Anti-Tumor Secondary Metabolites Originating from Fungi in the South China Sea’s Mangrove Ecosystem
Abstract
:1. Introduction
2. Summarisation of Anti-Tumor Secondary Metabolites from Mangrove-Derived Fungi
3. Sources, Structures, and Anti-Tumor Activities of Secondary Metabolites Originating from Fungal Strains in the Mangrove Ecosystem
3.1. Polyketides
3.1.1. Azaphilones
3.1.2. Coumarins and Isocoumarins
3.1.3. Chromones
3.1.4. Lactones
3.1.5. Benzoates
3.1.6. Xanthones
3.1.7. Quinones and Benzophenones
3.1.8. Phenols, Phenyl Aldehydes, and Phenolic Acids
3.1.9. Depsidones
3.2. Terpenoids
3.2.1. Sesquiterpenes
3.2.2. Diterpenes
3.2.3. Steroids
3.3. Alkaloids
3.3.1. Amines and Amides
3.3.2. Diketopiperazines
3.3.3. Cytochalasins
3.4. Peptides
Cyclic Peptides
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jia, S.-L.; Chi, Z.; Liu, G.-L.; Hu, Z.; Chi, Z.-M. Fungi in mangrove ecosystems and their potential applications. Crit. Rev. Biotechnol. 2020, 40, 852–864. [Google Scholar] [CrossRef]
- Gozari, M.; Alborz, M.; El-Seedi, H.R.; Jassbi, A.R. Chemistry, biosynthesis and biological activity of terpenoids and meroterpenoids in bacteria and fungi isolated from different marine habitats. Eur. J. Med. Chem. 2021, 210, 112957. [Google Scholar] [CrossRef]
- Li, K.; Chen, S.; Pang, X.; Cai, J.; Zhang, X.; Liu, Y.; Zhu, Y.; Zhou, X. Natural products from mangrove sediments-derived microbes: Structural diversity, bioactivities, biosynthesis, and total synthesis. Eur. J. Med. Chem. 2022, 230, 114117. [Google Scholar] [CrossRef]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2021, 38, 362–413. [Google Scholar] [CrossRef] [PubMed]
- Knowles, S.L.; Raja, H.A.; Roberts, C.D.; Oberlies, N.H. Fungal–fungal co-culture: A primer for generating chemical diversity. Nat. Prod. Rep. 2022, 39, 1557–1573. [Google Scholar] [CrossRef]
- Aghdam, S.A.; Brown, A.M.V. Deep learning approaches for natural product discovery from plant endophytic microbiomes. Environ. Microbiome 2021, 16, 6. [Google Scholar] [CrossRef]
- Li, R.; Zhou, W. Multi-omics analysis to screen potential therapeutic biomarkers for anti-cancer compounds. Heliyon 2022, 8, e9616. [Google Scholar] [CrossRef]
- Chen, S.; Cai, R.; Liu, Z.; Cui, H.; She, Z. Secondary metabolites from mangrove-associated fungi: Source, chemistry and bioactivities. Nat. Prod. Rep. 2022, 39, 560–595. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA: A Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer. Nature 2019, 575, 299–309. [Google Scholar] [CrossRef] [Green Version]
- Kelloff, G.J.; Sigman, C.C. Assessing intraepithelial neoplasia and drug safety in cancer-preventive drug development. Nat. Rev. Cancer 2007, 7, 508–518. [Google Scholar] [CrossRef]
- Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of Multidrug Resistance in Cancer Chemotherapy. Int. J. Mol. Sci. 2020, 21, 3233. [Google Scholar] [CrossRef]
- Gong, H.; Bandura, J.; Wang, G.-L.; Feng, Z.-P.; Sun, H.-S. Xyloketal B: A marine compound with medicinal potential. Pharmacol. Ther. 2022, 230, 107963. [Google Scholar] [CrossRef]
