The Exploration of Microbial Natural Products and Metabolic Interaction Guided by Mass Spectrometry Imaging
Abstract
:1. Introduction
2. Different Ionization Used in Microbial MSI
2.1. Secondary Ion Mass Spectrometry (SIMS)
2.2. Matrix-Assisted Laser Desorption/Ionization (MALDI)
2.3. Surface-Assisted Laser Desorption/Ionization (SALDI)
2.4. Desorption Electrospray Ionization (DESI)
2.5. Laser Ablation Electrospray Ionization (LAESI)
3. Sample Preparation in Microbial MSI
4. Applications of MSI in Microbial NP Research
4.1. The Identification and Discovery of Microbial NPs
4.2. The Localization and Searching for the Real Producer of Microbial NPs
Species | Ionization Method | Compound | Research Purpose | Reference |
---|---|---|---|---|
Actinomyces sp. CNS 575 | MALDI | Etamycin | Identification | [78] |
Beauveria bassiana ATCC 7159 | MALDI | Beauvericin, bassianalide | Identification | [78] |
Nostoc sp. | MALDI | Pheophytin A | Identification | [78] |
Streptomyces coelicolor A3 | MALDI | SapB, CDA | Identification | [78] |
Fusarium sp. CNL-292 | MALDI | Sansalvamide | Identification | [78] |
Streptoverticillium griseoverticillatum ATCC 31499 | MALDI | Cinnamycin | Identification | [78] |
Bacillus subtilis 3610 | MALDI | Surfactin, plipastatin | Identification | [78] |
Lysobacter enzymogenes C3 | MALDI | Maltophilin, dihydromaltophilin | Identification | [78] |
Staphylococcus aureus | MALDI | δ-toxin | Identification | [78] |
Candida albicans | SIMS | Chlorhexidine digluconate (CHG) | Distribution of the CHG within the biofilms | [82] |
Streptomyces coelicolor | SIMS | Undecylprodigiosin, butylcyclohexylprodiginin, actinorhodins | Antibiotic distribution on the cell surface | [83] |
Bacillus subtilis | SIMS | Surfactins | Localization and quantification | [84] |
Streptomyces griseus IFO 13350 | MALDI | Lantipeptide AmfS | Discovery of new natural products | [85] |
Streptomyces hygroscopicus ATCC 53653 | MALDI | StendomycinⅠ-Ⅵ | Discovery of new natural products | [85] |
Streptomyces sviceus ATCC 20983 | MALDI | Lasso peptide SSV-2083 | Discovery of new natural products | [85] |
Bacillus amyloliquefaciens S499 | SIMS | Surfactins, iturins and fengycins | Characterization of the interaction between cyclic lipopeptides with the plant | [86] |
Staphylococcus aureus USA300 TCH1516 | MALDI | Phenol-soluble modulins | Study the metabolism of community-associated methicillin-resistant Staphylococcus aureus | [87] |
Mycena metata | MALDI | 6-Hydroxymetatacarboline D | Discovery of new natural products | [88] |
Pseudomonas aeruginosa | MALDI | P. aeruginosa derived metabolites | Microbial metabolite manner under the treatment of azithromycin | [89] |
Herpetosiphon sp. B060 | MALDI | Siphonazole | Biosynthetic pathway | [90] |
Microcystis aeruginosa PCC 7820 | MALDI | Aeruginosin 602, microcystin-LR | Distribution | [91] |
Nodularia. harveyana PCC 7804 | MALDI | Anachelin | Distribution | [91] |
Anabaena Cylindrica PCC 7122 | MALDI | Nodularin-R, nodularin-[Har] | Distribution | [91] |
Streptomyces sp. Mg1 | MALDI | Linearmycins | Localization | [92] |
Pseudomonas aeruginosa | SIMS | Alkyl-quinolone | Quantitation | [93] |
Penicillium digitatum | DESI | Indole alkaloids | Characterization and identification | [94] |
Streptomyces sp. Caat 1-54 | DESI | Lienomycin, lysolipin I | Characterization and identification | [95] |
4.3. Uncovering the NP-Mediated Microbial Interaction
5. Current Challenges and Prospects for MSI in Microbial NP Research
- (1)
- With the increasing accessibility of microbial MSI, researchers need to analyze their acquired data carefully, particularly an untargeted approach, peak annotation and deduplication are necessary. Although numerous databases and powerful software are available, careful artificial interpretation of mass spectra is inevitable to avoid missing some cryptic and hidden NPs in microbial metabolic interactions. At present, combined with the molecular network, the localization and identification of known NPs using MSI are achievable. But for unknown NPs, structure elucidation may need high-resolution MSn spectra and 2D-NMR data.
- (2)
- As the most mature and commercial platform, MALDI-MSI has been applied widely in NP research. However due to the background signals from the organic acid matrix, the identification of some small molecules (<500 Da) remains difficult. As a supplementary means, “molecular imprinting techniques” may lose some of the information of the original samples. Thus, it requires the joint efforts of biologists, chemists and materials scientists to explore new matrices with low background interference.
- (3)
- Though sample preparation does not now seem a real challenge in MSI for microbial NP research, it is still the most critical factor, especially for microbes from special habitats such as marine habitats. Due to some unique properties of marine microbes, imaging for those specific samples is still a challenge because of the higher salinity of the media. In order to avoid possible ion formation suppression, it is necessary to optimize the cultural media during sample preparation.
- (4)
- In addition to qualitative analysis, the in situ quantitative imaging of specific metabolites is meaningful. However, only a few attempts have been reported in the field of microbial quantitative MSI [93,141,142]. An uneven microbial sample surface and potential matrix effects, coupled with the different ionization efficiency of the sample morphology, will affect the accuracy and reproducibility of the quantitative MSI results of microbial samples; thus, new breakthrough technologies for exploration are required in this field.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AP | Atmospheric pressure |
DESI | Desorption electrospray ionization |
ESI | Electrospray ionization |
FT-ICR | Fourier transform ion cyclotron resonance |
HR | High resolution |
LAESI | Laser ablation electrospray ionization |
MALDI | Matrix-assisted laser desorption/ionization |
MSI | Mass spectrometry imaging (also known as IMS in other papers) |
NMR | Nuclear magnetic resonance |
NPs | Natural products |
Q | Quadrupole |
SALDI | Surface-assisted laser desorption/ionization |
SIMS | Secondary ion mass spectrometry |
TOF | Time-of-flight |
References
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleming, A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. Influenzae Br. J. Exp. Pathol. 1929, 10, 226. [Google Scholar] [CrossRef]
