Echogenic Advantages of Ferrogels Filled with Magnetic Sub-Microparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Ferrogels
2.2. Ferrogel Echogenicity Measurements
2.3. Measurement of Ferrogel Viscoelasticity
3. Results
3.1. Characterization of Ferrogels
3.2. Effect of MPs Concentration on FGs Viscoelastic Properties
3.3. Effect of MPs Concentration on FGs Echogenicity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Barrera, G.; Coisson, M.; Celegato, F.; Martino, L.; Tiwari, P.; Verma, R.; Kane, S.N.; Mazaleyrat, F.; Tiberto, P. Specific loss power of Co/Li/Zn-mixed ferrite powders for magnetic hyperthermia. Sensors 2020, 20, 2151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zverev, V.; Pyatakov, A.; Shtil, A.; Tishin, A. Novel applications of magnetic materials and technologies for medicine. J. Magn. Magn. Mater. 2018, 459, 182–186. [Google Scholar] [CrossRef]
- Sangaiya, P.; Jayaprakash, R. A review on iron oxide nanoparticles and their biomedical applications. J. Supercond. Nov. Magn. 2018, 31, 3397–3413. [Google Scholar] [CrossRef]
- Kouhpanji, M.R.Z.; Stadler, B.J.H. A guideline for effectively synthesizing and characterizing magnetic nanoparticles for advancing nanobiotechnology: A review. Sensors 2020, 20, 2554. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekharan, P.; Tay, Z.W.; Hensley, D.; Zhou, X.Y.; Fung, B.K.; Colson, C.; Lu, Y.; Fellows, B.D.; Huynh, Q.; Saayujya, C.; et al. Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: Tracers, hardware, and future medical applications. Theranostics 2020, 10, 2965–2981. [Google Scholar] [CrossRef]
- Anik, M.I.; Hossain, M.K.; Hossain, I.; Mahfuz, A.M.; Rahman, M.T.; Ahmed, I. Recent progress of magnetic nanoparticles in biomedical applications: A review. Nano Sel. 2021, 2, 1146–1186. [Google Scholar] [CrossRef]
- Filipcsei, G.; Csetneki, I.; Szilágyi, A.; Zrínyi, M. Magnetic field-responsive smart polymer composites. In Oligomers—Polymer Composites Molecular Imprinting; Springer: Berlin/Heidelberg, Germany, 2007; pp. 137–189. [Google Scholar] [CrossRef]
- Bayaniahangar, R.; Ahangar, S.B.; Zhang, Z.; Lee, B.P.; Pearce, J.M. 3-D printed soft magnetic helical coil actuators of iron oxide embedded polydimethylsiloxane. Sens. Actuators B Chem. 2021, 326, 128781. [Google Scholar] [CrossRef]
- Kumar, A.C.; Erothu, H. Synthetic polymer hydrogels. In Biomedical Applications of Polymeric Materials and Composites; Francis, R., Kumar, D.S., Eds.; Wiley-VCH: Weinheim, Germany, 2017; pp. 141–162. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Khademhosseini, A. Advances in engineering hydrogels. Science 2017, 356, eaaf3627. [Google Scholar] [CrossRef]
- Weeber, R.; Hermes, M.; Schmidt, A.M.; Holm, C. Polymer architecture of magnetic gels: A review. J. Physics Condens. Matter 2018, 30, 063002. [Google Scholar] [CrossRef]
- Adedoyin, A.A.; Ekenseair, A.K. Biomedical applications of magneto-responsive scaffolds. Nano Res. 2018, 11, 5049–5064. [Google Scholar] [CrossRef]
- Sung, B.; Kim, M.; Abelmann, L. Magnetic microgels and nanogels: Physical mechanisms and biomedical applications. Bioeng. Transl. Med. 2021, 6, 10190. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, S. A review on hydrogels and ferrogels for biomedical applications. JOM 2021, 73, 1–12. [Google Scholar] [CrossRef]
