Development and Characterization of CD44-Targeted X-Aptamers with Enhanced Binding Affinity for Cancer Therapeutics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Monothioated Oligodeoxynucleotides (S-ODN) Library
2.3. CD44-HABD Specific X-Aptamer Selection
2.4. Filter Binding Assay
2.5. Cell Lines and Cell Binding Assay
2.6. Flow Cytometry Analysis of Aptamer Binding
3. Results
3.1. Selection of High-Affinity CD44 X-Aptamers
3.2. Identification of Binding Motifs
3.3. Binding Affinity to CD44-Expressing IGROV Cells
3.4. Modification of ADDA Outperforms NH2 in Enhancing Binding Affinity
4. Discussion
4.1. Comparing the Current Method with Existing Antibody and Aptamer Technologies
4.2. Beads-Based X-Aptamer Library: Streamlining Selection and Enhancing Affinity
4.3. Binding Differences of X-Aptamers with Pure CD44-HABD and CD44-Expressing IGROV Cells
4.4. Influence of ADDA Modification on Binding Affinity: Position and Structural Considerations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aruffo, A.; Stamenkovic, I.; Melnick, M.; Underhill, C.B.; Seed, B. CD44 is the principal cell surface receptor for hyaluronate. Cell 1990, 61, 1303–1313. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Brown, R.L.; Wei, Y.; Zhao, P.; Liu, S.; Liu, X.; Deng, Y.; Hu, X.; Zhang, J.; Gao, X.D.; et al. CD44 splice isoform switching determines breast cancer stem cell state. Genes Dev. 2019, 33, 166–179. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, S.; Chen, S.; Ma, F. The prognostic value and immunological role of CD44 in pan-cancer study. Sci. Rep. 2023, 13, 7011. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Ma, H.; Zhang, J.; Zhu, L.; Wang, C.; Yang, Y. Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Sci. Rep. 2017, 7, 13856. [Google Scholar] [CrossRef]
- Senbanjo, L.T.; Chellaiah, M.A. CD44: A Multifunctional Cell Surface Adhesion Receptor Is a Regulator of Progression and Metastasis of Cancer Cells. Front. Cell Dev. Biol. 2017, 5, 18. [Google Scholar] [CrossRef] [PubMed]
- Skandalis, S.S.; Karalis, T.T.; Chatzopoulos, A.; Karamanos, N.K. Hyaluronan-CD44 axis orchestrates cancer stem cell functions. Cell. Signal. 2019, 63, 109377. [Google Scholar] [CrossRef] [PubMed]
- Leng, Z.; Xia, Q.; Chen, J.; Li, Y.; Xu, J.; Zhao, E.; Zheng, H.; Ai, W.; Dong, J. Lgr5 + CD44 + EpCAM + Strictly Defines Cancer Stem Cells in Human Colorectal Cancer. Cell. Physiol. Biochem. 2018, 46, 860–872. [Google Scholar] [CrossRef]
- Yang, X.; Beasley, D.W.; Engelhardt, J.; Shumbera, M.; Luxon, B.A.; Gorenstein, D.G. Bead-based Approaches to Develop Thioaptamers for Diagnostics and Therapeutics. Phosphorus Sulfur Silicon Relat. Elem. 2008, 183, 469–472. [Google Scholar] [CrossRef]
- Wu, S.; Tan, Y.; Li, F.; Han, Y.; Zhang, S.; Lin, X. CD44: A cancer stem cell marker and therapeutic target in leukemia treatment. Front. Immunol. 2024, 15, 1354992. [Google Scholar] [CrossRef]
- Peer, D.; Margalit, R. Tumor-targeted hyaluronan nanoliposomes increase the antitumor activity of liposomal Doxorubicin in syngeneic and human xenograft mouse tumor models. Neoplasia 2004, 6, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Auzenne, E.; Ghosh, S.C.; Khodadadian, M.; Rivera, B.; Farquhar, D.; Price, R.E.; Ravoori, M.; Kundra, V.; Freedman, R.S.; Klostergaard, J. Hyaluronic acid-paclitaxel: Antitumor efficacy against CD44(+) human ovarian carcinoma xenografts. Neoplasia 2007, 9, 479–486. [Google Scholar] [CrossRef]
- Santarpia, G.; Carnes, E. Therapeutic Applications of Aptamers. Int. J. Mol. Sci. 2024, 25, 6742. [Google Scholar] [CrossRef] [PubMed]