- Pham, J.V.; Yilma, M.A.; Feliz, A.; Majid, M.T.; Maffetone, N.; Walker, J.R.; Kim, E.; Cho, H.J.; Reynolds, J.M.; Song, M.C.; et al. A Review of the microbial production of bioactive natural products and biologics. Front. Microbiol. 2019, 10, 1404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aksenov, A.A.; da Silva, R.; Knight, R.; Lopes, N.P.; Dorrestein, P.C. Global chemical analysis of biology by mass spectrometry. Nat. Rev. Chem. 2017, 1, 1–20. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug. Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Simmons, T.L.; Coates, R.C.; Clark, B.R.; Engene, N.; Gonzalez, D.; Esquenazi, E.; Dorrestein, P.C.; Gerwick, W.H. Biosynthetic origin of natural products isolated from marine microorganism–invertebrate assemblages. Proc. Natl. Acad. Sci. USA 2008, 105, 4587–4594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spraker, J.E.; Luu, G.T.; Sanchez, L.M. Imaging mass spectrometry for natural products discovery: A review of ionization methods. Nat. Prod. Rep. 2020, 37, 150–162. [Google Scholar] [CrossRef] [PubMed]
- Amstalden van Hove, E.R.; Smith, D.F.; Heeren, R.M. A concise review of mass spectrometry imaging. J. Chromatogr. A. 2010, 1217, 3946–3954. [Google Scholar] [CrossRef]
- Caprioli, R.M.; Farmer, T.B.; Gile, J. Molecular imaging of biological samples: Localization of peptides and proteins using MALDI-TOF MS. Anal. Chem. 1997, 69, 4751–4760. [Google Scholar] [CrossRef]
- Geier, B.; Sogin, E.M.; Michellod, D.; Janda, M.; Kompauer, M.; Spengler, B.; Dubilier, N.; Liebeke, M. Spatial metabolomics of in situ host–microbe interactions at the micrometre scale. Nat. Microbiol. 2020, 5, 498–510. [Google Scholar] [CrossRef]
- Esquenazi, E.; Yang, Y.-L.; Watrous, J.; Gerwick, W.H.; Dorrestein, P.C. Imaging mass spectrometry of natural products. Nat. Prod. Rep. 2009, 26, 1521–1534. [Google Scholar] [CrossRef] [PubMed]
- Shih, C.J.; Chen, P.Y.; Liaw, C.C.; Lai, Y.M.; Yang, Y.L. Bringing microbial interactions to light using imaging mass spectrometry. Nat. Prod. Rep. 2014, 31, 739–755. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.N.; Shu, L.J.; Yang, Y.L. Imaging mass spectrometry for metabolites: Technical progress, multimodal imaging, and biological interactions. Wiley. Interdiscip. Rev. Syst. Biol. Med. 2017, 9, e1387. [Google Scholar] [CrossRef] [PubMed]
- Parrot, D.; Papazian, S.; Foil, D.; Tasdemir, D. Imaging the unimaginable: Desorption electrospray ionization—Imaging mass spectrometry (DESI-IMS) in natural product research. Planta. Med. 2018, 84, 584–593. [Google Scholar] [CrossRef] [Green Version]
- Dunham, S.J.; Ellis, J.F.; Li, B.; Sweedler, J.V. Mass spectrometry imaging of complex microbial communities. Acc. Chem. Res. 2017, 50, 96–104. [Google Scholar] [CrossRef]
- Sgobba, E.; Daguerre, Y.; Giampa, M. Unravel the local complexity of biological environments by MALDI mass spectrometry imaging. Int. J. Mol. Sci. 2021, 22, 12393. [Google Scholar] [CrossRef]
- Stasulli, N.M.; Shank, E.A. Profiling the metabolic signals involved in chemical communication between microbes using imaging mass spectrometry. FEMS. Microbiol. Rev. 2016, 40, 807–813. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Dorrestein, P.C. Emerging mass spectrometry techniques for the direct analysis of microbial colonies. Curr. Opin. Microbiol. 2014, 19, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Goodlett, D.R.; Ernst, R.K.; Scott, A.J. Mass spectrometry imaging of microbes. Mass. Spectrom. Lett. 2020, 11, 41–51. [Google Scholar] [CrossRef]
- Perez, C.J.; Bagga, A.K.; Prova, S.S.; Yousefi Taemeh, M.; Ifa, D.R. Review and perspectives on the applications of mass spectrometry imaging under ambient conditions. Rapid. Commun. Mass. Spectrom. 2019, 33, 27–53. [Google Scholar] [CrossRef]
- Zou, Y.; Tang, W.; Li, B. Mass spectrometry imaging and its potential in food microbiology. Int. J. Food. Microbiol. 2022, 371, 109675. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Bai, Y.; Liu, H. Recent advances in ambient mass spectrometry imaging. Trends. Anal. Chem. 2019, 120, 115659. [Google Scholar] [CrossRef]
- Fletcher, J.S.; Vickerman, J.C. Secondary ion mass spectrometry: Characterizing complex samples in two and three dimensions. Anal. Chem. 2013, 85, 610–639. [Google Scholar] [CrossRef]
- He, J.; Luo, Z.; Huang, L.; He, J.; Chen, Y.; Rong, X.; Jia, S.; Tang, F.; Wang, X.; Zhang, R.; et al. Ambient mass spectrometry imaging metabolomics method provides novel insights into the action mechanism of drug candidates. Anal. Chem. 2015, 87, 5372–5379. [Google Scholar] [CrossRef] [PubMed]
- Yin, R.; Burnum-Johnson, K.E.; Sun, X.; Dey, S.K.; Laskin, J. High spatial resolution imaging of biological tissues using nanospray desorption electrospray ionization mass spectrometry. Nat. Protoc. 2019, 14, 3445–3470. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, P.; Wilschut, R.A.; Verhoeven, K.J.F.; van der Putten, W.H.; Garbeva, P. LAESI mass spectrometry imaging as a tool to differentiate the root metabolome of native and range-expanding plant species. Planta 2018, 248, 1515–1523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunn, W.B.; Erban, A.; Weber, R.J.M.; Creek, D.J.; Brown, M.; Breitling, R.; Hankemeier, T.; Goodacre, R.; Neumann, S.; Kopka, J.; et al. Mass appeal: Metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics 2012, 9, 44–66. [Google Scholar] [CrossRef] [Green Version]
- Cliff, J.B.; Gaspar, D.J.; Bottomley, P.J.; Myrold, D.D. Exploration of inorganic C and N assimilation by soil microbes with time-of-flight secondary ion mass spectrometry. Appl. Environ. Microbiol. 2002, 68, 4067–4073. [Google Scholar] [CrossRef] [Green Version]
- Kollmer, F.; Paul, W.; Krehl, M.; Niehuis, E. Ultra high spatial resolution SIMS with cluster ions—Approaching the physical limits. Surf. Interface. Anal. 2013, 45, 312–314. [Google Scholar] [CrossRef]
- Lanni, E.J.; Masyuko, R.N.; Driscoll, C.M.; Dunham, S.J.; Shrout, J.D.; Bohn, P.W.; Sweedler, J.V. Correlated imaging with C60-SIMS and confocal Raman microscopy: Visualization of cell-scale molecular distributions in bacterial biofilms. Anal. Chem. 2014, 86, 10885–10891. [Google Scholar] [CrossRef]
- Davies, S.K.; Fearn, S.; Allsopp, L.P.; Harrison, F.; Ware, E.; Diggle, S.P.; Filloux, A.; McPhail, D.S.; Bundy, J.G. Visualizing antimicrobials in bacterial biofilms: Three-dimensional biochemical imaging using TOF-SIMS. mSphere 2017, 2, e00211–e00217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watrous, J.D.; Dorrestein, P.C. Imaging mass spectrometry in microbiology. Nat. Rev. Microbiol. 2011, 9, 683–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karas, M.; Bachmann, D.; Hillenkamp, F. Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal. Chem. 1985, 57, 2935–2939. [Google Scholar] [CrossRef]
- Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 1988, 2, 151–153. [Google Scholar] [CrossRef]
- Jens, J.N.; Breiner, D.J.; Phelan, V.V. Spray-based application of matrix to agar-based microbial samples for reproducible sample adherence in MALDI MSI. J. Am. Soc. Mass. Spectrom. 2022, 33, 731–734. [Google Scholar] [CrossRef]