- Li, Y.; Huang, G.; Zhang, X.; Li, B.; Chen, Y.; Lu, T.; Lu, T.; Xu, F. Magnetic hydrogels and their potential biomedical appli-cations. Adv. Funct. Mater. 2013, 23, 660–672. [Google Scholar] [CrossRef]
- Cezar, C.A.; Roche, E.T.; Vandenburgh, H.H.; Duda, G.N.; Walsh, C.J.; Mooney, D.J. Biologic-free mechanically induced muscle regeneration. Proc. Natl. Acad. Sci. USA 2016, 113, 1534–1539. [Google Scholar] [CrossRef] [Green Version]
- Blyakhman, F.A.; Safronov, A.P.; Zubarev, A.Y.; Shklyar, T.F.; Makeyev, O.G.; Makarova, E.B.; Melekhin, V.V.; Larrañaga, A.; Kurlyandskaya, G.V. Polyacrylamide ferrogels with embedded maghemite nanoparticles for biomedical engineering. Results Phys. 2017, 7, 3624–3633. [Google Scholar] [CrossRef]
- Kennedy, S.; Roco, C.; Délérisa, A.; Spoerri, P.; Cezar, C.; Weaver, J.; Vandenburgh, H.; Mooney, D. Improved magnetic reg-ulation of delivery profiles from ferrogels. Biomaterials 2018, 161, 179–189. [Google Scholar] [CrossRef]
- Safronov, A.P.; Mikhnevich, E.A.; Lotfollahi, Z.; Blyakhman, F.A.; Sklyar, T.F.; Varga, A.L.; Medvedev, A.I.; Armas, S.F.; Kurlyandskaya, G.V. Polyacrylamide ferrogels with magnetite or strontium hexaferrite: Next step in the development of soft biomimetic matter for biosensor applications. Sensors 2018, 18, 257. [Google Scholar] [CrossRef] [Green Version]
- Kurlyandskaya, G.V.; Blyakhman, F.A.; Makarova, E.B.; Buznikov, N.A.; Safronov, A.P.; Fadeyev, F.A.; Shcherbinin, S.V.; Chlenova, A.A. Functional magnetic ferrogels: From biosensors to regenerative medicine. AIP Adv. 2020, 10, 125128. [Google Scholar] [CrossRef]
- Hernández, R.; Sacristán, J.; Asin, L.; Torres, T.E.; Ibarra, M.R.; Goya, G.; Mijangos, C. Magnetic hydrogels derived from polysaccharides with improved specific power absorption: Potential devices for remotely triggered drug delivery. J. Phys. Chem. B 2010, 114, 12002–12007. [Google Scholar] [CrossRef] [Green Version]
- Blyakhman, F.A.; Makarova, E.B.; Fadeyev, F.A.; Lugovets, D.V.; Safronov, A.P.; Shabadrov, P.A.; Shklyar, T.F.; Melnikov, G.Y.; Orue, I.; Kurlyandskaya, G.V. The contribution of magnetic nanoparticles to ferrogel biophysical properties. Nanomaterials 2019, 9, 232. [Google Scholar] [CrossRef] [Green Version]
- Blyakhman, F.A.; Makarova, E.B.; Shabadrov, P.A.; Fadeyev, F.A.; Shklyar, T.F.; Safronov, A.P.; Komogortsev, S.V.; Kurlyandskaya, G.V. Magnetic nanoparticles as a strong contributor to the biocompatibility of ferrogels. Phys. Met. Metallogr. 2020, 121, 299–304. [Google Scholar] [CrossRef]
- Lopez-Lopez, M.T.; Scionti, G.; Oliveira, A.C.; Duran, J.D.G.; Campos, A.; Alaminos, M.; Rodriguez, I.A. Generation and characterization of novel magnetic field-responsive biomaterials. PLoS ONE 2015, 10, e0133878. [Google Scholar] [CrossRef] [Green Version]
- Weeber, R.; Kreissl, P.; Holm, C. Studying the field-controlled change of shape and elasticity of magnetic gels using particle-based simulations. Arch. Appl. Mech. 2019, 89, 3–16. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, Y.; Hu, W.; Soon, R.H.; Davidson, Z.S.; Sitti, M. Liquid crystal elastomer-based magnetic composite films for reconfigurable shape-morphing soft miniature machines. Adv. Mater. 2021, 33, 2006191. [Google Scholar] [CrossRef]