- Xie, G.; Zhu, X.; Li, Q.; Gu, M.; He, Z.; Wu, J.; Li, J.; Lin, Y.; Li, M.; She, Z.; et al. SZ-685C, a marine anthraquinone, is a potent inducer of apoptosis with anticancer activity by suppression of the Akt/FOXO pathway. Brit. J. Pharmacol. 2010, 159, 689–697. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Chen, A.; Zhu, M.; Qi, X.; Tang, W.; Liu, M.; Li, D.; Gu, Q.; Li, J. Penicisulfuranol A, a novel C-terminal inhibitor disrupting molecular chaperone function of Hsp90 independent of ATP binding domain. Biochem. Pharmacol. 2019, 163, 404–415. [Google Scholar] [CrossRef]
- Luo, X.; Lin, X.; Tao, H.; Wang, J.; Li, J.; Yang, B.; Zhou, X.; Liu, Y. Isochromophilones A–F, Cytotoxic Chloroazaphilones from the Marine Mangrove Endophytic Fungus Diaporthe sp. SCSIO 41011. J. Nat. Prod. 2018, 81, 934–941. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, S.; Liu, H.; Huang, X.; Liu, Y.; Tao, Y.; She, Z. Cytotoxic isocoumarin derivatives from the mangrove endophytic fungus Aspergillus sp. HN15-5D. Arch. Pharmacal Res. 2019, 42, 326–331. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, G.; Yuan, Y.; Zou, G.; Yang, W.; Tan, Q.; Kang, W.; She, Z. Metabolites with Cytotoxic Activities from the Mangrove Endophytic Fungus Fusarium sp. 2ST2. Front. Chem. 2022, 10, 842405. [Google Scholar] [CrossRef]
- Luo, Y.; Song, X.; Zheng, C.; Chen, G.; Luo, X.; Han, J. Four New Chromone Derivatives from Colletotrichum gloeosporioides. Chem. Biodivers. 2020, 17, e1900547. [Google Scholar] [CrossRef]
- Huang, J.; She, J.; Yang, X.; Liu, J.; Zhou, X.; Yang, B. A New Macrodiolide and Two New Polycyclic Chromones from the Fungus Penicillium sp. SCSIO041218. Molecules 2019, 24, 1686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Han, X.; Zhu, G.; Wang, Y.; Chairoungdua, A.; Piyachaturawat, P.; Zhu, W. Polyketides from the Endophytic Fungus Cladosporium sp. Isolated from the Mangrove Plant Excoecaria agallocha. Front. Chem. 2018, 6, 344. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-F.; Ma, J.; Jing, Q.-Q.; Cao, X.-Z.; Chen, L.; Chao, R.; Zheng, J.-Y.; Shao, C.-L.; He, X.-X.; Wei, M.-Y. Integrating Activity-Guided Strategy and Fingerprint Analysis to Target Potent Cytotoxic Brefeldin A from a Fungal Library of the Medicinal Mangrove Acanthus ilicifolius. Mar. Drugs 2022, 20, 432. [Google Scholar] [CrossRef] [PubMed]
- Anadu, N.O.; Davisson, V.J.; Cushman, M. Synthesis and Anticancer Activity of Brefeldin a Ester Derivatives. J. Med. Chem. 2006, 49, 3897–3905. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; He, X.; Zhang, G.; Che, Q.; Zhu, T.; Gu, Q.; Li, D. Inducing Secondary Metabolite Production by Combined Culture of Talaromyces aculeatus and Penicillium variabile. J. Nat. Prod. 2017, 80, 3167–3171. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhong, Z.; Zhao, F.; Zheng, J.; Zheng, X.; Zhang, K.; Huang, H. Two new pyrone derivatives from the mangrove-derived endophytic fungus Aspergillus sydowii #2B. Nat. Prod. Res. 2021, 36, 3872–3878. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Xu, J.; Wang, Z.; Khan, D.; Niaz, S.I.; Zhu, Y.; Lin, Y.; Li, J.; Liu, L. New lasiodiplodins from mangrove endophytic fungus Lasiodiplodia sp. 318#. Nat. Prod. Res. 2016, 31, 326–332. [Google Scholar] [CrossRef]
