Enhancing Bioenergy Production from the Raw and Defatted Microalgal Biomass Using Wastewater as the Cultivation Medium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Algal Strain and Culture Conditions
2.2. Lipid Extraction and Fatty Acid Analysis
2.3. Elemental Analysis, Thermogravimetric Analysis (TGA), and Pyrolysis of Algal Residues
2.4. Life Cycle Assessment (LCA)
2.4.1. LCA Goals and System Boundaries
2.4.2. Selected Parameters to Describe the Environmental Impacts
2.4.3. LCA Stages
2.4.4. LCA Model
2.5. Plotting and Statistical Analysis
3. Results and Discussion
3.1. Microalgal Growth, Lipid Accumulation and Fatty Acid Composition
3.2. Properties and Thermogravimetric Analysis of Microalgal Residues
3.3. Valuable and Toxic Pyrolysis Products of Algal Residues
3.3.1. Valuable Compounds
3.3.2. Toxic Compounds
3.4. Life Cycle Assessment of Microalgal Residues Pyrolysis
3.5. Future Perspectives
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
No. | Chemicals | Concentration (g/L) |
---|---|---|
1 | NaNO3 | 1.5 |
2 | K2HPO4 | 3 × 10−2 |
3 | MgSO4·7H2O | 7.5 × 10−2 |
4 | CaCl2·2H2O | 36 × 10−2 |
5 | Iron Citrate | 6 × 10−3 |
6 | Ammonium Citrate | 6 × 10−3 |
7 | EDTA | 1 × 10−3 |
8 | Na2CO3 | 6 × 10−3 |
9 | H3BO3 | 2.86 × 10−3 |
MnCl2·4H2O | 1.81 × 10−3 | |
ZnSO4·7H2O | 2.22 × 10−4 | |
NaMoO4·5H2O | 3.9 × 10−4 | |
CuSO4·5H2O | 7.9 × 10−5 | |
Co(NO2)2·6H2O | 4.94 × 10−4 |
Appendix B
Components | Concentration (mg/L) |
---|---|
NH4+-N | 42.8 |
PO43− | 2.09 |
TN | 50.92 |
TP | 2.31 |
Appendix C
Fatty Acids Sort | Fatty Acids | Fatty Acids Form | BG11 | AW | MAW | |||
---|---|---|---|---|---|---|---|---|
mg/g | % | mg/g | % | mg/g | % | |||
SFA | Tannic acid | C10:0 | 0.576 ± 0.007 | 0.35 | 0.599 ± 0.003 | 0.27 | 0.514 ± 0.001 | 0.36 |
Hendecanoic acid | C11:0 | 0.417 ± 0.003 | 0.25 | 0.272 ± 0.001 | 0.12 | 0.211 ± 0.001 | 0.15 | |
Dodecanoic acid | C12:0 | 3.809 ± 0.037 | 2.29 | 2.618 ± 0.004 | 1.20 | 1.518 ± 0.006 | 1.07 | |
Tridecanoic acid | C13:0 | 1.017 ± 0.025 | 0.61 | 0.177 ± 0.002 | 0.08 | 0.199 ± 0.001 | 0.14 | |
Myristic acid | C14:0 | 0.391 ± 0.006 | 0.24 | 0.249 ± 0.003 | 0.11 | 0.171 ± 0.003 | 0.12 | |
Pentadecanoic acid | C15:0 | 0.655 ± 0.006 | 0.39 | 5.514 ± 0.008 | 2.53 | 2.892 ± 0.015 | 2.04 | |
Hexadecanoic acid | C16:0 | 0.936 ± 0.010 | 0.56 | 0.976 ± 0.002 | 0.45 | 0.462 ± 0.003 | 0.33 | |
Heptadecanoic acid | C17:0 | 2.537 ± 0.033 | 1.53 | 4.897 ± 0.006 | 2.25 | 2.350 ± 0.011 | 1.66 | |
Octadecanic acid | C18:0 | 0.363 ± 0.007 | 0.22 | 0.939 ± 0.003 | 0.43 | 0.609 ± 0.002 | 0.43 | |
Henicosanoic acid | C21:0 | 1.879 ± 0.052 | 1.13 | 0.262 ± 0.004 | 0.12 | 0.237 ± 0.001 | 0.17 | |
MUFA | Tetradecenoic acid (cis-9) | C14:1 | 0.364 ± 0.004 | 0.22 | 0.437 ± 0.005 | 0.20 | 0.431 ± 0.003 | 0.30 |
