]
- Willing, R.; Walker, P.S. Measuring the Sensitivity of Total Knee Replacement Kinematics and Laxity to Soft Tissue Imbalances. J. Biomech. 2018, 77, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Vakili, S.; Lanting, B.; Getgood, A.; Willing, R. Development of Multibundle Virtual Ligaments to Simulate Knee Mechanics After Total Knee Arthroplasty. J. Biomech. Eng. 2023, 145, 091003. [Google Scholar] [CrossRef] [PubMed]
- Galley, A.; Vakili, S.; Borukhov, I.; Lanting, B.; Piazza, S.J.; Willing, R. Comparing Patellofemoral Kinematics Assessed with a Novel Muscle Actuator System and an Oxford Rig Using Non-Cadaveric Knees. J. Biomech. Eng. 2024, 147, 031003. [Google Scholar] [CrossRef]
- Galley, A.; Borukhov, I.; Lanting, B.; Willing, R. The Effect of Hamstring Loading on TKA Kinematics Predicted by a Gravity-Dependent Knee Joint Motion Simulator; Orthopaedic Research Society: Dallas, TX, USA, 2023; Available online: https://www.ors.org/transactions/2023/854.pdf (accessed on 2 March 2023).
- Norman, O.; Egund, N.; Ekelund, L.; Rünow, A. The Vertical Position of the Patella. Acta Orthop. Scand. 1983, 54, 908–913. [Google Scholar] [CrossRef]
- Piazza, S.; Hickox, L.; Mannarino, A.; Abbruzzese, K.; Townsend, E.; Pascale, K.; Servidio, D. Knee Simulator Assessment of Hinged Knee Replacement Extensor Mechanics Enhanced by a Computational Model; International Society of Biomechanics: Iowa City, IA, USA, 2021. [Google Scholar]
- Blankevoort, L.; Kuiper, J.H.; Huiskes, R.; Grootenboer, H.J. Articular Contact in a Three-Dimensional Model of the Knee. J. Biomech. 1991, 24, 1019–1031. [Google Scholar] [CrossRef]
- Blankevoort, L.; Huiskes, R. Validation of a Three-Dimensional Model of the Knee. J. Biomech. 1996, 29, 955–961. [Google Scholar] [CrossRef]
- Sekeitto, A.R.; McGale, J.G.; Montgomery, L.A.; Vasarhelyi, E.M.; Willing, R.; Lanting, B.A. Posterior-Stabilized Total Knee Arthroplasty Kinematics and Joint Laxity: A Hybrid Biomechanical Study. Arthroplasty 2022, 4, 53. [Google Scholar] [CrossRef]
- Otake, N.; Chen, H.; Yao, X.; Shoumura, S. Morphologic Study of the Lateral and Medial Collateral Ligaments of the Human Knee. Okajimas Folia Anat. Jpn. 2007, 83, 115–122. [Google Scholar] [CrossRef]
- Bloemker, K.H.; Guess, T.M.; Maletsky, L.; Dodd, K. Computational Knee Ligament Modeling Using Experimentally Determined Zero-Load Lengths. Open Biomed. Eng. J. 2012, 6, 33–41. [Google Scholar] [CrossRef]
- Cho, K.-J.; Seon, J.-K.; Jang, W.-Y.; Park, C.-G.; Song, E.-K. Objective Quantification of Ligament Balancing Using VERASENSE in Measured Resection and Modified Gap Balance Total Knee Arthroplasty. BMC Musculoskelet. Disord. 2018, 19, 266. [Google Scholar] [CrossRef]
- Coles, L.; Gheduzzi, S.; Miles, A. In Vitro Method for Assessing the Biomechanics of the Patellofemoral Joint Following Total Knee Arthroplasty. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2014, 228, 1217–1226. [Google Scholar] [CrossRef] [PubMed]
- Benson, L.C.; DesJardins, J.D.; LaBerge, M. Effects of In Vitro Wear of Machined and Molded UHMWPE Tibial Inserts on TKR Kinematics. J. Biomed. Mater. Res. 2001, 58, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Bauer, L.; Kistler, M.; Steinbrück, A.; Ingr, K.; Müller, P.E.; Jansson, V.; Schröder, C.; Woiczinski, M. Different ISO Standards’ Wear Kinematic Profiles Change the TKA Inlay Load. Appl. Sci. 2021, 11, 3161. [Google Scholar] [CrossRef]