- Li, J.; Xue, Y.; Yuan, J.; Lu, Y.; Zhu, X.; Lin, Y.; Liu, L. Lasiodiplodins from mangrove endophytic fungus Lasiodiplodia sp. 318#. Nat. Prod. Res. 2015, 30, 755–760. [Google Scholar] [CrossRef]
- Tao, H.; Wei, X.; Lin, X.; Zhou, X.; Dong, J.; Yang, B. Penixanthones A and B, two new xanthone derivatives from fungus Penicillium sp. SYFz-1 derived of mangrove soil sample. Nat. Prod. Res. 2017, 31, 2218–2222. [Google Scholar] [CrossRef]
- Wu, G.; Qi, X.; Mo, X.; Yu, G.; Wang, Q.; Zhu, T.; Gu, Q.; Liu, M.; Li, J.; Li, D. Structure-based discovery of cytotoxic dimeric tetrahydroxanthones as potential topoisomerase I inhibitors from a marine-derived fungus. Eur. J. Med. Chem. 2018, 148, 268–278. [Google Scholar] [CrossRef]
- Yu, G.; Wu, G.; Sun, Z.; Zhang, X.; Che, Q.; Gu, Q.; Zhu, T.; Li, D.; Zhang, G. Cytotoxic Tetrahydroxanthone Dimers from the Mangrove-Associated Fungus Aspergillus versicolor HDN1009. Mar. Drugs 2018, 16, 335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.J.; Jiao, F.W.; Li, W.; Zhang, X.; Yan, W.; Jiao, R.H. Cytotoxic Xanthone Derivatives from the Mangrove-Derived Endophytic Fungus Peniophora incarnata Z4. J. Nat. Prod. 2020, 83, 2976–2982. [Google Scholar] [CrossRef]
- Zheng, C.-J.; Liao, H.-X.; Mei, R.-Q.; Huang, G.-L.; Yang, L.-J.; Zhou, X.-M.; Shao, T.-M.; Chen, G.-Y.; Wang, C.-Y. Two new benzophenones and one new natural amide alkaloid isolated from a mangrove-derived Fungus Penicillium citrinum. Nat. Prod. Res. 2018, 33, 1127–1134. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Chen, D.; Cai, R.; Cui, H.; Long, Y.; Lu, Y.; Li, C.; She, Z. Cytotoxic and Antibacterial Preussomerins from the Mangrove Endophytic Fungus Lasiodiplodia theobromae ZJ-HQ1. J. Nat. Prod. 2016, 79, 2397–2402. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Guo, L.; Cai, C.; Kong, F.; Yuan, J.; Gai, C.; Dai, H.; Wang, P.; Mei, W. Metabolites from the Mangrove-Derived Fungus Cladosporium sp. HNWSW-1. Front. Chem. 2021, 9, 773703. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Chen, X.; Zhang, X.; Che, Q.; Zhang, G.; Zhu, T.; Gu, Q.; Li, D. Prenylated p-Terphenyls from a Mangrove Endophytic Fungus, Aspergillus candidus LDJ-5. J. Nat. Prod. 2020, 83, 8–13. [Google Scholar] [CrossRef]
- Cai, J.; Chen, C.; Tan, Y.; Chen, W.; Luo, X.; Luo, L.; Yang, B.; Liu, Y.; Zhou, X. Bioactive Polyketide and Diketopiperazine Derivatives from the Mangrove-Sediment-Derived Fungus Aspergillus sp. SCSIO41407. Molecules 2021, 26, 4851. [Google Scholar] [CrossRef]
- Wei, C.; Deng, Q.; Sun, M.; Xu, J. Cytospyrone and Cytospomarin: Two New Polyketides Isolated from Mangrove Endophytic Fungus, Cytospora sp. Molecules 2020, 25, 4224. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, W.; Zou, G.; Chen, S.; Pang, J.; She, Z. Bioactive polyketides from the mangrove endophytic fungi Phoma sp. SYSU-SK-7. Fitoterapia 2019, 139, 104369. [Google Scholar] [CrossRef]
- Zhou, G.; Zhang, X.; Shah, M.; Che, Q.; Zhang, G.; Gu, Q.; Zhu, T.; Li, D. Polyhydroxy p-Terphenyls from a Mangrove Endophytic Fungus Aspergillus candidus LDJ-5. Mar. Drugs 2021, 19, 82. [Google Scholar] [CrossRef]