Pentadecenoic acid | C15:1 | 0.561 ± 0.009 | 0.34 | 0.326 ± 0.002 | 0.15 | 0.968 ± 0.005 | 0.68 | |
Hexadecanoic acid | C16:1 | 0.428 ± 0.005 | 0.26 | 0.460 ± 0.003 | 0.21 | 1.440 ± 0.004 | 1.01 | |
Heptadecenoic acid (cis-10) | C17:1 | 0.716 ± 0.010 | 0.43 | 1.310 ± 0.110 | 0.60 | 0.618 ± 0.003 | 0.44 | |
Octadecenoic acid (cis-9) | C18:1n9c | 1.518 ± 0.024 | 0.91 | 1.799 ± 0.006 | 0.83 | 1.302 ± 0.006 | 0.92 | |
Eicosenoic acid | C20:1 | 11.501 ± 0.124 | 6.93 | 25.597 ± 0.081 | 11.74 | 9.459 ± 0.052 | 6.66 | |
PUFA | Octadecadienoic acid (cis-9,12) | C18:2n6t | 14.219 ± 0.326 | 8.57 | 13.026 ± 0.066 | 5.98 | 11.550 ± 0.043 | 8.13 |
Octadecadienoic acid (anti-9,12) | C18:2n6c | 1.213 ± 0.015 | 0.73 | 0.219 ± 0.001 | 0.10 | 2.168 ± 0.011 | 1.53 | |
Octadecatrienoic acid (cis-9,12,15) | C18:3n6 | 1.100 ± 0.020 | 0.66 | 0.239 ± 0.001 | 0.11 | 0.157 ± 0.001 | 0.11 | |
Linoleic acid | C18:3n3 | 0.944 ± 0.031 | 0.57 | 12.457 ± 0.041 | 5.71 | 2.126 ± 0.357 | 1.50 | |
Eicosadienoic acid (cis-11,14) | C20:2 | 0.211 ± 0.003 | 0.13 | 0.689 ± 0.002 | 0.32 | 0.210 ± 0.001 | 0.15 | |
Eicosatrienoic acid (cis-8,11,14) | C20:3n6 | 0.266 ± 0.006 | 0.16 | 0.262 ± 0.002 | 0.12 | 0.242 ± 0.002 | 0.17 | |
Arachidonic acid (cis-5,8,11,14) | C20:4n6 | 0.290 ± 0.001 | 0.17 | 0.502 ± 0.003 | 0.23 | 0.126 ± 0.001 | 0.09 | |
Docosadienoic acid (cis-13,16) | C20:2 | 0.876 ± 0.022 | 0.53 | 0.918 ± 0.036 | 0.42 | 0.442 ± 0.010 | 0.31 |
Appendix D
Medium | Pyrolysis Products | Temperature | ||||
---|---|---|---|---|---|---|
(%) | 350 °C | 450 °C | 550 °C | 650 °C | 750 °C | |
BG11 | Aliphatics | 0.13 | 2.61 | 8.25 | 11.51 | 6.29 |
Aromatics | 0.00 | 3.11 | 7.54 | 13.03 | 27.16 | |
Fatty acids | 6.76 | 5.30 | 3.18 | 0.15 | 0.27 | |
Phenols | 0.34 | 1.76 | 3.20 | 5.47 | 4.36 | |
Nitrogen-containing compounds | 4.50 | 6.06 | 7.35 | 16.10 | 26.60 | |
PAHs | 0.00 | 0.00 | 0.00 | 0.23 | 2.15 | |
AW | Aliphatics | 0.76 | 6.32 | 3.10 | 7.03 | 5.16 |
Aromatics | 1.17 | 0.90 | 11.66 | 11.89 | 24.54 | |
Fatty acids | 0.48 | 1.26 | 0.00 | 0.00 | 0.00 | |
Phenols | 0.34 | 0.00 | 4.05 | 3.66 | 6.35 | |
Nitrogen-containing compounds | 6.52 | 3.43 | 14.14 | 13.46 | 24.33 | |
PAHs | 0.00 | 0.00 | 0.00 | 0.00 | 2.97 | |
MAW | Aliphatics | 0.55 | 4.45 | 5.50 | 11.13 | 2.25 |
Aromatics | 0.19 | 4.03 | 8.16 | 24.46 | 32.07 | |
Fatty acids | 0.00 | 0.13 | 0.18 | 0.00 | 0.00 | |
Phenols | 0.00 | 2.06 | 3.75 | 3.88 | 5.08 | |
Nitrogen-containing compounds | 8.52 | 11.26 | 10.88 | 16.48 | 31.64 | |
PAHs | 0.00 | 0.00 | 0.00 | 0.00 | 3.10 |
References
- Azad, A.K.; Rasul, M.G.; Khan, M.M.K.; Sharma, S.C.; Bhuiya, M.M.K.; Mofijur, M. A review on socio-economic aspects of sustainable biofuels. Int. J. Glob. Warm. 2016, 10, 32–54. [Google Scholar] [CrossRef]