- Silva, R.; Lopes, N.P.; Silva, D.B. Application of MALDI mass spectrometry in natural products analysis. Planta. Med. 2016, 82, 671–689. [Google Scholar] [CrossRef] [Green Version]
- Vickerman, J.C. Molecular imaging and depth profiling by mass spectrometry—SIMS, MALDI or DESI? Analyst 2011, 136, 2199–2217. [Google Scholar] [CrossRef]
- Li, B.; Sun, R.; Gordon, A.; Ge, J.; Zhang, Y.; Li, P.; Yang, H. 3-Aminophthalhydrazide (Luminol) as a matrix for dual-polarity MALDI MS imaging. Anal. Chem. 2019, 91, 8221–8228. [Google Scholar] [CrossRef]
- Edwards, J.L.; Kennedy, R.T. Metabolomic analysis of eukaryotic tissue and prokaryotes using negative mode MALDI time-of-flight mass spectrometry. Anal. Chem. 2005, 77, 2201–2209. [Google Scholar] [CrossRef]
- Tholey, A.; Heinzle, E. Ionic (liquid) matrices for matrix-assisted laser desorption/ionization mass spectrometry—Applications and perspectives. Anal. Bioanal. Chem. 2006, 386, 24–37. [Google Scholar] [CrossRef]
- Pan, C.; Xu, S.; Zhou, H.; Fu, Y.; Ye, M.; Zou, H. Recent developments in methods and technology for analysis of biological samples by MALDI-TOF-MS. Anal. Bioanal. Chem. 2007, 387, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Le, C.H.; Han, J.; Borchers, C.H. Dithranol as a MALDI matrix for tissue imaging of lipids by Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 2012, 84, 8391–8398. [Google Scholar] [CrossRef] [PubMed]
- Francese, S.; Bradshaw, R.; Flinders, B.; Mitchell, C.; Bleay, S.; Cicero, L.; Clench, M. Curcumin: A multipurpose matrix for MALDI mass spectrometry imaging applications. Anal. Chem. 2013, 85, 5240–5248. [Google Scholar] [CrossRef] [PubMed]
- Fülöp, A.; Porada, M.B.; Marsching, C.; Blott, H.; Meyer, B.; Tambe, S.; Sandhoff, R.; Junker, H.-D.; Hopf, C. 4-Phenyl-α-cyanocinnamic acid amide: Screening for a negative ion matrix for MALDI-MS imaging of multiple lipid classes. Anal. Chem. 2013, 85, 9156–9163. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, H.; Jurcic, K.; Wang, J.S.-H.; Whitehead, S.N.; Yeung, K.K.-C. 1, 6-Diphenyl-1, 3, 5-hexatriene (DPH) as a novel matrix for MALDI MS imaging of fatty acids, phospholipids, and sulfatides in brain tissues. Anal. Chem. 2017, 89, 12828–12836. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhou, Y.; Wang, J.; Xiong, C.; Xue, J.; Zhan, L.; Nie, Z. N-Phenyl-2-naphthylamine as a novel MALDI matrix for analysis and in situ imaging of small molecules. Anal. Chem. 2018, 90, 729–736. [Google Scholar] [CrossRef]
- Thomas, A.l.; Charbonneau, J.L.; Fournaise, E.; Chaurand, P. Sublimation of new matrix candidates for high spatial resolution imaging mass spectrometry of lipids: Enhanced information in both positive and negative polarities after 1, 5-diaminonapthalene deposition. Anal. Chem. 2012, 84, 2048–2054. [Google Scholar] [CrossRef]
- He, Q.; Chen, S.; Wang, J.; Hou, J.; Wang, J.; Xiong, S.; Nie, Z. 1-Naphthylhydrazine hydrochloride: A new matrix for the quantification of glucose and homogentisic acid in real samples by MALDI-TOF MS. Clin. Chim. Acta. 2013, 420, 94–98. [Google Scholar] [CrossRef]
- Law, K.; Larkin, J.R. Recent advances in SALDI-MS techniques and their chemical and bioanalytical applications. Anal. Bioanal. Chem. 2011, 399, 2597–2622. [Google Scholar] [CrossRef]
- Wang, X.N.; Li, B. Monolithic gold nanoparticles/thiol-beta-cyclodextrin-functionalized TiO2 nanowires for enhanced SALDI MS detection and imaging of natural products. Anal. Chem. 2022, 94, 952–959. [Google Scholar] [CrossRef]
- Song, K.; Cheng, Q. Desorption and ionization mechanisms and signal enhancement in surface assisted laser desorption ionization mass spectrometry (SALDI-MS). Appl. Spectrosc. Rev. 2019, 55, 220–242. [Google Scholar] [CrossRef]
- Ronci, M.; Rudd, D.; Guinan, T.; Benkendorff, K.; Voelcker, N.H. Mass spectrometry imaging on porous silicon: Investigating the distribution of bioactives in marine mollusc tissues. Anal. Chem. 2012, 84, 8996–9001. [Google Scholar] [CrossRef] [PubMed]
- Louie, K.B.; Bowen, B.P.; Cheng, X.; Berleman, J.E.; Chakraborty, R.; Deutschbauer, A.; Arkin, A.; Northen, T.R. “Replica-extraction-transfer” nanostructure-initiator mass spectrometry imaging of acoustically printed bacteria. Anal. Chem. 2013, 85, 10856–10862. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.Y.; Hsieh, C.Y.; Shih, C.J.; Lin, Y.J.; Tsao, C.W.; Yang, Y.L. Exploration of fungal metabolic interactions using imaging mass spectrometry on nanostructured silicon. J. Nat. Prod. 2018, 81, 1527–1533. [Google Scholar] [CrossRef]
- Muller, W.H.; Verdin, A.; De Pauw, E.; Malherbe, C.; Eppe, G. Surface-assisted laser desorption/ionization mass spectrometry imaging: A review. Mass. Spectrom. Rev. 2022, 41, 373–420. [Google Scholar] [CrossRef]
- Takats, Z.; Wiseman, J.M.; Gologan, B.; Cooks, R.G. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 2004, 306, 471–473. [Google Scholar] [CrossRef] [Green Version]
- Watrous, J.; Hendricks, N.; Meehan, M.; Dorrestein, P.C. Capturing bacterial metabolic exchange using thin film desorption electrospray ionization-imaging mass spectrometry. Anal. Chem. 2010, 82, 1598–1600. [Google Scholar] [CrossRef] [Green Version]
- Nemes, P.; Vertes, A. Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal. Chem. 2007, 79, 8098–8106. [Google Scholar] [CrossRef]
- Nemes, P.; Barton, A.A.; Li, Y.; Vertes, A. Ambient molecular imaging and depth profiling of live tissue by infrared laser ablation electrospray ionization mass spectrometry. Anal. Chem. 2008, 80, 4575–4582. [Google Scholar] [CrossRef]
- Li, H.; Balan, P.; Vertes, A. Molecular imaging of growth, metabolism, and antibiotic inhibition in bacterial colonies by laser ablation electrospray ionization mass spectrometry. Angew. Chem. Int. Ed. Engl. 2016, 55, 15035–15039. [Google Scholar] [CrossRef]
- Yang, J.Y.; Phelan, V.V.; Simkovsky, R.; Watrous, J.D.; Trial, R.M.; Fleming, T.C.; Wenter, R.; Moore, B.S.; Golden, S.S.; Pogliano, K.; et al. Primer on agar-based microbial imaging mass spectrometry. J. Bacteriol. 2012, 194, 6023–6028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, L.; Zhang, Y.; Liu, Y.; He, H.; Han, M.; Li, Y.; Zeng, M.; Wang, X. Recent advances in matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) for in situ analysis of endogenous molecules in plants. Phytochem. Anal. 2018, 29, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Watrous, J.D.; Phelan, V.V.; Hsu, C.-C.; Moree, W.J.; Duggan, B.M.; Alexandrov, T.; Dorrestein, P.C. Microbial metabolic exchange in 3D. ISME J. 2013, 7, 770–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vergeiner, S.; Schafferer, L.; Haas, H.; Muller, T. Improved MALDI-TOF microbial mass spectrometry imaging by application of a dispersed solid matrix. J. Am. Soc. Mass. Spectrom. 2014, 25, 1498–1501. [Google Scholar] [CrossRef]