- Zhang, L.; Niaz, S.I.; Wang, Z.; Zhu, Y.; Lin, Y.; Li, J.; Liu, L. α-Glucosidase inhibitory and cytotoxic botryorhodines from mangrove endophytic fungus Trichoderma sp. 307. Nat. Prod. Res. 2017, 32, 2887–2892. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Wu, A.-A.; Zhang, L.; Hu, Z.; Huang, H.; Xu, Q.; Deng, X. New 12,8-Eudesmanolides from Eutypella sp. 1–15. J. Antibiot. 2017, 70, 1029–1032. [Google Scholar] [CrossRef]
- Qiu, L.; Wang, P.; Liao, G.; Zeng, Y.; Cai, C.; Kong, F.; Guo, Z.; Proksch, P.; Dai, H.; Mei, W. New Eudesmane-Type Sesquiterpenoids from the Mangrove-Derived Endophytic Fungus Penicillium sp. J-54. Mar. Drugs 2018, 16, 108. [Google Scholar] [CrossRef] [Green Version]
- Gui, P.; Fan, J.; Zhu, T.; Fu, P.; Hong, K.; Zhu, W. Sesquiterpenoids from the Mangrove-Derived Aspergillus ustus 094102. Mar. Drugs 2022, 20, 408. [Google Scholar] [CrossRef]
- Gao, S.-S.; Li, X.-M.; Williams, K.; Proksch, P.; Ji, N.-Y.; Wang, B.-G. Rhizovarins A–F, Indole-Diterpenes from the Mangrove-Derived Endophytic Fungus Mucor irregularis QEN-189. J. Nat. Prod. 2016, 79, 2066–2074. [Google Scholar] [CrossRef]
- Zheng, C.-J.; Bai, M.; Zhou, X.-M.; Huang, G.-L.; Shao, T.-M.; Luo, Y.-P.; Niu, Z.-G.; Niu, Y.-Y.; Chen, G.-Y.; Han, C.-R. Penicilindoles A–C, Cytotoxic Indole Diterpenes from the Mangrove-Derived Fungus Eupenicillium sp. HJ002. J. Nat. Prod. 2018, 81, 1045–1049. [Google Scholar] [CrossRef]
- Jia, S.; Su, X.; Yan, W.; Wu, M.; Wu, Y.; Lu, J.; He, X.; Ding, X.; Xue, Y. Acorenone C: A New Spiro-Sesquiterpene from a Mangrove-Associated Fungus, Pseudofusicoccum sp. J003. Front. Chem. 2021, 9, 780304. [Google Scholar] [CrossRef]
- Wang, L.; Huang, Y.; Huang, C.-H.; Yu, J.-C.; Zheng, Y.-C.; Chen, Y.; She, Z.-G.; Yuan, J. A Marine Alkaloid, Ascomylactam A, Suppresses Lung Tumorigenesis via Inducing Cell Cycle G1/S Arrest through ROS/Akt/Rb Pathway. Mar. Drugs 2020, 18, 494. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Z.; Huang, Y.; Liu, L.; He, J.; Wang, L.; Yuan, J.; She, Z. Ascomylactams A–C, Cytotoxic 12- or 13-Membered-Ring Macrocyclic Alkaloids Isolated from the Mangrove Endophytic Fungus Didymella sp. CYSK-4, and Structure Revisions of Phomapyrrolidones A and C. J. Nat. Prod. 2019, 82, 1752–1758. [Google Scholar] [CrossRef]
- Wang, P.; Cui, Y.; Cai, C.; Chen, H.; Dai, Y.; Chen, P.; Kong, F.; Yuan, J.; Song, X.; Mei, W.; et al. Two New Succinimide Derivatives Cladosporitins A and B from the Mangrove-derived Fungus Cladosporium sp. HNWSW-1. Mar. Drugs 2018, 17, 4. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, X.; Feng, H.; Dai, J.; Li, J.; Che, Q.; Gu, Q.; Zhu, T.; Li, D. Penicisulfuranols A–F, Alkaloids from the Mangrove Endophytic Fungus Penicillium janthinellum HDN13-309. J. Nat. Prod. 2017, 80, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.-H.; Wang, C.-Y.; Mándi, A.; Li, X.-M.; Hu, X.-Y.; Kassack, M.U.; Kurtán, T.; Wang, B.-G. Three Diketopiperazine Alkaloids with Spirocyclic Skeletons and One Bisthiodiketopiperazine Derivative from the Mangrove-Derived Endophytic Fungus Penicillium brocae MA-231. Org. Lett. 2016, 18, 5304–5307. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Guo, W.; Wu, L.; Zhu, T.; Gu, Q.; Li, D.; Che, Q. Saroclazines A–C, thio-diketopiperazines from mangrove-derived fungi Sarocladium kiliense HDN11-84. Arch. Pharmacal Res. 2017, 41, 30–34. [Google Scholar] [CrossRef]
