Evaluation of Polycaprolactone Electrospun Nanofiber-Composites for Artificial Skin Based on Dermal Fibroblast Culture
Abstract
:1. Introduction
1.1. Dermal Equivalent Scaffold
1.2. PEGDA, Alginate and Collagen as Dermal Equivalent Scaffold Materials
1.3. Polycaprolactone (PCL) Electrospun Nanofiber Mesh (NFM) for Tissue Engineering
1.4. The Current Problem of Hydrogel Alone as a Dermal Equivalent and Its Solution
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.2.1. Electrospun Nanofiber Mat
2.2.2. PEGDA-PCL Scaffold
2.2.3. SA-PCL Scaffold
2.2.4. CG1-PCL Scaffold
2.3. Experiments and Analysis
2.3.1. SEM Examination
2.3.2. Cell Culture and Assays
2.3.3. Degradation Analysis
2.3.4. Rheological Evaluation
2.3.5. Statistical Analysis
3. Results
3.1. Scanning Electron Microscopy
3.2. Cytocompatibility Properties
3.3. Degradation Analysis
3.4. Rheological Characterization
4. Discussion
5. Conclusions
- PEDGA-PCL scaffold had good qualities regarding attachment of HDF cell to nanofibers. Physical characterization of PEGDA-PCL showed good absorption and degradation properties.
- SA-PCL had measurable physical and biological characteristics. Cell viability was exceptional where HDF cells satisfactorily differentiated inside the SA hydrogel.
- CG1-PCL had better biological and mechanical characteristics as a skin graft compared to PEGDA-PCL and SA-PCL.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, S.; Dipietro, L.A. Factors affecting wound healing. J. Dent. Res. 2010, 89, 219–229. [Google Scholar] [CrossRef]
- Sen, C.K. Human Wounds and Its Burden: An Updated Compendium of Estimates. Adv. Wound Care 2019, 8, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.-A.; Williams, C.; Yang, F.; Elisseeff, J. Enhancing the tissue-biomaterial interface: Tissue-initiated integration of biomaterials. Adv. Funct. Mater. 2004, 14, 1152–1159. [Google Scholar] [CrossRef]
- Khandaker, M.; Orock, A.; Tarantini, S.; White, J.; Yasar, O. Biomechanical Performances of Networked Polyethylene Glycol Diacrylate: Effect of Photoinitiator Concentration, Temperature, and Incubation Time. Int. J. Biomater. 2016, 2016, 3208312. [Google Scholar] [CrossRef] [Green Version]
- Progri, H.; Tummala, S.; Kotturi, H.; Williams, W.; Khandaker, M. In vivo evaluation of novel PEGDA-PCL scaffold for cartilage generation. In Proceedings of the 2019 Orthopadic Research Society Technical Meeting, Austin, TX, USA, 2–5 February 2019. [Google Scholar]
- Cole, M.A.; Quan, T.; Voorhees, J.J.; Fisher, G.J. Extracellular matrix regulation of fibroblast function: Redefining our perspective on skin aging. J. Cell Commun. Signal 2018, 12, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, F.; Tian, M.; Zhang, D.M.; Wang, J.Y.; Wang, Q.G.; Yu, X.X.; Zhang, X.H.; Wan, C.X. Preparation and characterization of oxidized alginate covalently cross-linked galactosylated chitosan scaffold for liver tissue engineering. Mater. Sci. Eng. C 2012, 32, 310–320. [Google Scholar] [CrossRef]
- Gleghorn, J.P.; Lee, C.S.; Cabodi, M.; Stroock, A.D. Adhesive properties of laminated alginate gels for tissue engineering of layered structures. J. Biomed. Mater. Res.—Part A 2008, 85, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Melrose, J.; Smith, S.; Ghosh, P.; Taylor, T.K. Differential Expression of Proteoglycan Epitopes and Growth Characteristics of Intervertebral Disc Cells Grown in Alginate Bead Culture. Cells Tissues Organs 2001, 168, 137–146. [Google Scholar] [CrossRef]