- Hoffmann, T.; Dorrestein, P.C. Homogeneous matrix deposition on dried agar for MALDI imaging mass spectrometry of microbial cultures. J. Am. Soc. Mass. Spectrom. 2015, 26, 1959–1962. [Google Scholar] [CrossRef] [Green Version]
- Anderton, C.R.; Chu, R.K.; Tolic, N.; Creissen, A.; Pasa-Tolic, L. Utilizing a robotic sprayer for high lateral and mass resolution MALDI FT-ICR MSI of microbial cultures. J. Am. Soc. Mass. Spectrom. 2016, 27, 556–559. [Google Scholar] [CrossRef]
- Li, B.; Comi, T.J.; Si, T.; Dunham, S.J.; Sweedler, J.V. A one-step matrix application method for MALDI mass spectrometry imaging of bacterial colony biofilms. J. Mass. Spectrom. 2016, 51, 1030–1035. [Google Scholar] [CrossRef] [Green Version]
- Brockmann, E.U.; Steil, D.; Bauwens, A.; Soltwisch, J.; Dreisewerd, K. Advanced methods for MALDI-MS imaging of the chemical communication in microbial communities. Anal. Chem. 2019, 91, 15081–15089. [Google Scholar] [CrossRef]
- Angolini, C.F.; Vendramini, P.H.; Araujo, F.D.; Araujo, W.L.; Augusti, R.; Eberlin, M.N.; de Oliveira, L.G. Direct protocol for ambient mass spectrometry imaging on agar culture. Anal. Chem. 2015, 87, 6925–6930. [Google Scholar] [CrossRef]
- Watrous, J.; Roach, P.; Alexandrov, T.; Heath, B.S.; Yang, J.Y.; Kersten, R.D.; van der Voort, M.; Pogliano, K.; Gross, H.; Raaijmakers, J.M.; et al. Mass spectral molecular networking of living microbial colonies. Proc. Natl. Acad. Sci. USA 2012, 109, E1743–E1752. [Google Scholar] [CrossRef]
- Sica, V.P.; Raja, H.A.; El-Elimat, T.; Oberlies, N.H. Mass spectrometry imaging of secondary metabolites directly on fungal cultures. RSC Adv. 2014, 4, 63221–63227. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, S.N.; Liyu, A.V.; Chu, R.K.; Anderton, C.R.; Laskin, J. Constant-distance mode nanospray desorption electrospray ionization mass spectrometry imaging of biological samples with complex topography. Anal. Chem 2017, 89, 1131–1137. [Google Scholar] [CrossRef] [PubMed]
- Ellis, B.M.; Fischer, C.N.; Martin, L.B.; Bachmann, B.O.; McLean, J.A. Spatiochemically profiling microbial interactions with membrane scaffolded desorption electrospray ionization-ion mobility-imaging mass spectrometry and unsupervised segmentation. Anal. Chem. 2019, 91, 13703–13711. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.-T.; Kersten, R.D.; Yang, Y.-L.; Moore, B.S.; Dorrestein, P.C. Imaging mass spectrometry and genome mining via short sequence tagging identified the anti-infective agent arylomycin in Streptomyces roseosporus. J. Am. Chem. Soc. 2011, 133, 18010–18013. [Google Scholar] [CrossRef] [Green Version]
- Moree, W.J.; Yang, J.Y.; Zhao, X.; Liu, W.-T.; Aparicio, M.; Atencio, L.; Ballesteros, J.; Sánchez, J.; Gavilán, R.G.; Gutiérrez, M.; et al. Imaging mass spectrometry of a coral microbe interaction with fungi. J. Chem. Ecol. 2013, 39, 1045–1054. [Google Scholar] [CrossRef] [Green Version]
- Liaw, C.C.; Chen, P.C.; Shih, C.J.; Tseng, S.P.; Lai, Y.M.; Hsu, C.H.; Dorrestein, P.C.; Yang, Y.L. Vitroprocines, new antibiotics against Acinetobacter baumannii, discovered from marine Vibrio sp. QWI-06 using mass-spectrometry-based metabolomics approach. Sci. Rep. 2015, 5, 12856. [Google Scholar] [CrossRef] [Green Version]
- Helfrich, E.J.N.; Vogel, C.M.; Ueoka, R.; Schafer, M.; Ryffel, F.; Muller, D.B.; Probst, S.; Kreuzer, M.; Piel, J.; Vorholt, J.A. Bipartite interactions, antibiotic production and biosynthetic potential of the Arabidopsis leaf microbiome. Nat. Microbiol. 2018, 3, 909–919. [Google Scholar] [CrossRef]
- Gonzalez, D.J.; Xu, Y.; Yang, Y.-L.; Esquenazi, E.; Liu, W.-T.; Edlund, A.; Duong, T.; Du, L.; Molnár, I.; Gerwick, W.H.; et al. Observing the invisible through imaging mass spectrometry, a window into the metabolic exchange patterns of microbes. J. Proteomics. 2012, 75, 5069–5076. [Google Scholar] [CrossRef] [Green Version]
- Esquenazi, E.; Coates, C.; Simmons, L.; Gonzalez, D.; Gerwick, W.H.; Dorrestein, P.C. Visualizing the spatial distribution of secondary metabolites produced by marine cyanobacteria and sponges via MALDI-TOF imaging. Mol. Biosyst. 2008, 4, 562–570. [Google Scholar] [CrossRef]
- Lane, A.L.; Nyadong, L.; Galhena, A.S.; Shearer, T.L.; Stout, E.P.; Parry, R.M.; Kwasnik, M.; Wang, M.D.; Hay, M.E.; Fernandez, F.M. Desorption electrospray ionization mass spectrometry reveals surface-mediated antifungal chemical defense of a tropical seaweed. Proc. Natl. Acad. Sci. USA 2009, 106, 7314–7319. [Google Scholar] [CrossRef]
- Esquenazi, E.; Dorrestein, P.C.; Gerwick, W.H. Probing marine natural product defenses with DESI-imaging mass spectrometry. Proc. Natl. Acad. Sci. USA 2009, 106, 7269–7270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyler, B.J.; Rangaranjan, S.; Möller, J.; Beumer, A.; Arlinghaus, H.F. TOF-SIMS imaging of chlorhexidine-digluconate transport in frozen hydrated biofilms of the fungus Candida albicans. App. Surf. Sci. 2006, 252, 6712–6715. [Google Scholar] [CrossRef]
- Vaidyanathan, S.; Fletcher, J.S.; Goodacre, R.; Lockyer, N.P.; Micklefield, J.; Vickerman, J.C. Subsurface biomolecular imaging of Streptomyces coelicolor using secondary ion mass spectrometry. Anal. Chem. 2008, 80, 1942–1951. [Google Scholar] [CrossRef] [PubMed]
- Debois, D.; Hamze, K.; Guerineau, V.; Le Caer, J.P.; Holland, I.B.; Lopes, P.; Ouazzani, J.; Seror, S.J.; Brunelle, A.; Laprevote, O. In situ localisation and quantification of surfactins in a Bacillus subtilis swarming community by imaging mass spectrometry. Proteomics 2008, 8, 3682–3691. [Google Scholar] [CrossRef]
- Kersten, R.D.; Yang, Y.L.; Xu, Y.; Cimermancic, P.; Nam, S.J.; Fenical, W.; Fischbach, M.A.; Moore, B.S.; Dorrestein, P.C. A mass spectrometry-guided genome mining approach for natural product peptidogenomics. Nat. Chem. Biol. 2011, 7, 794–802. [Google Scholar] [CrossRef] [Green Version]
- Nihorimbere, V.; Cawoy, H.; Seyer, A.; Brunelle, A.; Thonart, P.; Ongena, M. Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS Microbiol. Ecol. 2012, 79, 176–191. [Google Scholar] [CrossRef]
- Gonzalez, D.J.; Okumura, C.Y.; Hollands, A.; Kersten, R.; Akong-Moore, K.; Pence, M.A.; Malone, C.L.; Derieux, J.; Moore, B.S.; Horswill, A.R.; et al. Novel phenol-soluble modulin derivatives in community-associated methicillin-resistant Staphylococcus aureus identified through imaging mass spectrometry. J. Biol. Chem. 2012, 287, 13889–13898. [Google Scholar] [CrossRef] [Green Version]
- Jaeger, R.J.; Lamshoft, M.; Gottfried, S.; Spiteller, M.; Spiteller, P. HR-MALDI-MS imaging assisted screening of beta-carboline alkaloids discovered from Mycena metata. J. Nat. Prod. 2013, 76, 127–134. [Google Scholar] [CrossRef]
- Phelan, V.V.; Fang, J.; Dorrestein, P.C. Mass spectrometry analysis of Pseudomonas aeruginosa treated with azithromycin. J. Am. Soc. Mass. Spectrom. 2015, 26, 873–877. [Google Scholar] [CrossRef] [Green Version]