- Cai, J.; Wang, X.; Yang, Z.; Tan, Y.; Peng, B.; Liu, Y.; Zhou, X. Thiodiketopiperazines and Alkane Derivatives Produced by the Mangrove Sediment–Derived Fungus Penicillium ludwigii SCSIO 41408. Front. Microbiol. 2022, 13, 857041. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wang, Y.; Li, L.; Tang, M.; Meng, Q.; Zhang, C.; Hua, E.; Pei, Y.; Sun, Y. New Cytotoxic Cytochalasans from a Plant-Associated Fungus Chaetomium globosum kz-19. Mar. Drugs 2021, 19, 438. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, W.; Zou, G.; Wang, G.; Kang, W.; Yuan, J.; She, Z. Cytotoxic Bromine- and Iodine-Containing Cytochalasins Produced by the Mangrove Endophytic Fungus Phomopsis sp. QYM-13 Using the OSMAC Approach. J. Nat. Prod. 2022, 85, 1229–1238. [Google Scholar] [CrossRef] [PubMed]
- Su, J.-H.; Wang, M.-Q.; Li, Y.-Z.; Lin, Y.-S.; Gu, J.-Y.; Zhu, L.-P.; Yang, W.-Q.; Jiang, S.-Q.; Zhao, Z.-X.; Sun, Z.-H. Rare cytochalasans isolated from the mangrove endophytic fungus Xylaria arbuscula. Fitoterapia 2022, 157, 105124. [Google Scholar] [CrossRef]
- Huang, S.; Chen, H.; Li, W.; Zhu, X.; Ding, W.; Li, C. Bioactive Chaetoglobosins from the Mangrove Endophytic Fungus Penicillium chrysogenum. Mar. Drugs 2016, 14, 172. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Zhou, D.; Liang, F.; Wu, Z.; She, Z.; Li, C. Penochalasin K, a new unusual chaetoglobosin from the mangrove endophytic fungus Penicillium chrysogenum V11 and its effective semi-synthesis. Fitoterapia 2017, 123, 23–28. [Google Scholar] [CrossRef]
- Wei, N.; Zhao, J.; Wu, G.; Cao, W.; Luo, P.; Zhang, Z.; Chen, G.; Wen, L. Rapid Screening and Identification of Antitumor Ingredients from the Mangrove Endophytic Fungus Using an Enzyme-Immobilized Magnetic Nanoparticulate System. Molecules 2021, 26, 2255. [Google Scholar] [CrossRef]
- Williams, K.; Greco, C.; Bailey, A.M.; Willis, C.L. Core Steps to the Azaphilone Family of Fungal Natural Products. ChemBioChem 2021, 22, 3027–3036. [Google Scholar] [CrossRef]
- Xia, D.; Liu, H.; Cheng, X.; Maraswami, M.; Chen, Y.; Lv, X. Recent Developments of Coumarin-based Hybrids in Drug Discovery. Curr. Top. Med. Chem. 2022, 22, 269–283. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.-D.; Jiang, Y.-Y.; Guo, F.-X.; Chen, L.-X.; Xu, L.-L.; Zhang, W.; Liu, B. The antitumor activity of naturally occurring chromones: A review. Fitoterapia 2019, 135, 114–129. [Google Scholar] [CrossRef] [PubMed]
- Evidente, A. Fungal bioactive macrolides. Nat. Prod. Rep. 2022, 39, 1591–1621. [Google Scholar] [CrossRef] [PubMed]
- Veríssimo, A.C.S.; Pinto, D.C.G.A.; Silva, A.M.S. Marine-Derived Xanthone from 2010 to 2021: Isolation, Bioactivities and Total Synthesis. Mar. Drugs 2022, 20, 347. [Google Scholar] [CrossRef]
- Wawrzyn, G.T.; Bloch, S.E.; Schmidt-Dannert, C. Chapter Five—Discovery and Characterization of Terpenoid Biosynthetic Pathways of Fungi. In Methods in Enzymology; Hopwood, D.A., Ed.; Academic Press: Cambridge, MA, USA, 2012; Volume 515, pp. 83–105. [Google Scholar]