- Lee, C.S.; Gleghorn, J.P.; Won Choi, N.; Cabodi, M.; Stroock, A.D. Integration of layered chondrocyte-seeded alginate hydrogel scaffolds. Biomaterials 2007, 28, 2987–2993. [Google Scholar] [CrossRef] [PubMed]
- Drury, J.L.; Dennis, R.G.; Mooney, D.J. The tensile properties of alginate hydrogels. Biomaterials 2004, 25, 3187–3199. [Google Scholar] [CrossRef]
- Ramaswamy, S.; Wang, D.A.; Fishbein, K.W.; Elisseeff, J.H.; Spencer, R.G. An analysis of the integration between articular cartilage and nondegradable hydrogel using magnetic resonance imaging. J. Biomed. Mater. Res. Part B-Appl. Biomater. 2006, 77, 144–148. [Google Scholar] [CrossRef]
- Lodish, H.; Berk, A.; Zipursky, S.L.; Matsudaira, P.; Baltimore, D.; Darnell, J. Collagen: The Fibrous Proteins of the Matrix. In Molecular Cell Biology; Freeman, W.H., Ed.; Freeman & Co.: New York, NY, USA, 2000. [Google Scholar]
- Albu, M.G.; Titorencu, I.; Ghica, M.V. Collagen-Based Drug Delivery Systems for Tissue Engineering, Biomaterials. In Applications for Nanomedicine; Pignatello, R., Ed.; IntechOpen: Vienna, Austria, 2011. [Google Scholar]
- Kanungo, I.; Fathima, N.N.; Rao, J.R.; Nair, B.U. Influence of PCL on the material properties of collagen based biocomposites and in vitro evaluation of drug release. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 4651–4659. [Google Scholar] [CrossRef] [PubMed]
- Scaffaro, R.; Maio, A.; Lopresti, F.; Botta, L. Nanocarbons in Electrospun Polymeric Nanomats for Tissue Engineering: A Review. Polymers 2017, 9, 76. [Google Scholar] [CrossRef] [PubMed]
- Scaffaro, R.; Lopresti, F. Properties-morphology relationships in electrospun mats based on polylactic acid and graphene nanoplatelets. Compos. Part A Appl. Sci. Manuf. 2018, 108, 23–29. [Google Scholar] [CrossRef]
- Scaffaro, R.; Lopresti, F.; Botta, L. Preparation, characterization and hydrolytic degradation of PLA/PCL co-mingled nanofibrous mats prepared via dual-jet electrospinning. Eur. Polym. J. 2017, 96, 266–277. [Google Scholar] [CrossRef]
- Scaffaro, R.; Lopresti, F.; Maio, A.; Botta, L.; Rigogliuso, S.; Ghersi, G. Electrospun PCL/GO-g-PEG structures: Processing-morphology-properties relationships. Compos. Part A Appl. Sci. Manuf. 2017, 92, 97–107. [Google Scholar] [CrossRef]
- Scaffaro, R.; Lopresti, F.; D’Arrigo, M.; Marino, A.; Nostro, A. Efficacy of poly(lactic acid)/carvacrol electrospun membranes against Staphylococcus aureus and Candida albicans in single and mixed cultures. Appl. Microbiol. Biotechnol. 2018, 102, 4171–4181. [Google Scholar] [CrossRef] [PubMed]
- Khandaker, M.; Riahinezhad, S.; Jamadagni, H.G.; Morris, T.L.; Coles, A.V.; Vaughan, M.B. Use of Polycaprolactone Electrospun Nanofibers as a Coating for Poly (methyl methacrylate) Bone Cement. Nanomaterials 2017, 7, 175. [Google Scholar] [CrossRef] [Green Version]
- Khandaker, M.; Riahinezhad, S. Process and Apparatus to Create 3D Tissue Scaffold Using Electrospun Nanofiber Matrix and Photosensitive Hydrogel, USA. 2016. Available online: https://patents.google.com/patent/WO2017147183A1/en (accessed on 15 October 2021).