- Ng, E.W.M.; Shima, D.T.; Calias, P.; Cunningham, E.T.; Guyer, D.R.; Adamis, A.P. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug Discov. 2006, 5, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Kang, C. Avacincaptad Pegol: First Approval. Drugs 2023, 83, 1447–1453. [Google Scholar] [CrossRef] [PubMed]
- Somasunderam, A.; Thiviyanathan, V.; Tanaka, T.; Li, X.; Neerathilingam, M.; Lokesh, G.L.R.; Mann, A.; Peng, Y.; Ferrari, M.; Klostergaard, J.; et al. Combinatorial selection of DNA thioaptamers targeted to the HA binding domain of human CD44. Biochemistry 2010, 49, 9106–9112. [Google Scholar] [CrossRef]
- Yang, X.; Fennewald, S.; Luxon, B.A.; Aronson, J.; Herzog, N.K.; Gorenstein, D.G. Aptamers containing thymidine 3′-O-phosphorodithioates: Synthesis and binding to nuclear factor-kappaB. Bioorg. Med. Chem. Lett. 1999, 9, 3357–3362. [Google Scholar] [CrossRef]
- Fennewald, S.M.; Scott, E.P.; Zhang, L.; Yang, X.; Aronson, J.F.; Gorenstein, D.G.; Luxon, B.A.; Shope, R.E.; Beasley, D.W.C.; Barrett, A.D.T.; et al. Thioaptamer decoy targeting of AP-1 proteins influences cytokine expression and the outcome of arenavirus infections. J. Gen. Virol. 2007, 88 Pt 3, 981–990. [Google Scholar] [CrossRef]
- Mann, A.P.; Somasunderam, A.; Nieves-Alicea, R.; Li, X.; Hu, A.; Sood, A.K.; Ferrari, M.; Gorenstein, D.G.; Tanaka, T. Identification of thioaptamer ligand against E-selectin: Potential application for inflamed vasculature targeting. PLoS ONE 2010, 5, e13050. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Volk, D.E.; Lokesh, G.L.; Elizondo-Riojas, M.A.; Li, L.; Nick, A.M.; Sood, A.K.; Rosenblatt, K.P.; Gorenstein, D.G. Morph-X-Select: Morphology-based tissue aptamer selection for ovarian cancer biomarker discovery. Biotechniques 2016, 61, 249–259. [Google Scholar] [CrossRef]
- Mangala, L.S.; Wang, H.; Jiang, D.; Wu, S.Y.; Somasunderam, A.; Volk, D.E.; Lokesh, G.L.R.; Li, X.; Pradeep, S.; Yang, X.; et al. Improving vascular maturation using noncoding RNAs increases antitumor effect of chemotherapy. JCI Insight 2018, 3, e122387. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Elizondo-Riojas, M.A.; Li, X.; Lokesh, G.L.; Somasunderam, A.; Thiviyanathan, V.; Volk, D.E.; Durland, R.H.; Englehardt, J.; Cavasotto, C.N.; et al. X-aptamers: A bead-based selection method for random incorporation of druglike moieties onto next-generation aptamers for enhanced binding. Biochemistry 2012, 51, 8321–8323. [Google Scholar] [CrossRef]
- Gorenstein, D.G.; He, W.; Volk, D.; Elizondo-Riojas, M.A.; Durland, R.H.; Englehardt, J. Methods of X-aptamer Generation and Compositions Thereof. U.S. Patent US20070117099A1, 5 June 2018. [Google Scholar]
- Davies, D.R.; Gelinas, A.D.; Zhang, C.; Rohloff, J.C.; Carter, J.D.; O’Connell, D.; Waugh, S.M.; Wolk, S.K.; Mayfield, W.S.; Burgin, A.B.; et al. Unique motifs and hydrophobic interactions shape the binding of modified DNA ligands to protein targets. Proc. Natl. Acad. Sci. USA 2012, 109, 19971–19976. [Google Scholar] [CrossRef]
- Chen, Z.; Luo, H.; Gubu, A.; Yu, S.; Zhang, H.; Dai, H.; Zhang, Y.; Zhang, B.; Ma, Y.; Lu, A.; et al. Chemically modified aptamers for improving binding affinity to the target proteins via enhanced non-covalent bonding. Front. Cell Dev. Biol. 2023, 11, 1091809. [Google Scholar] [CrossRef]
- Yang, X.; Bassett, S.E.; Li, X.; Luxon, B.A.; Herzog, N.K.; Shope, R.E.; Aronson, J.; Prow, T.W.; Leary, J.F.; Kirby, R.; et al. Construction and selection of bead-bound combinatorial oligonucleoside phosphorothioate and phosphorodithioate aptamer libraries designed for rapid PCR-based sequencing. Nucleic Acids Res. 2002, 30, e132. [Google Scholar] [CrossRef]