- Abu-Izneid, T.; Rauf, A.; Shariati, M.A.; Khalil, A.A.; Imran, M.; Rebezov, M.; Uddin, S.; Mahomoodally, M.F.; Rengasamy, K.R. Sesquiterpenes and their derivatives-natural anticancer compounds: An update. Pharmacol. Res. 2020, 161, 105165. [Google Scholar] [CrossRef]
- Islam, M.T. Diterpenes and Their Derivatives as Potential Anticancer Agents. Phytother. Res. 2017, 31, 691–712. [Google Scholar] [CrossRef]
- Wibowo, J.T.; Ahmadi, P.; Rahmawati, S.I.; Bayu, A.; Putra, M.Y.; Kijjoa, A. Marine-Derived Indole Alkaloids and Their Biological and Pharmacological Activities. Mar. Drugs 2022, 20, 3. [Google Scholar] [CrossRef]
- Ma, Y.-M.; Liang, X.-A.; Kong, Y.; Jia, B. Structural Diversity and Biological Activities of Indole Diketopiperazine Alkaloids from Fungi. J. Agric. Food Chem. 2016, 64, 6659–6671. [Google Scholar] [CrossRef]
- Trendowski, M. Recent Advances in the Development of Antineoplastic Agents Derived from Natural Products. Drugs 2015, 75, 1993–2016. [Google Scholar] [CrossRef]
- Zhang, Q.-T.; Liu, Z.-D.; Wang, Z.; Wang, T.; Wang, N.; Wang, N.; Zhang, B.; Zhao, Y.-F. Recent Advances in Small Peptides of Marine Origin in Cancer Therapy. Mar. Drugs 2021, 19, 115. [Google Scholar] [CrossRef] [PubMed]
- Găman, A.M.; Egbuna, C.; Găman, M.-A. Chapter 6—Natural bioactive lead compounds effective against haematological malignancies. In Phytochemicals as Lead Compounds for New Drug Discovery; Elsevier: Amsterdam, The Netherlands, 2020; pp. 95–115. [Google Scholar] [CrossRef]
- Chaudhry, G.-E.; Akim, A.M.; Sung, Y.Y.; Sifzizul, T.M.T. Cancer and apoptosis: The apoptotic activity of plant and marine natural products and their potential as targeted cancer therapeutics. Front. Pharmacol. 2022, 13, 842376. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.-L.; Gong, Y.; Ji, P.; Xie, Y.-F.; Jiang, Y.-Z.; Liu, G.-Y. Targeting nucleotide metabolism: A promising approach to enhance cancer immunotherapy. J. Hematol. Oncol. 2022, 15, 45. [Google Scholar] [CrossRef] [PubMed]
- Zanoni, M.; Pegoraro, A.; Adinolfi, E.; De Marchi, E. Emerging roles of purinergic signaling in anti-cancer therapy resistance. Front. Cell Dev. Biol. 2022, 10, 1006384. [Google Scholar] [CrossRef] [PubMed]
- Vecchio, E.; Caiazza, C.; Mimmi, S.; Avagliano, A.; Iaccino, E.; Brusco, T.; Nisticò, N.; Maisano, D.; Aloisio, A.; Quinto, I.; et al. Metabolites Profiling of Melanoma Interstitial Fluids Reveals Uridine Diphosphate as Potent Immune Modulator Capable of Limiting Tumor Growth. Front. Cell Dev. Biol. 2021, 9, 730726. [Google Scholar] [CrossRef]
- Solari, J.I.G.; Filippi-Chiela, E.; Pilar, E.S.; Nunes, V.; Gonzalez, E.; Figueiró, F.; Andrade, C.F.; Klamt, F. Damage-associated molecular patterns (DAMPs) related to immunogenic cell death are differentially triggered by clinically relevant chemotherapeutics in lung adenocarcinoma cells. BMC Cancer 2020, 20, 474. [Google Scholar] [CrossRef]
- Ocadlikova, D.; Iannarone, C.; Redavid, A.R.; Cavo, M.; Curti, A. A Screening of Antineoplastic Drugs for Acute Myeloid Leukemia Reveals Contrasting Immunogenic Effects of Etoposide and Fludarabine. Int. J. Mol. Sci. 2020, 21, 6802. [Google Scholar] [CrossRef]