- Nazarnezhad, S.; Baino, F.; Kim, H.W.; Webster, T.J.; Kargozar, S. Electrospun Nanofibers for Improved Angiogenesis: Promises for Tissue Engineering Applications. Nanomaterials 2020, 10, 1609. [Google Scholar] [CrossRef]
- Bazzolo, B.; Sieni, E.; Zamuner, A.; Roso, M.; Russo, T.; Gloria, A.; Dettin, M.; Conconi, M.T. Breast Cancer Cell Cultures on Electrospun Poly(ε-Caprolactone) as a Potential Tool for Preclinical Studies on Anticancer Treatments. Bioengineering 2021, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Abebayehu, D.; Spence, A.J.; McClure, M.J.; Haque, T.T.; Rivera, K.O.; Ryan, J.J. Polymer scaffold architecture is a key determinant in mast cell inflammatory and angiogenic responses. J. Biomed. Mater. Res. Part A 2019, 107, 884–892. [Google Scholar] [CrossRef]
- Dettin, M.; Zamuner, A.; Roso, M.; Gloria, A.; Iucci, G.; Messina, G.M.; D’Amora, U.; Marletta, G.; Modesti, M.; Castagliuolo, I.; et al. Electrospun Scaffolds for Osteoblast Cells: Peptide-Induced Concentration-Dependent Improvements of Polycaprolactone. PLoS ONE 2015, 10, e0137505. [Google Scholar]
- Bosworth, L.A.; Turner, L.-A.; Cartmell, S.H. State of the art composites comprising electrospun fibres coupled with hydrogels: A review. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 322–335. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, J.; Huang, L.; Wang, Z.; Wang, L. Design and performance of a sericin-alginate interpenetrating network hydrogel for cell and drug delivery. Sci. Rep. 2015, 5, 12374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaughan, M.B.; Ramirez, R.D.; Andrews, C.M.; Wright, W.E.; Shay, J.W. H-Ras Expression in Immortalized Keratinocytes Produces an Invasive Epithelium in Cultured Skin Equivalents. PLoS ONE 2009, 4, e7908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaughan, M.B.; Ramirez, R.D.; Brown, S.A.; Yang, J.C.; Wright, W.E.; Shay, J.W. A reproducible laser-wounded skin equivalent model to study the effects of aging in vitro. Rejuvenation Res. 2004, 7, 99–110. [Google Scholar] [CrossRef]
- Vaughan, M.B.; Odejimi, T.D.; Morris, T.L.; Sawalha, D.; Spencer, C.L. A new bioassay identifies proliferation ratios of fibroblasts and myofibroblasts. Cell Biol. Int. 2014, 38, 981–986. [Google Scholar] [CrossRef]
- Khandaker, M.; Riahinezhad, S.; Sultana, F.; Vaughan, M.B.; Knight, J.; Morris, T.L. Peen treatment on a titanium implant: Effect of roughness, osteoblast cell functions, and bonding with bone cement. Int. J. Nanomed. 2016, 11, 585–594. [Google Scholar] [CrossRef] [Green Version]
- Dugina, V.; Fontao, L.; Chaponnier, C.; Vasiliev, J.; Gabbiani, G. Focal adhesion features during myofibroblastic differentiation are controlled by intracellular and extracellular factors. J. Cell Sci. 2001, 114 Pt 18, 3285–3296. [Google Scholar] [CrossRef]
- Vaughan, M.B.; Howard, E.W.; Tomasek, J.J. Transforming Growth Factor-β1 Promotes the Morphological and Functional Differentiation of the Myofibroblast. Exp. Cell Res. 2000, 257, 180–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotturi, H.; Abuabed, A.; Zafar, H.; Sawyer, E.; Pallipparambil, B.; Jamadagni, H.; Khandaker, M. Evaluation of Polyethylene Glycol Diacrylate-Polycaprolactone Scaffolds for Tissue Engineering Applications. J. Funct. Biomater. 2017, 8, 39. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo, R.; Garcia-Giralt, N.; Rodriguez, M.T.; Cáceres, E.; García, S.J.; Gómez Ribelles, J.L.; Monleón, M.; Monllau, J.C.; Suay, J. Biodegradable PCL scaffolds with an interconnected spherical pore network for tissue engineering. J. Biomed. Mater. Res. Part A 2008, 85A, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-Y.; Park, E.-K.; Kim, S.-Y.; Shin, J.-W.; Cho, D.-W. Fabrication of a SFF-based three-dimensional scaffold using a precision deposition system in tissue engineering. J. Micromech. Microeng. 2008, 18, 055027. [Google Scholar] [CrossRef]