- Emi, T.T.; Barnes, T.; Orton, E.; Reisch, A.; Tolouei, A.E.; Madani, S.Z.M.; Kennedy, S.M. Pulsatile chemotherapeutic delivery profiles using magnetically responsive hydrogels. ACS Biomater. Sci. Eng. 2018, 4, 2412–2423. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Kim, H.; Park, H.; Lee, K.Y. Controlling the porous structure of alginate ferrogel for anticancer drug delivery under magnetic stimulation. Carbohydr. Polym. 2019, 223, 115045. [Google Scholar] [CrossRef] [PubMed]
- Blyakhman, F.A.; Melnikov, G.Y.; Makarova, E.B.; Fadeyev, F.A.; Sedneva-Lugovets, D.V.; Shabadrov, P.A.; Volchkov, S.O.; Mekhdieva, K.R.; Safronov, A.P.; Fernández Armas, S.; et al. Effects of constant magnetic field to the proliferation rate of human fibroblasts grown onto different substrates: Tissue culture polystyrene, polyacrylamide hydrogel and ferrogels γ-Fe2O3 magnetic nanoparticles. Nanomaterials 2020, 10, 1697. [Google Scholar] [CrossRef]
- Bonhome-Espinosa, A.B.; Campos, F.; Herrera, D.D.; Sánchez-López, J.D.; Schaub, S.; Durán, J.D.; Lopez-Lopez, M.T.; Carriel, V. In vitro characterization of a novel magnetic fibrin-agarose hydrogel for cartilage tissue engineering. J. Mech. Behav. Biomed. Mater. 2020, 104, 103619. [Google Scholar] [CrossRef] [PubMed]
- Kytömaa, H.K. Theory of sound propagation in suspensions: A guide to particle size and concentration characterization. Powder Technol. 1995, 82, 115–121. [Google Scholar] [CrossRef]
- McClements, D.; Coupland, J. Theory of droplet size distribution measurements in emulsions using ultrasonic spectroscopy. Colloids Surf. A Physicochem. Eng. Asp. 1996, 117, 161–170. [Google Scholar] [CrossRef]
- Cents, A.H.G.; Brilman, D.W.F.; Versteeg, G.F.; Wijnstra, P.J.; Regtien, P.P.L. Measuring bubble, drop and particle sizes in multiphase systems with ultrasound. AIChE J. 2004, 50, 2750–2762. [Google Scholar] [CrossRef] [Green Version]
- Józefczak, A.; Kaczmarek, K.; Kubovčíková, M.; Rozynek, Z.; Hornowski, T. The effect of magetic nanoparticles on the acoustic properties of tissue-mimicking agar-gel phantoms. J. Magn. Magn. Mater. 2016, 431, 172–175. [Google Scholar] [CrossRef]
- Kaczmarek, K.; Hornowski, T.; Dobosz, B.; Józefczak, A. Influence of magnetic nanoparticles on the focused ultrasound hyperthermia. Materials 2018, 11, 1607. [Google Scholar] [CrossRef] [Green Version]
- Varghese, T. Characterization of tissue microstructure scatterer distribution with spectral correlation. Ultrason. Imaging 1993, 15, 238–254. [Google Scholar] [CrossRef] [PubMed]
- Conversano, F.; Greco, A.; Casciaro, E.; Ragusa, A.; Lay-Ekuakille, A.; Casciaro, S. Harmonic ultrasound imaging of nanosized contrast agents for multimodal molecular diagnoses. IEEE Trans. Instrum. Meas. 2012, 61, 1848–1856. [Google Scholar] [CrossRef]
- Culjat, M.O.; Goldenberg, D.; Tewari, P.; Singh, R.S. A review of tissue substitutes for ultrasound imaging. Ultrasound Med. Biol. 2010, 36, 861–873. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, A.; Jiang, H.; Song, S.; Zhou, J.; Ziaie, B. A wireless chemical sensing scheme using ultrasonic imaging of silica-particle-embedded hydrogels (silicagel). Sens. Actuators B Chem. 2018, 259, 552–559. [Google Scholar] [CrossRef]