- Hasan, K.; Yousuf, S.B.; Tushar, M.S.H.K.; Das, B.K.; Das, P.; Islam, M.S. Effects of different environmental and operational factors on the PV performance: A comprehensive review. Energy Sci. Eng. 2022, 10, 656–675. [Google Scholar] [CrossRef]
- Moradian, J.M.; Fang, Z.; Yong, Y.C. Recent advances on biomass-fueled microbial fuel cell. Bioresour. Bioprocess. 2021, 8, 14. [Google Scholar] [CrossRef]
- Lokke, S.; Aramendia, E.; Malskaer, J. A review of public opinion on liquid biofuels in the EU: Current knowledge and future challenges. Biomass Bioenergy 2021, 150, 106094. [Google Scholar] [CrossRef]
- Chen, W.H.; Lin, B.J.; Huang, M.Y.; Chang, J.S. Thermochemical conversion of microalgal biomass into biofuels: A review. Bioresour. Technol. 2015, 184, 314–327. [Google Scholar] [CrossRef]
- Ji, F.; Liu, Y.; Hao, R.; Li, G.; Zhou, Y.G.; Dong, R.J. Biomass production and nutrients removal by a new microalgae strain Desmodesmus sp. in anaerobic digestion wastewater. Bioresour. Technol. 2014, 161, 200–207. [Google Scholar] [CrossRef]
- Ahmad, A.; Bhat, A.H.; Buang, A.; Shah, S.M.U.; Afzal, M. Biotechnological application of microalgae for integrated palm oil mill effluent (POME) remediation: A review. Int. J. Environ. Sci. Technol. 2019, 16, 1763–1788. [Google Scholar] [CrossRef]
- Valev, D.; Santos, H.S.; Tyystjarvi, E. Stable wastewater treatment with Neochloris oleoabundans in a tubular photobioreactor. J. Appl. Phycol. 2020, 32, 399–410. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Yoon, J.J.; Park, H.D.; Lim, D.J.; Kim, S.H. Anaerobic digestibility of algal bioethanol residue. Bioresour. Technol. 2012, 113, 78–82. [Google Scholar] [CrossRef]
- Shahid, A.; Ishfaq, M.; Ahmad, M.S.; Malik, S.; Farooq, M.; Hul, Z.; Batawi, A.H.; Shafi, M.E.; Aloqbi, A.A. Bioenergy potential of the residual microalgal biomass produced in city wastewater assessed through pyrolysis, kinetics and thermodynamics study to design algal biorefinery. Bioresour. Technol. 2019, 289, 121701. [Google Scholar] [CrossRef]
- Li, G.; Lu, Z.T.; Zhang, J.; Li, H.; Zhou, Y.G.; Zayan, A.M.I.; Huang, Z.G. Life cycle assessment of biofuel production from microalgae cultivated in anaerobic digested wastewater. Int. J. Agric. Biol. Eng. 2020, 13, 241–246. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.G.; Zhang, J.; Pan, M.M.; Hao, Y.H.; Hu, R.C.; Xiao, W.B.; Li, G.; Lyu, T. Valorisation of microalgae residues after lipid extraction: Pyrolysis characteristics for biofuel production. Biochem. Eng. J. 2022, 179, 108330. [Google Scholar] [CrossRef]
- Gong, Z.Q.; Fang, P.W.; Wang, Z.B.; Li, Q.; Li, X.Y.; Meng, F.Z.; Zhang, H.T.; Liu, L. Catalytic Pyrolysis of Chemical Extraction Residue from Microalgae Biomass. Renew. Energy 2020, 148, 712–719. [Google Scholar] [CrossRef]