- Mir Mohseni, M.; Hover, T.; Barra, L.; Kaiser, M.; Dorrestein, P.C.; Dickschat, J.S.; Schaberle, T.F. Discovery of a mosaic-like biosynthetic assembly line with a decarboxylative off-loading mechanism through a combination of genome mining and imaging. Angew. Chem. Int. Ed. Engl. 2016, 55, 13611–13614. [Google Scholar] [CrossRef]
- Sandonato, B.B.; Santos, V.G.; Luizete, M.F.; Bronzel, J.L.; Eberlinb, M.N.; Milagre, H.M.S. MALDI imaging mass spectrometry of fresh water cyanobacteria: Spatial distribution of toxins and other metabolites. J. Braz. Chem. Soc. 2017, 28, 521–528. [Google Scholar] [CrossRef]
- Hoefler, B.C.; Stubbendieck, R.M.; Josyula, N.K.; Moisan, S.M.; Schulze, E.M.; Straight, P.D. A link between linearmycin biosynthesis and extracellular vesicle genesis connects specialized metabolism and bacterial membrane physiology. Cell. Chem. Biol. 2017, 24, 1238–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunham, S.J.B.; Ellis, J.F.; Baig, N.F.; Morales-Soto, N.; Cao, T.; Shrout, J.D.; Bohn, P.W.; Sweedler, J.V. Quantitative SIMS Imaging of agar-based microbial communities. Anal. Chem. 2018, 90, 5654–5663. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.H.; Bazioli, J.M.; de Vilhena Araujo, E.; Vendramini, P.H.; de Freitas Porto, M.C.; Eberlin, M.N.; Souza-Neto, J.A.; Fill, T.P. Monitoring indole alkaloid production by Penicillium digitatum during infection process in citrus by mass spectrometry imaging and molecular networking. Fungal. Biol. 2019, 123, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, J.P.; Prova, S.S.; Moraes, L.A.B.; Ifa, D.R. Characterization and mapping of secondary metabolites of Streptomyces sp. from caatinga by desorption electrospray ionization mass spectrometry (DESI-MS). Anal. Bioanal. Chem. 2018, 410, 7135–7144. [Google Scholar] [CrossRef]
- Schafhauser, T.; Jahn, L.; Kirchner, N.; Kulik, A.; Flor, L.; Lang, A.; Caradec, T.; Fewer, D.P.; Sivonen, K.; van Berkel, W.J.H.; et al. Antitumor astins originate from the fungal endophyte Cyanodermella asteris living within the medicinal plant Aster tataricus. Proc. Natl. Acad. Sci. USA 2019, 116, 26909–26917. [Google Scholar] [CrossRef]
- Crusemann, M.; Reher, R.; Schamari, I.; Brachmann, A.O.; Ohbayashi, T.; Kuschak, M.; Malfacini, D.; Seidinger, A.; Pinto-Carbo, M.; Richarz, R.; et al. Heterologous expression, biosynthetic dtudies, and ecological function of the selective Gq-Signaling inhibitor FR900359. Angew. Chem. Int. Ed. Engl. 2018, 57, 836–840. [Google Scholar] [CrossRef]
- Taniguchi, M.; Nunnery, J.K.; Engene, N.; Esquenazi, E.; Byrum, T.; Dorrestein, P.C.; Gerwick, W.H. Palmyramide A, a cyclic depsipeptide from a Palmyra Atoll collection of the marine cyanobacterium Lyngbya majuscula. J. Nat. Prod. 2010, 73, 393–398. [Google Scholar] [CrossRef] [Green Version]
- Waters, A.L.; Peraud, O.; Kasanah, N.; Sims, J.W.; Kothalawala, N.; Anderson, M.A.; Abbas, S.H.; Rao, K.V.; Jupally, V.R.; Kelly, M.; et al. An analysis of the sponge Acanthostrongylophora igens’ microbiome yields an actinomycete that produces the natural product manzamine A. Front. Mar. Sci. 2014, 1, 54. [Google Scholar] [CrossRef] [Green Version]
- Kusari, S.; Lamshoft, M.; Kusari, P.; Gottfried, S.; Zuhlke, S.; Louven, K.; Hentschel, U.; Kayser, O.; Spiteller, M. Endophytes are hidden producers of maytansine in Putterlickia roots. J. Nat. Prod. 2014, 77, 2577–2584. [Google Scholar] [CrossRef]
- Esquenazi, E.; Jones, A.C.; Byrum, T.; Dorrestein, P.C.; Gerwick, W.H. Temporal dynamics of natural product biosynthesis in marine cyanobacteria. Proc. Natl. Acad. Sci. USA 2011, 108, 5226–5231. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Kersten, R.D.; Nam, S.J.; Lu, L.; Al-Suwailem, A.M.; Zheng, H.; Fenical, W.; Dorrestein, P.C.; Moore, B.S.; Qian, P.Y. Bacterial biosynthesis and maturation of the didemnin anti-cancer agents. J. Am. Chem. Soc. 2012, 134, 8625–8632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.L.; Xu, Y.; Kersten, R.D.; Liu, W.T.; Meehan, M.J.; Moore, B.S.; Bandeira, N.; Dorrestein, P.C. Connecting chemotypes and phenotypes of cultured marine microbial assemblages by imaging mass spectrometry. Angew. Chem. Int. Ed. Engl. 2011, 50, 5839–5842. [Google Scholar] [CrossRef] [PubMed]
- Andras, T.D.; Alexander, T.S.; Gahlena, A.; Parry, R.M.; Fernandez, F.M.; Kubanek, J.; Wang, M.D.; Hay, M.E. Seaweed allelopathy against coral: Surface distribution of a seaweed secondary metabolite by imaging mass spectrometry. J Chem. Ecol. 2012, 38, 1203–1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, J.; Fricke, W.F.; Hamann, M.T.; Esquenazi, E.; Dorrestein, P.C.; Hill, R.T. Characterization of the bacterial community of the chemically defended Hawaiian sacoglossan Elysia rufescens. Appl. Environ. Microbiol. 2013, 79, 7073–7081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moree, W.J.; McConnell, O.J.; Nguyen, D.D.; Sanchez, L.M.; Yang, Y.L.; Zhao, X.; Liu, W.T.; Boudreau, P.D.; Srinivasan, J.; Atencio, L.; et al. Microbiota of healthy corals are active against fungi in a light-dependent manner. ACS. Chem. Biol. 2014, 9, 2300–2308. [Google Scholar] [CrossRef] [Green Version]
- Krespach, M.K.C.; Garcia-Altares, M.; Flak, M.; Hanno, S.; Scherlach, K.; Netzker, T.; Schmalzl, A.; Mattern, D.J.; Schroeckh, V.; Komor, A.; et al. Lichen-like association of Chlamydomonas reinhardtii and Aspergillus nidulans protects algal cells from bacteria. ISME J. 2020, 14, 2794–2805. [Google Scholar] [CrossRef]
- Krespach, M.K.C.; Stroe, M.C.; Flak, M.; Komor, A.J.; Nietzsche, S.; Sasso, S.; Hertweck, C.; Brakhage, A.A. Bacterial marginolactones trigger formation of algal gloeocapsoids, protective aggregates on the verge of multicellularity. Proc. Natl. Acad. Sci. USA 2021, 118, e2100892118. [Google Scholar] [CrossRef]
- Ho, Y.N.; Hoo, S.Y.; Wang, B.W.; Hsieh, C.T.; Lin, C.C.; Sun, C.H.; Peng, C.C.; Lin, C.; Yang, Y.L. Specific inactivation of an antifungal bacterial siderophore by a fungal plant pathogen. ISME J. 2021, 15, 1858–1861. [Google Scholar] [CrossRef]
- Jenul, C.; Keim, K.; Jens, J.; Zeiler, M.J.; Schilcher, K.; Schurr, M.; Melander, C.; Phelan, V.V.; Horswill, A.R. Pyochelin biotransformation shapes bacterial competition. bioRxiv 2022. [Google Scholar] [CrossRef]