- Schneiders, F.L.; Scheper, R.J.; von Blomberg, B.M.E.; Woltman, A.M.; Janssen, H.L.; van den Eertwegh, A.J.; Verheul, H.M.; de Gruijl, T.D.; van der Vliet, H.J. Clinical experience with α-galactosylceramide (KRN7000) in patients with advanced cancer and chronic hepatitis B/C infection. Clin. Immunol. 2011, 140, 130–141. [Google Scholar] [CrossRef]
- Wu, C.; Wang, H.; Lin, M.; Chu, L.; Liu, R. Radiolabeled nucleosides for predicting and monitoring the cancer therapeutic efficacy of chemodrugs. Curr. Med. Chem. 2012, 19, 3315–3324. [Google Scholar] [CrossRef]
Type | Source | Compound | Anti-Cancer Type | Cytotoxicity (IC50) | Reference |
---|---|---|---|---|---|
Polyketides | |||||
Azaphilones | Diaporthe sp. SCSIO 41011 | Isochromophilone D (1) | renal cancer | ACHN (14 μM), 786-O (8.9 μM), OS-RC-2 (13 μM) | [17] |
Isochromophilone F (2) | renal cancer | ACHN (13 μM), 786-O (10 μM), OS-RC-2 (38 μM) | |||
epi-isochromophilone II (3) | renal cancer | ACHN (4.4 μM), 786-O (3.0 μM), OS-RC-2 (3.9 μM) | |||
Coumarins and isocoumarins | Aspergillus sp. HN15-5D; Fusarium sp. 2ST2 | Aspergisocoumrin A (4) | breast cancer | MDA-MB-435 (5.08 ± 0.88 μM) | [18] |
liver cancer | HepG2 (43.70 ± 1.26 μM) | ||||
lung cancer | H460 (21.53 ± 1.37 μM); A549 (6.2 ± 0.2 μM) | [18,19] | |||
Aspergillus sp. HN15-5D | Aspergisocoumrin B (5) | breast cancer | MDA-MB-435 (5.08 ± 0.88 μM) | [18] | |
Chromones | Colletotrichum gloeosporioides | (5R,7S)-5,7-dihydroxy-2-propyl-5,6,7,8-tetrahydro-4H-chromen-4-one (6) | lung cancer | A549 (94.49 μM) | [20] |
Penicillium sp. SCSIO041218 | Penixanthone C (7) | breast cancer | K562 (55.2 μM), MCF-7 (61.1 μM) | [21] | |
liver cancer | Huh-7 (67.5 μM) | ||||
Penixanthone D (8) | breast cancer | K562 (56.5 μM), MCF-7 (58.6 μM) | |||
liver cancer | Huh-7 (64.2 μM) | ||||
Cladosporium sp. OUCMDZ-302 | 7-O-α-D-ribosyl-5-hydroxy-2-propylchromone (9) | lung cancer | H1975 (10.0 μM) | [22] | |
Fusarium sp. 2ST2 | 4H-1-benzopyran-4-one-2,3-dihydro-5-hydroxy-8- (hydroxylmethyl)-2-methyl (10) | breast cancer | MDA-MB-435 (3.8 ± 0.3 μM) | [19] | |
liver cancer | A549 (5.6 ± 1.3 μM) | ||||
Lactones | Penicillium sp. (HS-N-27); Penicillium sp. (HS-N-29) | Brefeldin A (11) | liver cancer | A549 (0.04 μM) | [23,24] |
colon cancer | HCT-116 (0.03 μM) | ||||
glioma | SF-539 (0.04 μM) | ||||
melanoma | UACC-62 (0.02 μM) | ||||
ovarian cancer | OVCAR-3 (0.03 μM) | ||||
renal cancer | SN12C (0.09 μM) | ||||
prostate cancer | PC3 (0.05 μM) | ||||
breast cancer | MCF7 (0.02 μM) | ||||
Penicillium variabile (co-culture with Talaromyces aculeatus) | Nafuredin B (12) | cervical cancer | HeLa (5.5 μM) | [25] | |
renal cancer | K562 (2.9 μM) | ||||
colon cancer | HCT-116 (1.4 μM), HL-60 (1.2 μM) | ||||
lung cancer | A549 (5.1 μM) | ||||
breast cancer | MCF-7 (9.8 μM) | ||||
Aspergillus sydowii #2B | Butyrolactone-I (13) | prostate cancer | VCaP (1.92 ± 0.82 μM) | [26] | |
(±)-Pyrenocine S (14) | prostate cancer | VCaP (20.06 ± 2.01 μM) | |||
Pyrenocine A (15) | prostate cancer | VCaP (7.92 ± 0.86 μM) | |||
(±)-Pyrenocine E (16) | prostate cancer | VCaP (10.13 ± 0.88 μM) | |||
Benzoates | Lasiodiplodia sp. 318# | 2,4-Dihydroxy-6-nonylbenzoate (17) | pituitary adenoma | MMQ (5.29 μM), GH3 (13.05 μM) | [27] |