- Guo, F.; Wang, X.; Yang, X.Y. Potential pyrolysis pathway assessment for microalgae-based aviation fuel based on energy conversion efficiency and life cycle. Energy Convers. Manag. 2017, 132, 272–280. [Google Scholar] [CrossRef]
- Khoo, H.H.; Sharratt, P.N.; Das, P.; Balasubramanian, R.K.; Naraharisetti, P.K.; Shaik, S. Life cycle energy and CO2 analysis of microalgae-to-biodiesel: Preliminary results and comparisons. Bioresour. Technol. 2011, 102, 5800–5807. [Google Scholar] [CrossRef]
- Collet, P.; Helias, A.; Lardon, L.; Steyer, J.P.; Bernard, O. Recommendations for Life Cycle Assessment of algal fuels. Appl. Energy 2015, 154, 1089–1102. [Google Scholar] [CrossRef]
- Chen, G.Y.; Zhao, L.; Qi, Y. Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: A critical review. Appl. Energy 2015, 137, 282–291. [Google Scholar] [CrossRef]
- Sharara, M.A.; Holeman, N.; Sadaka, S.S.; Costello, T.A. Pyrolysis kinetics of algal consortia grown using swine manure wastewater. Bioresour. Technol. 2014, 169, 658–666. [Google Scholar] [CrossRef]
- Li, G.; Zhang, J.; Li, H.; Hu, R.C.; Yao, X.L.; Liu, Y.; Zhou, Y.G.; Lyu, T. Towards high-quality biodiesel production from microalgae using original and anaerobically-digested livestock wastewater. Chemosphere 2021, 273, 128578. [Google Scholar] [CrossRef]
- Peccia, J.; Haznedaroglu, B.; Gutierrez, J.; Zimmerman, J.B. Nitrogen supply is an important driver of sustainable microalgae biofuel production. Trends Biotechnol. 2013, 31, 134–138. [Google Scholar] [CrossRef]
- Li, G.; Bai, X.; Li, H.; Lu, Z.T.; Zhou, Y.G.; Wang, Y.K.; Cao, J.X.; Huang, Z.G. Nutrients removal and biomass production from anaerobic digested effluent by microalgae: A review. Int. J. Agric. Biol. Eng. 2019, 12, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Abou-Shanab, R.A.I.; Ji, M.; Kim, H.; Paeng, K.; Jeon, B. Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production. J. Environ. Manag. 2013, 115, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Abou-Shanab, R.A.I.; Hwang, J.H.; Cho, Y.; Min, B.; Jeon, B.H. Characterization of microalgal species isolated from fresh water bodies as a potential source for biodiesel production. Appl. Energy 2011, 88, 3300–3306. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Chen, P.; Min, M.; Chen, Y.; Zhu, J.; Ruan, R.R. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour. Technol. 2010, 101, 2623–2628. [Google Scholar] [CrossRef]
- Indarti, E.; Majid, M.I.A.; Hashim, R.; Chong, A. Direct FAME synthesis for rapid total lipid analysis from fish oil and cod liver oil. J. Food Compost. Anal. 2005, 18, 161–170. [Google Scholar] [CrossRef]
- Friedl, A.; Padouvas, E.; Rotter, H.; Varmuza, K. Prediction of heating values of biomass fuel from elemental composition. Anal. Chim. Acta 2005, 544, 191–198. [Google Scholar] [CrossRef]