- Yang, Y.L.; Xu, Y.; Straight, P.; Dorrestein, P.C. Translating metabolic exchange with imaging mass spectrometry. Nat. Chem. Biol. 2009, 5, 885–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.T.; Yang, Y.L.; Xu, Y.; Lamsa, A.; Haste, N.M.; Yang, J.Y.; Ng, J.; Gonzalez, D.; Ellermeier, C.D.; Straight, P.D.; et al. Imaging mass spectrometry of intraspecies metabolic exchange revealed the cannibalistic factors of Bacillus subtilis. Proc. Natl. Acad. Sci. USA 2010, 107, 16286–16290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, D.J.; Haste, N.M.; Hollands, A.; Fleming, T.C.; Hamby, M.; Pogliano, K.; Nizet, V.; Dorrestein, P.C. Microbial competition between Bacillus subtilis and Staphylococcus aureus monitored by imaging mass spectrometry. Microbiology 2011, 157, 2485–2492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barger, S.R.; Hoefler, B.C.; Cubillos-Ruiz, A.; Russell, W.K.; Russell, D.H.; Straight, P.D. Imaging secondary metabolism of Streptomyces sp. Mg1 during cellular lysis and colony degradation of competing Bacillus subtilis. Antonie Van Leeuwenhoek 2012, 102, 435–445. [Google Scholar] [CrossRef]
- Hoefler, B.C.; Gorzelnik, K.V.; Yang, J.Y.; Hendricks, N.; Dorrestein, P.C.; Straight, P.D. Enzymatic resistance to the lipopeptide surfactin as identified through imaging mass spectrometry of bacterial competition. Proc. Natl. Acad. Sci. USA 2012, 109, 13082–13087. [Google Scholar] [CrossRef] [Green Version]
- Traxler, M.F.; Watrous, J.D.; Alexandrov, T.; Dorrestein, P.C.; Kolter, R. Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome. mBio 2013, 4, e00459-13. [Google Scholar] [CrossRef] [Green Version]
- Kusari, P.; Kusari, S.; Lamshoft, M.; Sezgin, S.; Spiteller, M.; Kayser, O. Quorum quenching is an antivirulence strategy employed by endophytic bacteria. Appl. Microbiol. Biotechnol. 2014, 98, 7173–7183. [Google Scholar] [CrossRef]
- Frydenlund Michelsen, C.; Hossein Khademi, S.M.; Krogh Johansen, H.; Ingmer, H.; Dorrestein, P.C.; Jelsbak, L. Evolution of metabolic divergence in Pseudomonas aeruginosa during long-term infection facilitates a proto-cooperative interspecies interaction. ISME J. 2016, 10, 1323–1336. [Google Scholar] [CrossRef] [Green Version]
- Vallet, M.; Vanbellingen, Q.P.; Fu, T.; Le Caer, J.P.; Della-Negra, S.; Touboul, D.; Duncan, K.R.; Nay, B.; Brunelle, A.; Prado, S. An integrative approach to decipher the chemical antagonism between the competing endophytes Paraconiothyrium variabile and Bacillus subtilis. J. Nat. Prod. 2017, 80, 2863–2873. [Google Scholar] [CrossRef] [Green Version]
- Luzzatto-Knaan, T.; Melnik, A.V.; Dorrestein, P.C. Mass spectrometry uncovers the role of surfactin as an interspecies recruitment factor. ACS. Chem. Biol. 2019, 14, 459–467. [Google Scholar] [CrossRef]
- Graupner, K.; Scherlach, K.; Bretschneider, T.; Lackner, G.; Roth, M.; Gross, H.; Hertweck, C. Imaging mass spectrometry and genome mining reveal highly antifungal virulence factor of mushroom soft rot pathogen. Angew. Chem. Int. Ed. Engl. 2012, 51, 13173–13177. [Google Scholar] [CrossRef] [PubMed]
- Moree, W.J.; Phelan, V.V.; Wu, C.H.; Bandeira, N.; Cornett, D.S.; Duggan, B.M.; Dorrestein, P.C. Interkingdom metabolic transformations captured by microbial imaging mass spectrometry. Proc. Natl. Acad. Sci. USA 2012, 109, 13811–13816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debois, D.; Ongena, M.; Cawoy, H.; De Pauw, E. MALDI-FTICR MS imaging as a powerful tool to identify Paenibacillus Antibiotics Involved in the Inhibition of plant pathogens. J. Am. Soc. Mass Spectrom. 2013, 24, 1202–1213. [Google Scholar] [CrossRef]
- Wang, W.X.; Kusari, S.; Sezgin, S.; Lamshoft, M.; Kusari, P.; Kayser, O.; Spiteller, M. Hexacyclopeptides secreted by an endophytic fungus Fusarium solani N06 act as crosstalk molecules in Narcissus tazetta. Appl. Microbiol. Biotechnol. 2015, 99, 7651–7662. [Google Scholar] [CrossRef] [PubMed]
- Spraker, J.E.; Sanchez, L.M.; Lowe, T.M.; Dorrestein, P.C.; Keller, N.P. Ralstonia solanacearum lipopeptide induces chlamydospore development in fungi and facilitates bacterial entry into fungal tissues. ISME J. 2016, 10, 2317–2330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araújo, F.D.S.; Vieira, R.L.; Molano, E.P.L.; Máximo, H.J.; Dalio, R.J.D.; Vendramini, P.H.; Araújo, W.L.; Eberlin, M.N. Desorption electrospray ionization mass spectrometry imaging reveals chemical defense of Burkholderia seminalis against cacao pathogens. RSC Adv. 2017, 7, 29953–29958. [Google Scholar] [CrossRef] [Green Version]
- Boya, P.R.; Martin, H.C.; Fernandez-Marin, H.; Gutierrez, M. Fungus-growing ant’s microbial interaction of Streptomyces sp. and Escovopsis sp. through molecular networking and MALDI imaging. Nat. Prod. Commun. 2019, 14, 63–66. [Google Scholar] [CrossRef]
- Spraker, J.E.; Wiemann, P.; Baccile, J.A.; Venkatesh, N.; Schumacher, J.; Schroeder, F.C.; Sanchez, L.M.; Keller, N.P. Conserved responses in a war of small molecules between a plant-pathogenic bacterium and fungi. mBio 2018, 9, e00820-18. [Google Scholar] [CrossRef] [Green Version]
- Tata, A.; Perez, C.; Campos, M.L.; Bayfield, M.A.; Eberlin, M.N.; Ifa, D.R. Imprint desorption electrospray ionization mass spectrometry imaging for monitoring secondary metabolites production during antagonistic interaction of fungi. Anal. Chem. 2015, 87, 12298–12305. [Google Scholar] [CrossRef]
- Bai, J.; Zhang, P.; Bao, G.; Gu, J.G.; Han, L.; Zhang, L.W.; Xu, Y. Imaging mass spectrometry-guided fast identification of antifungal secondary metabolites from Penicillium polonicum. Appl. Microbiol. Biotechnol. 2018, 102, 8493–8500. [Google Scholar] [CrossRef]
- Costa, J.H.; Wassano, C.I.; Angolini, C.F.F.; Scherlach, K.; Hertweck, C.; Pacheco Fill, T. Antifungal potential of secondary metabolites involved in the interaction between citrus pathogens. Sci. Rep. 2019, 9, 18647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, R.; Khan, R.A.A.; Yue, Q.; Jiao, Y.; Yang, Y.; Li, Y.; Xie, B. Discovery of a new antifungal lipopeptaibol from Purpureocillium lilacinum using MALDI-TOF-IMS. Biochem. Biophys. Res. Commun. 2020, 527, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Kroiss, J.; Kaltenpoth, M.; Schneider, B.; Schwinger, M.G.; Hertweck, C.; Maddula, R.K.; Strohm, E.; Svatos, A. Symbiotic Streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nat. Chem. Biol. 2010, 6, 261–263. [Google Scholar] [CrossRef] [PubMed]
- Schoenian, I.; Spiteller, M.; Ghaste, M.; Wirth, R.; Herz, H.; Spiteller, D. Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants. Proc. Natl. Acad. Sci. USA 2011, 108, 1955–1960. [Google Scholar] [CrossRef] [Green Version]
- Boya, P.C.; Fernandez-Marin, H.; Mejia, L.C.; Spadafora, C.; Dorrestein, P.C.; Gutierrez, M. Imaging mass spectrometry and MS/MS molecular networking reveals chemical interactions among cuticular bacteria and pathogenic fungi associated with fungus-growing ants. Sci. Rep. 2017, 7, 5604. [Google Scholar] [CrossRef] [Green Version]
- Gemperline, E.; Horn, H.A.; DeLaney, K.; Currie, C.R.; Li, L. Imaging with mass spectrometry of bacteria on the exoskeleton of fungus-growing ants. ACS Chem. Biol. 2017, 12, 1980–1985. [Google Scholar] [CrossRef]