- Zein, I.; Hutmacher, D.W.; Tan, K.C.; Teoh, S.H. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 2002, 23, 1169–1185. [Google Scholar] [CrossRef]
- Khandaker, M.; Vaughan, M.; Starly, B. The Influence of MgO Nanoparticles on the Osseointegration of Polycaprolactone-Sodium Alginate Hydrogel Interfaces. Curr. J. Appl. Sci. Technol. 2013, 4, 79. [Google Scholar] [CrossRef]
- O’Brien, F.J.; Harley, B.A.; Yannas, I.V.; Gibson, L.J. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 2005, 26, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Petrigliano, F.A.; Arom, G.A.; Nazemi, A.N.; Yeranosian, M.G.; Wu, B.M.; McAllister, D. In vivo evaluation of electrospun polycaprolactone graft for anterior cruciate ligament engineering. Tissue Eng. Part A 2015, 21, 1228–1236. [Google Scholar] [CrossRef] [Green Version]
- Stocks, D.; Sundaram, H.; Michaels, J.; Durrani, M.J.; Wortzman, M.S.; Nelson, D.B. Rheological evaluation of the physical properties of hyaluronic acid dermal fillers. J. Drugs Dermatol. 2011, 10, 974–980. [Google Scholar] [PubMed]
- Gentile, P.; McColgan-Bannon, K.; Gianone, N.C.; Sefat, F.; Dalgarno, K.; Ferreira, A.M. Biosynthetic PCL-graft-Collagen Bulk Material for Tissue Engineering Applications. Materials 2017, 10, 693. [Google Scholar] [CrossRef] [Green Version]
- Sultana, F.; Vaughan, M.; Khandaker, M. Effect of Fiber Architecture on the Cell Functions of Electrospun Fiber Membranes. In Mechanics of Biological Systems and Materials, Volume 6: Proceedings of the 2016 Annual Conference on Experimental and Applied Mechanics; Korach, C., Tekalur, S., Zavattieri, P., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 157–160. [Google Scholar]
- Augustine, R.; Kalarikkal, N.; Thomas, S. Advancement of wound care from grafts to bioengineered smart skin substitutes. Prog. Biomater. 2014, 3, 103–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khandaker, M.; Progri, H.; Arasu, D.T.; Nikfarjam, S.; Shamim, N. Use of Polycaprolactone Electrospun Nanofiber Mesh in a Face Mask. Materials 2021, 14, 4272. [Google Scholar] [CrossRef] [PubMed]
Experimental Parameters | PEGDA-PCL | SA-PCL | CG1-PCL |
---|---|---|---|
Viscous modulus G″ (kPa) | 0.53 ± 0.18 | 6.58 ± 3.41 | 0.002 ± 0.001 |
Elastic modulus, G′ (kPa) | 5.34 ± 0.23 | 14.82± 1.92 | 0.12 ± 0.01 |
Phase shift angle, δ (degree) | 5.68 ± 0.22 | 16.85± 6.29 | 1.14 ± 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khandaker, M.; Nomhwange, H.; Progri, H.; Nikfarjam, S.; Vaughan, M.B. Evaluation of Polycaprolactone Electrospun Nanofiber-Composites for Artificial Skin Based on Dermal Fibroblast Culture. Bioengineering 2022, 9, 19. https://doi.org/10.3390/bioengineering9010019
Khandaker M, Nomhwange H, Progri H, Nikfarjam S, Vaughan MB. Evaluation of Polycaprolactone Electrospun Nanofiber-Composites for Artificial Skin Based on Dermal Fibroblast Culture. Bioengineering. 2022; 9(1):19. https://doi.org/10.3390/bioengineering9010019
Chicago/Turabian StyleKhandaker, Morshed, Hembafan Nomhwange, Helga Progri, Sadegh Nikfarjam, and Melville B. Vaughan. 2022. "Evaluation of Polycaprolactone Electrospun Nanofiber-Composites for Artificial Skin Based on Dermal Fibroblast Culture" Bioengineering 9, no. 1: 19. https://doi.org/10.3390/bioengineering9010019
APA StyleKhandaker, M., Nomhwange, H., Progri, H., Nikfarjam, S., & Vaughan, M. B. (2022). Evaluation of Polycaprolactone Electrospun Nanofiber-Composites for Artificial Skin Based on Dermal Fibroblast Culture. Bioengineering, 9(1), 19. https://doi.org/10.3390/bioengineering9010019