- Mahinpey, N.; Murugan, P.; Mani, T.; Raina, R. Analysis of bio-oil, biogas, and biochar from pressurized pyrolysis of wheat straw using a tubular reactor. Energy Fuels 2009, 23, 2736–2742. [Google Scholar] [CrossRef]
- Li, G.; Ji, F.; Bai, X.; Zhou, Y.G.; Dong, R.J.; Huang, Z.G. Comparative study on thermal cracking characteristics and bio-oil production from different microalgae using Py-GC/MS. Int. J. Agric. Biol. Eng. 2019, 12, 208–213. [Google Scholar] [CrossRef]
- Marsmann, M. The ISO 14040 family. Int. J. Life Cycle Assess. 2000, 5, 317–318. [Google Scholar] [CrossRef]
- Li, G.; Ji, F.; Zhou, Y.G.; Dong, R.J. Life cycle assessment of pyrolysis process of Desmodesmus sp. Int. J. Agric. Biol. Eng. 2015, 8, 105–112. [Google Scholar] [CrossRef]
- Li, G.; Hu, R.C.; Wang, N.; Yang, T.L.; Xu, F.Z.; Li, J.L.; Wu, J.H.; Huang, Z.G.; Pan, M.M.; Lyu, T. Cultivation of microalgae in adjusted wastewater to enhance biofuel production and reduce environmental impact: Pyrolysis performances and life cycle assessment. J. Clean. Prod. 2022, 355, 131768. [Google Scholar] [CrossRef]
- Tan, X.B.; Zhang, Y.L.; Zhao, X.C.; Yang, L.B.; Yangwang, S.C.; Zou, Y.; Lu, J.M. Anaerobic digestates grown oleaginous microalgae for pollutants removal and lipids production. Chemosphere 2022, 308, 136177. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.H.; Narindri, B.; Chu, H.; Whang, L.M. Recent advancement on biological technologies and strategies for resource recovery from swine wastewater. Bioresour. Technol. 2020, 303, 122861. [Google Scholar] [CrossRef] [PubMed]
- Markou, G.; Angelidaki, I.; Georgakakis, D. Microalgal carbohydrates: An overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Appl. Microbiol. Biotechnol. 2012, 96, 631–645. [Google Scholar] [CrossRef]
- Chinnasamy, S.; Bhatnagar, A.; Hunt, R.W.; Das, K. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour. Technol. 2010, 101, 3097–3105. [Google Scholar] [CrossRef]
- Ngoc, B.T.; Yen, T.K.N.; Jeong, Y.M.; Ediriweera, M.K.; Somi, K.C. Pentadecanoic acid, an odd-chain fatty acid, suppresses the stemness of MCF-7/SC human breast cancer stem-like cells through JAK2/STAT3 signaling. Nutrients 2020, 12, 1663. [Google Scholar] [CrossRef]
- Bach, Q.V.; Chen, W.H. Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): A state-of-the-art review. Bioresour. Technol. 2017, 246, 88–100. [Google Scholar] [CrossRef]
- Kebelmann, K.; Hornung, A.; Karsten, U.; Griffiths, G. Intermediate pyrolysis and product identification by TGA and Py-GC/MS of green microalgae and their extracted protein and lipid components. Biomass Bioenergy 2013, 49, 38–48. [Google Scholar] [CrossRef]