- Martin, H.C.; Ibanez, R.; Nothias, L.F.; Boya, P.C.; Reinert, L.K.; Rollins-Smith, L.A.; Dorrestein, P.C.; Gutierrez, M. Viscosin-like lipopeptides from frog skin bacteria inhibit Aspergillus fumigatus and Batrachochytrium dendrobatidis detected by imaging mass spectrometry and molecular networking. Sci. Rep. 2019, 9, 3019. [Google Scholar] [CrossRef]
- Debois, D.; Jourdan, E.; Smargiasso, N.; Thonart, P.; De Pauw, E.; Ongena, M. Spatiotemporal monitoring of the antibiome secreted by Bacillus biofilms on plant roots using MALDI mass spectrometry imaging. Anal. Chem. 2014, 86, 4431–4438. [Google Scholar] [CrossRef]
- Garg, N.; Zeng, Y.; Edlund, A.; Melnik, A.V.; Sanchez, L.M.; Mohimani, H.; Gurevich, A.; Miao, V.; Schiffler, S.; Lim, Y.W.; et al. Spatial molecular architecture of the microbial community of a Peltigera lichen. mSystems 2016, 1, e00139-16. [Google Scholar] [CrossRef] [Green Version]
- Hansen, B.L.; Pessotti, R.C.; Fischer, M.S.; Collins, A.; El-Hifnawi, L.; Liu, M.D.; Traxler, M.F. Cooperation, competition, and specialized metabolism in a simplified root nodule microbiome. mBio 2020, 11, e01917-20. [Google Scholar] [CrossRef]
- Ellis, S.R.; Bruinen, A.L.; Heeren, R.M.A. A critical evaluation of the current state-of-the-art in quantitative imaging mass spectrometry. Anal. Bioanal.Chem. 2013, 406, 1275–1289. [Google Scholar] [CrossRef] [PubMed]
- Renslow, R.S.; Lindemann, S.R.; Cole, J.K.; Zhu, Z.; Anderton, C.R. Quantifying element incorporation in multispecies biofilms using nanoscale secondary ion mass spectrometry image analysis. Biointerphases 2016, 11, 02A322. [Google Scholar] [CrossRef] [PubMed]
- Kaltenpoth, M.; Strupat, K.; Svatos, A. Linking metabolite production to taxonomic identity in environmental samples by (MA)LDI-FISH. ISME J. 2016, 10, 527–531. [Google Scholar] [CrossRef] [PubMed]
- Velickovic, D.; Chu, R.K.; Carrell, A.A.; Thomas, M.; Pasa-Tolic, L.; Weston, D.J.; Anderton, C.R. Multimodal MSI in conjunction with broad coverage spatially resolved MS(2) increases confidence in both molecular identification and localization. Anal. Chem. 2018, 90, 702–707. [Google Scholar] [CrossRef]
- Sans, M.; Feider, C.L.; Eberlin, L.S. Advances in mass spectrometry imaging coupled to ion mobility spectrometry for enhanced imaging of biological tissues. Curr. Opin. Chem. Biol. 2018, 42, 138–146. [Google Scholar] [CrossRef]
- Khalifa, S.A.; Elias, N.; Farag, M.A.; Chen, L.; Saeed, A.; Hegazy, M.-E.F.; Moustafa, M.S.; El-Wahed, A.; Al-Mousawi, S.M.; Musharraf, S.G. Marine natural products: A source of novel anticancer drugs. Mar. Drugs 2019, 17, 491. [Google Scholar] [CrossRef] [Green Version]
- Paoli, L.; Ruscheweyh, H.J.; Forneris, C.C.; Hubrich, F.; Kautsar, S.; Bhushan, A.; Lotti, A.; Clayssen, Q.; Salazar, G.; Milanese, A.; et al. Biosynthetic potential of the global ocean microbiome. Nature 2022, 607, 111–118. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, M.; Braun, D.R.; Ericksen, S.S.; Piotrowski, J.S.; Nelson, J.; Peng, J.; Ananiev, G.E.; Chanana, S.; Barns, K.; et al. A marine microbiome antifungal targets urgent-threat drug-resistant fungi. Science 2020, 370, 974–978. [Google Scholar] [CrossRef]
- Taguchi, R.; Iwasaki, A.; Ebihara, A.; Jeelani, G.; Nozaki, T.; Suenaga, K. Isolation and total synthesis of Beru’amide, an antitrypanosomal polyketide from a marine cyanobacterium Okeania sp. Org. Lett. 2022, 24, 4710–4714. [Google Scholar] [CrossRef]
- Rust, M.; Helfrich, E.J.N.; Freeman, M.F.; Nanudorn, P.; Field, C.M.; Ruckert, C.; Kundig, T.; Page, M.J.; Webb, V.L.; Kalinowski, J.; et al. A multiproducer microbiome generates chemical diversity in the marine sponge Mycale hentscheli. Proc. Natl. Acad. Sci. USA 2020, 117, 9508–9518. [Google Scholar] [CrossRef]
- Lackner, G.; Peters, E.E.; Helfrich, E.J.; Piel, J. Insights into the lifestyle of uncultured bacterial natural product factories associated with marine sponges. Proc. Natl. Acad. Sci. USA 2017, 114, E347–E356. [Google Scholar] [CrossRef] [PubMed]
Ion Source Working Condition | Ionization Source | Limit of Spatial Resolution | Advantage | Major Limit |
---|---|---|---|---|
Vacuum ionization | SIMS | 35 nm [23] | Superior spatial resolution | Mostly fragmentation ions |
MALDI | 5 μm [7] | Broad coverage of molecule species | The choice of matrix should be considered | |
SALDI | 10 μm [7] | Matrix-free | Sample transfer is inevitable | |
Ambient ionization | DESI | 10 μm [24,25] | Simple sample preparation | Complex instrumental parameters optimization |
LAESI | 100 μm [26] | Can be used for fresh samples | Lower spatial resolution |
Time | Introduced Technique | Advantage | Reference |
---|---|---|---|
2012 | A common protocol for agar-based microbial MALDI-MSI | The first protocol for agar-based microbial MALDI-MSI | [61] |
2013 | A method for visible three-dimensional (3D) models of a microbial colony | Captures the depth profile of metabolite distribution beyond 2D-MALDI-MSI | [63] |
2014 | A method with solid MALDI matrix deposition on microbial agar culture | Enhanced signals of some fungal metabolites | [64] |
2015 | A method for spraying matrix solution programmatically on dried agar-based samples | Forms a homogeneous, evenly closed matrix layer | [65] |
2016 | A robotic matrix sprayer with a heated capillary | Higher sensitivity and lateral resolution for the analyte and suitable for different kinds of matrix | [66] |
2016 | A one-step matrix spraying method with optimized homemade equipment | Simplified sample preparation and high-resolved images | [67] |
2019 | A membrane-based culturing workflow | Offers a safe and flat microbial sample surface | [68] |
2022 | A method using 2,5-dihydroxybenzoic acid (DHB) as “glue” to adhere the microbial culture agar plate to the MALDI target | Prevents the sample flaking from the target under vacuum and also provides a larger area for MALDI-MSI analysis | [35] |
Time | Introduced Technique | Advantage | Reference |
---|---|---|---|
2010 | A thin film imprinting technique with mixed cellulose ester filter membranes | Uses a complementary surface to make an imprint of the bacterial culture from solid agar for imaging | [57] |
2012 | Nano-DESI-MSI technology | Direct chemical monitoring of living microbial colonies grown on a Petri dish | [70] |
2014 | A “cardboard insert” method | An effective method for fungal culture imaging in situ with a hard and flat surface | [71] |
2015 | A protocol on microbial agar culture for direct DESI-MSI | Offers rapid sample preparation with a dehydrated and hard surface for imaging | [69] |
2017 | A constant-distance nano-DESI-MSI imaging model | An ideal method for imaging microbial samples with complex topography | [72] |
2019 | A microbial sample reparation method with microporous membrane scaffolds (MMS) | An effective method for imaging and evaluating microbial interspecies interactions | [73] |
Species | Ionization Method | Compound | Research Purpose | Reference |