- Blyakhman, F.A.; Sokolov, S.Y.; Safronov, A.P.; Dinislamova, O.A.; Shklyar, T.F.; Zubarev, A.Y.; Kurlyandskaya, G.V. Ferrogels ultrasonography for biomedical applications. Sensors 2019, 19, 3959. [Google Scholar] [CrossRef] [Green Version]
- Brady, M.A.; Talvard, L.; Vella, A.; Ethier, C.R. Bio-inspired design of a magnetically active trilayered scaffold for cartilage tissue engineering. J. Tissue Eng. Regen. Med. 2017, 11, 1298–1302. [Google Scholar] [CrossRef] [Green Version]
- Vikingsson, L.; Vinals-Guitart, A.; Valera-Martínez, A.; Riera, J.; Vidaurre, A.; Ferrer, G.G.; Ribelles, J.L.G. Local deformation in a hydrogel induced by an external magnetic field. J. Mater. Sci. 2016, 51, 9979–9990. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.-Y.; Chan, T.-Y.; Wang, K.-S.; Tso, H.-M. Influence of magnetic nanoparticle arrangement in ferrogels for tunable bio-molecule diffusion. RSC Adv. 2015, 5, 90098–90102. [Google Scholar] [CrossRef]
- Goudu, S.R.; Yasa, I.C.; Hu, X.; Ceylan, H.; Hu, W.; Sitti, M. Biodegradable untethered magnetic hydrogel milli-grippers. Adv. Funct. Mater. 2020, 30, 2004975. [Google Scholar] [CrossRef]
- Soppirnath, K.S.; Aminabha, T.M. Water transport and drug release study from cross-linked polyacrylamide grafted guar gum hydrogel microspheres for the controlled release application. Eur. J. Pharm. Biopharm. 2002, 53, 87–98. [Google Scholar] [CrossRef]
- Yuan, N.; Xu, L.; Wang, H.; Fu, Y.; Zhang, Z.; Liu, L.; Wang, C.; Zhao, J.; Rong, J. Dual physically cross-linked double network hydrogels with high mechanical strength, fatigue resistance, notch-insensitivity, and self-healing properties. ACS Appl. Mater. Interfaces 2016, 8, 34034–34044. [Google Scholar] [CrossRef] [PubMed]
- Mundargi, R.C.; Patil, S.A.; Aminabhavi, T.M. Evaluation of acrylamide-grafted-xanthan gum copolymer matrix tablets for oral controlled delivery of antihypertensive drugs. Carbohydr. Polym. 2007, 69, 130–141. [Google Scholar] [CrossRef]
- Hernandez, R.; Sacristán, J.; Nogales, A.; Fernández, M.; Ezquerra, T.; Mijangos, C. Structure and viscoelastic properties of hybrid ferrogels with iron oxide nanoparticles synthesized in situ. Soft Matter 2010, 6, 3910–3917. [Google Scholar] [CrossRef] [Green Version]
- Darnell, M.; Sun, J.-Y.; Mehta, M.; Johnson, C.; Arany, P.; Suo, Z.; Mooney, D.J. Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels. Biomaterials 2013, 34, 8042–8048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobreikina, A.; Shklyar, T.; Safronov, A.; Blyakhman, F. Biomimetic gels with chemical and physical interpenetrating networks. Polym. Int. 2018, 67, 1330–1334. [Google Scholar] [CrossRef]
- Katsnelson, B.A.; Degtyareva, T.D.; Minigalieva, I.I.; Privalova, L.I.; Kuzmin, S.V.; Yeremenko, O.S.; Kireyeva, E.P.; Sutunkova, M.P.; Valamina, I.I.; Khodos, M.Y.; et al. Subchronic systemic toxicity and bioaccumulation of Fe3O4 nano- and microparticles following repeated intraperitoneal administration to rats. Int. J. Toxicol. 2011, 30, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, N.; Lee, J.-S.; Liman, R.A.D.; Ruallo, J.M.S.; Villaflores, O.B.; Ger, T.-R.; Hsiao, C.-D. Potential toxicity of iron oxide magnetic nanoparticles: A review. Molecules 2020, 25, 3159. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J.; Cui, X.; Wang, X.; Zhang, L.; Tang, P. Recent advances on magnetic sensitive hydrogels in tissue engineering. Front. Chem. 2020, 8, 124. [Google Scholar] [CrossRef] [PubMed]