- Servien, E.; Viskontas, D.; Giuffrè, B.; Coolican, M.R.; Parker, D.A. Reliability of Bony Landmarks for Restoration of the Joint Line in Revision Knee Arthroplasty. Arthrosc. J. Arthrosc. Relat. Surg. 2012, 28, e394–e395. [Google Scholar] [CrossRef]
- Henke, P.; Ruehrmund, L.; Bader, R.; Kebbach, M. Exploration of the Advanced VIVOTM Joint Simulator: An In-Depth Analysis of Opportunities and Limitations Demonstrated by the Artificial Knee Joint. Bioengineering 2024, 11, 178. [Google Scholar] [CrossRef]
- Kleist, E.; Henke, P.; Ruehrmund, L.; Kebbach, M.; Bader, R.; Woernle, C. Impact of Structural Compliance of a Six Degree of Freedom Joint Simulator on Virtual Ligament Force Calculation in Total Knee Endoprosthesis Testing. Life 2024, 14, 531. [Google Scholar] [CrossRef]
- Guess, T.M.; Razu, S. Loading of the Medial Meniscus in the ACL Deficient Knee: A Multibody Computational Study. Med. Eng. Phys. 2017, 41, 26–34. [Google Scholar] [CrossRef]
- Willing, R.; Moslemian, A.; Yamomo, G.; Wood, T.; Howard, J.; Lanting, B. Condylar-Stabilized TKR May Not Fully Compensate for PCL-Deficiency: An In Vitro Cadaver Study. J. Orthop. Res. 2019, 37, 2172–2181. [Google Scholar] [CrossRef]
- Grood, E.S.; Suntay, W.J. A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee. J. Biomech. Eng. 1983, 105, 136–144. [Google Scholar] [CrossRef]
- Dabirrahmani, D.; Hogg, M. Modification of the Grood and Suntay Joint Coordinate System Equations for Knee Joint Flexion. Med. Eng. Phys. 2017, 39, 113–116. [Google Scholar] [CrossRef]
- Müller, O.; Lo, J.; Wünschel, M.; Obloh, C.; Wülker, N. Simulation of Force Loaded Knee Movement in a Newly Developed In Vitro Knee Simulator/Simulation von belastungsabhängigen Kniebewegungen in Einem Neuartigen Knie-Simulator für In-Vitro-Studien. Biomed. Tech./Biomed. Eng. 2009, 54, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Wünschel, M.; Leasure, J.M.; Dalheimer, P.; Kraft, N.; Wülker, N.; Müller, O. Differences in Knee Joint Kinematics and Forces After Posterior Cruciate Retaining and Stabilized Total Knee Arthroplasty. Knee 2013, 20, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Rudy, T.W.; Sakane, M.; Kanamori, A.; Ma, C.B.; Woo, L.-Y. The Importance of Quadriceps and Hamstring Muscle Loading on Knee Kinematics and In-Situ Forces in the ACL. J. Biomech. 1999, 32, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Maniar, N.; Cole, M.H.; Bryant, A.L.; Opar, D.A. Muscle Force Contributions to Anterior Cruciate Ligament Loading. Sports Med. 2022, 52, 1737–1750. [Google Scholar] [CrossRef]
- Victor, J.; Labey, L.; Wong, P.; Innocenti, B.; Bellemans, J. The Influence of Muscle Load on Tibiofemoral Knee Kinematics. J. Orthop. Res. 2010, 28, 419–428. [Google Scholar] [CrossRef]
- Demorat, G.; Weinhold, P.; Blackburn, T.; Chudik, S.; Garrett, W. Aggressive Quadriceps Loading Can Induce Noncontact Anterior Cruciate Ligament Injury. Am. J. Sports Med. 2004, 32, 477–483. [Google Scholar] [CrossRef]