---|---|---|---|---|
Bacillus subtilis vs. Streptomyces coelicolor | MALDI | Surfactin, plipastatin, Prodiginines, CDA, SapB | Characterization of bacterial metabolic exchange | [111] |
Bacillus subtilis vs. Streptomyces coelicolor | DESI | Actinorhodin, surfactin, plipastatin | Bacterial interaction | [57] |
Bacillus subtilis | MALDI | Sporulation-delaying protein (SDP), sporulation killing factor (SKF) | Intraspecies interaction | [112] |
Streptomyces roseosporus vs. Streptomyces epidermidis | MALDI | Arylomycins | Discovery of bioactive NPs | [74] |
Bacillus subtilis vs. Staphylococcus aureus | MALDI | Surfactin, plipastatin, PSMλ, PSMα3 | Microbial competition | [113] |
Streptomyces sp. Mg1 vs. Bacillus subtilis | MALDI | Polyglutamate, surfactin, plipastatin, chalcomycin A | Microbial competition | [114] |
Streptomyces sp. Mg1 vs. Bacillus subtilis | MALDI | Surfactin, hydrolyzed surfactin | Interspecies competition | [115] |
Streptomyces coelicolor vs. other five species actinomycetes | MALDI and nano-DESI | Acyl-desferrioxamine siderophores | Interspecies interaction | [116] |
Endophytic bacteria of Cannabis sativa L vs. Chromobacterium Violaceum | MALDI | N-acylated L-homoserine lactones (AHLs) | Quorum sensing | [117] |
Pseudomonas aeruginosa vs. Staphylococcus aureus | MALDI | Pyocyanin, rhamnolipid, 4-hydroxy-2-alkylquinoline (HAQ) derivatives | Metabolic profile and interspecies interaction | [118] |
Paraconiothyrium variabile vs. Bacillus subtilis | MALDI | Surfactin | Investigation of antagonism | [119] |
Paenibacillus dendritiformis vs. Bacillus subtilis NCIB3610 | MALDI | Surfactin and its degradations | Specific interaction of attractant | [120] |
Myxococcus xanthus DK1622 vs. Escherichia coli | DESI | Myxovirescin A, DKxanthene-560 | Investigation of predation process | [73] |
Janthinobacterium agaricidamnosum vs. Agaricus bisporus | MALDI | Jagaricin A | Investigation of the virulence factors of soft rot bacteria | [121] |
Pseudomonas aeruginosa vs. Aspergillus fumigatus | MALDI | Fungal siderophores, phenazine metabolites | Interkingdom metabolic transformation | [122] |
Paenibacillus polymyxa (Pp56) vs. Fusarium oxysporum | MALDI | Fusaricidins A, B, C, lipopeptides | Searching for microbial biocontrol agents | [123] |
Fusarium solani vs. Achromobacter xylosoxidans | MALDI | Hexacyclopeptides | Discovering metabolites produced by endophytes | [124] |
Ralstonia solanacearum vs. Aspergillus flavus | MALDI | Ralsolamycin | Interkingdom interaction | [125] |
Burkholderia seminalis vs. Moniliophthora perniciosa, Phytophthora capsisi, Phytophthora palmivora and Phytophthora citrophtora | DESI | Phospholipids, rhamnolipid | Searching for cacao pathogens’ biocontrol agents | [126] |
Streptomyces sp. (CB0028) vs. Escovopsis sp. (CBAcro424) | MALDI | Siderophores | Searching for natural products in microbial interaction | [127] |
Ralstonia solanacearum vs. Fusarium fujikuroi and Botrytis cinerea | MALDI | Ralsolamycin, bikaverin | Small molecular induced microbial interaction | [128] |
Burkholderia cenocepacia 869T2 vs. Phellinus noxius | MALDI | Pyochelin and its esterification product | Dynamic changes of metabolites in microbial interactions | [109] |
Staphylococcus aureus vs. Pseudomonas aeruginosa | MALDI | Pyochelin, pyochelin methylester | Bacterial competition in vivo | [110] |
Trichoderma harzianum vs. Moniliophthora roreri | DESI | T39 butenolide, harzianolide, sorbicillinol | Investigation of antagonistic interaction of fungi | [129] |
Phellinus noxius vs. Aspergillus sp. 3Y and 3G | SALDI | Sterigmatocystin, fellutamides | Developing microbial MSI on nanostructured silicon | [54] |
Penicillium polonicum ACCC31573 vs. Fusarium oxysporum f. sp. lycopersici 4287 | MALDI | Fructigenine A and B | Screening for antifungal antibiotics | [130] |
Penicillium digitatum vs. Penicillium citrinum | DESI | Tryptoquialanines, 15-dimethyl-2-epi-fumiquinazoline A, deoxytryptoquialanone, citrinadin A, deoxycitrinadin A, chrysogenamide A, tetrapeptide | Screening for new antifungal compounds | [131] |
Purpureocillium lilacinum vs. Botrytis cinerea | MALDI | Leucinostatin Z | Searching for new natural products | [132] |
Imaging Sample | Ionization Method | Compound | Research Purpose | Reference |
---|---|---|---|---|
Beewolf | MALDI | Streptochlorin and eight piericidin derivatives | Beewolf–Streptomyces symbiosis | [133] |
Leaf-cutting ant | MALDI | Valinomycin | Ecological role of microorganisms associated with leaf-cutting ants | [134] |
Ant-derived Streptomyces spp. and Escovopsis spp. | MALDI | Actinomycins D, actinomycins X2, actinomycins X0β, elaiophylin, efomycin A, efomycin G, shearinines D, F and J | Chemistry-based microbial interactions in ant microbe symbiosis | [135] |
Pseudonocardia on the surface of ants’ propleural plates | MALDI | Ergothioneine | Visualization of bacterial-derived compounds on the ant exoskeleton | [136] |
Frog skin associated bacteria Pseudomonas cichorii | MALDI | Viscosin-like lipopeptides | Searching for antifungal compounds | [137] |
Plant roots colonized by Bacillus amyloliquefaciens S499 | MALDI | Surfactins, iturins, fengycins | Investigation of plant–microbe interactions at the molecular level | [138] |
Putterlickia verrucosa root | MALDI | Maytansine | Searching for the real producer of maytansine | [100] |
Lichen | MALDI | Pyridone alkaloid, asperphenamate, alantolactone, mannitol, polysaccharide-containing mannitol, pheophorbide A, pheophytin A | Show the chemical diversity and distribution of the microbial community of a Peltigera lichen | [139] |
Arabidopsis leaf-derived bacteria | MALDI | Streptocidin A and D, phosphobrevin, marthiapeptide A, macrobrevin | Antibiotic production potential of the Arabidopsis leaf microbiome | [77] |
Root nodule | MALDI | Britacidins, tyrocidines | The research of specific metabolites from Brevibacillus brevis | [140] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Li, Z. The Exploration of Microbial Natural Products and Metabolic Interaction Guided by Mass Spectrometry Imaging. Bioengineering 2022, 9, 707. https://doi.org/10.3390/bioengineering9110707
Li H, Li Z. The Exploration of Microbial Natural Products and Metabolic Interaction Guided by Mass Spectrometry Imaging. Bioengineering. 2022; 9(11):707. https://doi.org/10.3390/bioengineering9110707
Chicago/Turabian StyleLi, Hao, and Zhiyong Li. 2022. "The Exploration of Microbial Natural Products and Metabolic Interaction Guided by Mass Spectrometry Imaging" Bioengineering 9, no. 11: 707. https://doi.org/10.3390/bioengineering9110707
APA StyleLi, H., & Li, Z. (2022). The Exploration of Microbial Natural Products and Metabolic Interaction Guided by Mass Spectrometry Imaging. Bioengineering, 9(11), 707. https://doi.org/10.3390/bioengineering9110707