- Azhari, H. Basics of Biomedical Ultrasound for Engineers; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Melnikov, G.Y.; Sosyan, D.A.; Melkozerov, D.I.; Blyakhman, F.A.; Kurlyandskaya, G.V. Designing of experiment for development of ferrogels-based targeted drug delivery systems. In Proceedings of the International Conference “Current Issues of Modern Medicine and Healthcare”, Ekaterinburg, Russia, 9–10 April 2020; pp. 177–182. [Google Scholar]
- Melnikov, G.; Lepalovskij, V.; Svalov, A.; Safronov, A.; Kurlyandskaya, G. Magnetoimpedance thin film sensor for detecting of stray fields of magnetic particles in blood vessel. Sensors 2021, 21, 3621. [Google Scholar] [CrossRef] [PubMed]
Weight Fraction MPs (%) | Brightness (Arbitrary Units) | ||||
---|---|---|---|---|---|
Gel/Water Boundary (Maximum) | Gel/Water Boundary (Average) | Gel Interior (Maximum) | Gel Interior (Average) | Gel Interior (Standard Deviation) | |
0.0 | 110 ± 10 | 100 ± 8 | 38 ± 4 | 33 ± 6 | 1.3 ± 0.1 |
0.6 | 126 ± 12 | 110 ± 10 | 69 ± 8 | 40 ± 4 | 7.2 ± 1.4 |
1.9 | 153 ± 12 | 129 ± 12 | 82 ± 9 | 53 ± 6 | 11.7 ± 1.9 |
4.3 | 164 ± 11 | 135 ± 12 | 93 ± 9 | 61 ± 6 | 12.3 ± 1.2 |
5.7 | 177 ± 16 | 137 ± 13 | 99 ± 9 | 65 ± 6 | 11.8 ± 0.9 |
8.2 | 185 ± 11 | 158 ± 12 | 100 ± 9 | 74 ± 5 | 14.1 ± 2.3 |
12.9 | 217 ± 10 | 167 ± 8 | 105 ± 7 | 75 ± 6 | 14.0 ± 1.2 |
22.3 | 265 ± 10 | 220 ± 12 | 103 ± 7 | 70 ± 5 | 16.0 ± 1.1 |
Weight Fraction MPs (%) | Brightness (Arbitrary Units) | ||||
---|---|---|---|---|---|
Gel/Water Boundary (Maximum) | Gel/Water Boundary (Average) | Gel Interior (Maximum) | Gel Interior (Average) | Gel Interior (Standard Deviation) | |
0.0 | 110 ± 12 | 188 ± 14 | 36 ± 6 | 33 ± 3 | 1.2 ± 0.1 |
0.1 | 130 ± 12 | 115 ± 12 | 65 ± 7 | 44 ± 5 | 9.0 ± 1.2 |
2.9 | 135 ± 13 | 105 ± 16 | 71 ± 6 | 47 ± 7 | 6.2 ± 0.5 |
4.6 | 160 ± 14 | 132 ± 12 | 76 ± 8 | 52 ± 4 | 10.1 ± 1.1 |
10.3 | 197 ± 14 | 156 ± 14 | 95 ± 8 | 66 ± 7 | 13.1 ± 0.9 |
16.0 | 215 ± 10 | 177 ± 16 | 96 ± 10 | 64 ± 6 | 13.1 ± 1.3 |
23.3 | 255 ± 13 | 215 ± 12 | 103 ± 6 | 74 ± 5 | 15.0 ± 1.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinislamova, O.A.; Bugayova, A.V.; Shklyar, T.F.; Safronov, A.P.; Blyakhman, F.A. Echogenic Advantages of Ferrogels Filled with Magnetic Sub-Microparticles. Bioengineering 2021, 8, 140. https://doi.org/10.3390/bioengineering8100140
Dinislamova OA, Bugayova AV, Shklyar TF, Safronov AP, Blyakhman FA. Echogenic Advantages of Ferrogels Filled with Magnetic Sub-Microparticles. Bioengineering. 2021; 8(10):140. https://doi.org/10.3390/bioengineering8100140
Chicago/Turabian StyleDinislamova, Olga A., Antonina V. Bugayova, Tatyana F. Shklyar, Alexander P. Safronov, and Felix A. Blyakhman. 2021. "Echogenic Advantages of Ferrogels Filled with Magnetic Sub-Microparticles" Bioengineering 8, no. 10: 140. https://doi.org/10.3390/bioengineering8100140
APA StyleDinislamova, O. A., Bugayova, A. V., Shklyar, T. F., Safronov, A. P., & Blyakhman, F. A. (2021). Echogenic Advantages of Ferrogels Filled with Magnetic Sub-Microparticles. Bioengineering, 8(10), 140. https://doi.org/10.3390/bioengineering8100140