- Hirokawa, S.; Solomonow, M.; Yun, L.; Lou, Z.-P.; D’Ambrosia, R. Anterior-Posterior and Rotational Displacement of the Tibia Elicited by Quadriceps Contraction. Am. J. Sports Med. 1992, 20, 299–306. [Google Scholar] [CrossRef]
- Asano, T.; Akagi, M.; Tanaka, K.; Tamura, J.; Nakamura, T. In Vivo Three-Dimensional Knee Kinematics Using a Biplanar Image-Matching Technique. Clin. Orthop. Relat. Res. 2001, 388, 157–166. [Google Scholar] [CrossRef]
- Masouros, S.D.; Bull, A.M.J.; Amis, A.A. (i) Biomechanics of the knee joint. Orthop. Trauma 2010, 24, 84–91. [Google Scholar] [CrossRef]
- Montgomery, L.; Willing, R.; Lanting, B. Virtual Joint Motion Simulator Accurately Predicts Effects of Femoral Component Malalignment during TKA. Bioengineering 2023, 10, 503. [Google Scholar] [CrossRef]
- Hosseini Nasab, S.H.; Smith, C.R.; Postolka, B.; Schütz, P.; List, R.; Taylor, W.R. In Vivo Elongation Patterns of the Collateral Ligaments in Healthy Knees During Functional Activities. J. Bone Jt. Surg. 2021, 103, 1620–1627. [Google Scholar] [CrossRef] [PubMed]
- Wünschel, M.; Müller, O.; Lo, J.; Obloh, C.; Wülker, N. The Anterior Cruciate Ligament Provides Resistance to Externally Applied Anterior Tibial Force But Not to Internal Rotational Torque During Simulated Weight-Bearing Flexion. Arthrosc. J. Arthrosc. Relat. Surg. 2010, 26, 1520–1527. [Google Scholar] [CrossRef] [PubMed]
- Aunan, E.; Kibsgård, T.; Clarke-Jenssen, J.; Röhrl, S.M. A New Method to Measure Ligament Balancing in Total Knee Arthroplasty: Laxity Measurements in 100 Knees. Arch. Orthop. Trauma Surg. 2012, 132, 1173–1181. [Google Scholar] [CrossRef] [PubMed]
- Kiapour, A.M.; Kaul, V.; Kiapour, A.; Quatman, C.E.; Wordeman, S.C.; Hewett, T.E.; Demetropoulos, C.K.; Goel, V.K. The Effect of Ligament Modeling Technique on Knee Joint Kinematics: A Finite Element Study. Appl. Math. 2013, 4, 91–97. [Google Scholar] [CrossRef]
- Ostermeier, S.; Stukenborg-Colsman, C. Quadriceps Force After TKA with Femoral Single Radius: An In Vitro Study. Acta Orthop. 2011, 82, 339–343. [Google Scholar] [CrossRef]
Parameter | MCL | LCL |
---|---|---|
Lengths | 68.16 mm | 44.75 mm |
Ligament stiffness (N) | 5500 N | 4000 N |
Reference strains | 0.0354 | 0.0391 |
Mean force during isometric position adjustments (N) | 89 ± 18 N | 102 ± 23 N |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galley, A.; Donnelly, E.; Borukhov, I.; Lanting, B.; Willing, R. Muscle-Driven Total Knee Replacement Stability with Virtual Ligaments. Bioengineering 2025, 12, 112. https://doi.org/10.3390/bioengineering12020112
Galley A, Donnelly E, Borukhov I, Lanting B, Willing R. Muscle-Driven Total Knee Replacement Stability with Virtual Ligaments. Bioengineering. 2025; 12(2):112. https://doi.org/10.3390/bioengineering12020112
Chicago/Turabian StyleGalley, Alexandre, Emma Donnelly, Ilya Borukhov, Brent Lanting, and Ryan Willing. 2025. "Muscle-Driven Total Knee Replacement Stability with Virtual Ligaments" Bioengineering 12, no. 2: 112. https://doi.org/10.3390/bioengineering12020112
APA StyleGalley, A., Donnelly, E., Borukhov, I., Lanting, B., & Willing, R. (2025). Muscle-Driven Total Knee Replacement Stability with Virtual Ligaments. Bioengineering, 12(2), 112. https://doi.org/10.3390/bioengineering12020112