- Yang, X.; Li, X.; Prow, T.W.; Reece, L.M.; Bassett, S.E.; Luxon, B.A.; Herzog, N.K.; Aronson, J.; Shope, R.E.; Leary, J.F.; et al. Immunofluorescence assay and flow-cytometry selection of bead-bound aptamers. Nucleic Acids Res. 2003, 31, e54. [Google Scholar] [CrossRef]
- Lokesh, G.L.; Wang, H.; Lam, C.H.; Thiviyanathan, V.; Ward, N.; Gorenstein, D.G.; Volk, D.E. X-Aptamer Selection and Validation. Methods Mol. Biol. 2017, 1632, 151–174. [Google Scholar] [CrossRef] [PubMed]
- Banerji, S.; Day, A.J.; Kahmann, J.D.; Jackson, D.G. Characterization of a functional hyaluronan-binding domain from the human CD44 molecule expressed in Escherichia coli. Protein Expr. Purif. 1998, 14, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Englehardt, J.; Gorenstein, D.G.; Luxon, B.A.; Herzog, N.K. Process and Apparatus for Combinatorial Synthesis. U.S. Patent US7576037B2, 18 August 2009. [Google Scholar]
- Lang, P.T.; Brozell, S.R.; Mukherjee, S.; Pettersen, E.F.; Meng, E.C.; Thomas, V.; Rizzo, R.C.; Case, D.A.; James, T.L.; Kuntz, I.D. DOCK 6: Combining techniques to model RNA-small molecule complexes. RNA 2009, 15, 1219–1230. [Google Scholar] [CrossRef]
- Abràmoff, M.D.; Magalhães, P.J.; Ram, S.J. Image processing with ImageJ. Biophotonics Int. 2004, 11, 36–42. [Google Scholar]
- Murray, M.T.; Wetmore, S.D. Unlocking precision in aptamer engineering: A case study of the thrombin binding aptamer illustrates why modification size, quantity, and position matter. Nucleic Acids Res. 2024, 52, 10823–10835. [Google Scholar] [CrossRef]
- Cai, S.; Yan, J.; Xiong, H.; Liu, Y.; Peng, D.; Liu, Z. Investigations on the interface of nucleic acid aptamers and binding targets. Analyst 2018, 143, 5317–5338. [Google Scholar] [CrossRef] [PubMed]
Name | Sequences of XAs |
---|---|
XA1 | TTAA-GATC-XGX-TAG-GGA-ACC-AAG-ACG-AC-AG |
XA2 | TGCA-GATC-TGC-AAG-GGA-ACC-AAG-GAC-AC-TAC |
XA4 | TTGG-GGCC-TGC-AAG-ACG-XCC-ATA-GAC-AC-AG |
XA5 | TGCA-GAXA-CAG-TAA-ACG-XCC-ATA-GAC-AC-AG |
XA9 | TTAA-GATC-TGC-AAX-GTA-ACC-ATA-GAC-AC-AG |
Name | XA KD (nM) | Motif KD (nM) | ||
---|---|---|---|---|
NH2 XA | ADDA Modified XA | NH2 Motif | ADDA Modified Motif | |
XA1/Motif 2 | 55.5 ± 13.4 | 78.3 ± 18.1 | 48.0 ± 18.0 | 15.5 ± 3.2 |
XA2/Motif 1 | 62.9 ± 10.3 | 108.7 ± 15.4 | 15.0 ± 2.0 | |
XA4/Motif 3 | 137.4 ± 37.5 | 102.7 ± 16.8 | 81.2 ± 30.9 | 64.8 ± 13.7 |
XA5/Motif 5 | 137.4 ± 37.4 | 124.8 ± 38.4 | 18.0 ± 3.7 | 10.1 ± 2.6 |
XA9/Motif 4 | 110.9 ± 18.5 | 77.6 ± 19.7 | 35.4 ± 7.4 | 13.6 ± 3.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; He, W.; Elizondo-Riojas, M.-A.; Zhou, X.; Lee, T.J.; Gorenstein, D.G. Development and Characterization of CD44-Targeted X-Aptamers with Enhanced Binding Affinity for Cancer Therapeutics. Bioengineering 2025, 12, 113. https://doi.org/10.3390/bioengineering12020113
Wang H, He W, Elizondo-Riojas M-A, Zhou X, Lee TJ, Gorenstein DG. Development and Characterization of CD44-Targeted X-Aptamers with Enhanced Binding Affinity for Cancer Therapeutics. Bioengineering. 2025; 12(2):113. https://doi.org/10.3390/bioengineering12020113
Chicago/Turabian StyleWang, Hongyu, Weiguo He, Miguel-Angel Elizondo-Riojas, Xiaobo Zhou, Tae Jin Lee, and David G. Gorenstein. 2025. "Development and Characterization of CD44-Targeted X-Aptamers with Enhanced Binding Affinity for Cancer Therapeutics" Bioengineering 12, no. 2: 113. https://doi.org/10.3390/bioengineering12020113
APA StyleWang, H., He, W., Elizondo-Riojas, M.-A., Zhou, X., Lee, T. J., & Gorenstein, D. G. (2025). Development and Characterization of CD44-Targeted X-Aptamers with Enhanced Binding Affinity for Cancer Therapeutics. Bioengineering, 12(2), 113. https://doi.org/10.3390/bioengineering12020113