- Li, G.; Bai, X.; Huo, S.H.; Huang, Z.G. Fast pyrolysis of LERDADEs for renewable biofuels. IET Renew. Power Gener. 2020, 14, 959–967. [Google Scholar] [CrossRef]
- Li, K.; Liu, Q.; Fang, F.; Luo, R.; Lu, Q.; Zhou, W.; Huo, S.; Cheng, P.; Liu, J.; Addy, M. Microalgae-based wastewater treatment for nutrients recovery: A review. Bioresour. Technol. 2019, 291, 121934. [Google Scholar] [CrossRef]
- Thangalazhy-Gopakumar, S.; Adhikari, S.; Chattanathan, S.A.; Gupta, R.B. Catalytic pyrolysis of green algae for hydrocarbon production using H(+)ZSM-5 catalyst. Bioresour. Technol. 2012, 118, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.Q.; Wang, Z.T.; Wang, Z.B.; Fang, P.W.; Meng, F.Z. Study on the migration characteristics of nitrogen and sulfur during co-combustion of oil sludge char and microalgae residue. Fuel 2019, 238, 1–9. [Google Scholar] [CrossRef]
- Li, J.; Xiong, Z.; Zeng, K.; Zhong, D.A.; Zhang, X.; Chen, W.; Nzihou, A.; Flamant, G.; Yang, H.P.; Chen, H.P. Characteristics and Evolution of Nitrogen in the Heavy Components of Algae Pyrolysis Bio-Oil. Environ. Sci. Technol. 2021, 55, 6373–6385. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Silva, L.; Lopez-Gonzalez, D.; Garcia-Minguillan, A.M.; Valverde, J.L. Pyrolysis, combustion and gasification characteristics of Nannochloropsis gaditana microalgae. Bioresour. Technol. 2013, 130, 321–331. [Google Scholar] [CrossRef] [PubMed]
C (%) | H (%) | N (%) | S (%) | HHV (MJ/kg) | |
---|---|---|---|---|---|
BG11 | 35.01 ± 0.06 | 5.97 ± 0.01 | 8.04 ± 0.03 | 0.60 ± 0.01 | 15.27 ± 0.01 |
AW | 21.87 ± 0.04 | 4.93 ± 0.05 | 5.81 ± 0.03 | 0.68 ± 0.11 | 12.51 ± 0.05 |
MAW | 47.24 ± 0.01 | 7.49 ± 0.28 | 11.25 ± 0.16 | 0.95 ± 0.01 | 20.45 ± 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Hao, Y.; Yang, T.; Xiao, W.; Pan, M.; Huo, S.; Lyu, T. Enhancing Bioenergy Production from the Raw and Defatted Microalgal Biomass Using Wastewater as the Cultivation Medium. Bioengineering 2022, 9, 637. https://doi.org/10.3390/bioengineering9110637
Li G, Hao Y, Yang T, Xiao W, Pan M, Huo S, Lyu T. Enhancing Bioenergy Production from the Raw and Defatted Microalgal Biomass Using Wastewater as the Cultivation Medium. Bioengineering. 2022; 9(11):637. https://doi.org/10.3390/bioengineering9110637
Chicago/Turabian StyleLi, Gang, Yuhang Hao, Tenglun Yang, Wenbo Xiao, Minmin Pan, Shuhao Huo, and Tao Lyu. 2022. "Enhancing Bioenergy Production from the Raw and Defatted Microalgal Biomass Using Wastewater as the Cultivation Medium" Bioengineering 9, no. 11: 637. https://doi.org/10.3390/bioengineering9110637
APA StyleLi, G., Hao, Y., Yang, T., Xiao, W., Pan, M., Huo, S., & Lyu, T. (2022). Enhancing Bioenergy Production from the Raw and Defatted Microalgal Biomass Using Wastewater as the Cultivation Medium. Bioengineering, 9(11), 637. https://doi.org/10.3390/bioengineering9110637