Ethyl-2,4-dihydroxy-6-(80 -hydroxynonyl)- benzoate (18) | breast cancer | MDA-MB-435 (10.13 μM) | [28] | ||
liver cancer | HepG2 (12.50 μM), A549 (13.31 μM) | ||||
colon cancer | HCT-116 (11.92 μM) | ||||
monocytic lymphoma | THP1 (39.74 μM) | ||||
Xanthones | Penicillium sp. SYFz-1 | Penixanthone A (19) | liver cancer | H1975 | [29] |
breast cancer | MCF-7 | ||||
renal cancer | K562 | ||||
Aspergillus vericolor | Versixanthone G (20) | colon cancer | HL-60 (13.4 μM), HCT-116 (16.2 μM) | [30] | |
renal cancer | K562 (20.9 μM) | ||||
lung cancer | A549 (17.8 μM), H1975 (9.8 μM) | ||||
stomach cancer | MGC803 (4.6 μM), | ||||
ovarian cancer | HO-8910 (9.6 μM), | ||||
Versixanthone H (21) | colon cancer | HL-60 (6.9 μM), HCT-116 (15.2 μM) | |||
renal cancer | K562 (22.1 μM) | ||||
lung cancer | A549 (19.2 μM), H1975 (5.3 μM) | ||||
stomach cancer | MGC803 (6.2 μM) | ||||
ovarian cancer | HO-8910 (6.9 μM) | ||||
Versixanthone L (22) | colon cancer | HL-60 (0.5 μM), HCT-116 (1.2 μM) | |||
renal cancer | K562 (1.1 μM) | ||||
lung cancer | A549 (1.6 μM) | ||||
stomach cancer | MGC803 (1.1 μM) | ||||
ovarian cancer | HO-8910 (1.5 μM) | ||||
Versixanthone M (23) | colon cancer | HL-60 (0.9 μM), HCT-116 (0.5 μM) | |||
renal cancer | K562 (0.4 μM) | ||||
lung cancer | A549 (11.7 μM), H1975 (3.5 μM) | ||||
stomach cancer | MGC803 (0.9 μM) | ||||
ovarian cancer | HO-8910 (1.4 μM) | ||||
Aspergillus versicolor HDN1009 | Versixanthone N (24) | colon cancer | HL-60 (2.7 μM) | [31] | |
renal cancer | K562 (9.1 μM) | ||||
lung cancer | H1975 (8.8 μM) | ||||
stomach cancer | MGC803 (1.7 μM) | ||||
ovarian cancer | HO-8910 (8.5 μM) | ||||
Versixanthone O (25) | colon cancer | HL-60 (8.7 μM) | |||
renal cancer | K562 (16.1 μM) | ||||
lung cancer | H1975 (8.5 μM) | ||||
stomach cancer | MGC803 (1.8 μM) | ||||
ovarian cancer | HO-8910 (6.7 μM) | ||||
Peniophora incarnata Z4 | Incarxanthone B (26) | melanoma | A375 (8.6 μM) | [32] | |
colon cancer | HL-60 (4.9 μM) | ||||
breast cancer | MCF-7 (6.5 μM) | ||||
Aspergillus sydowii #2B | Xanthoradone A (27) | prostate cancer | VCaP (4.19 ± 1.02 μM) | [26] | |
Benzophenones | Diaporthe sp. SCSIO 41011 | Penibenzophenone B (28) | lung cancer | A549 (15.7 µg/mL) | [33] |
Quinones | Lasiodiplodia theobromae ZJ-HQ1 | Chloropreussomerin A (29) | lung cancer | A549 (8.5 ± 0.9 μM) | [34] |
liver cancer | HepG2 (13 ± 1 μM) | ||||
cervical cancer | HeLa (19 ± 1 μM) | ||||
breast cancer | MCF-7 (5.9 ± 0.4 μM) | ||||
Chloropreussomerin B (30) | lung cancer | A549 (8.9 ± 0.6 μM) | |||
liver cancer | HepG2 (7.7 ± 0.1 μM) | ||||
cervical cancer | HeLa (27 ± 3 μM) | ||||
breast cancer | MCF-7 (6.2 ± 0.4 μM) | ||||
Preussomerin M (31) | lung cancer | A549 (36.1 ± 1.2 μM) | |||
liver cancer | HepG2 (83 ± 2 μM) | ||||
breast cancer | MCF-7 (13 ± 1 μM) | ||||
Preussomerin K (32) | lung cancer | A549 (5.4 ± 0.3 μM) | |||
liver cancer | HepG2 (3.8 ± 0.9 μM) | ||||
cervical cancer | HeLa (15 ± 1 μM) | ||||
breast cancer | MCF-7 (2.5 ± 0.2 μM) | ||||
Preussomerin H (33) | lung cancer | A549 (9.4 ± 0.8 μM) | |||
liver cancer | HepG2 (4.4 ± 0.5 μM) | ||||
cervical cancer | HeLa (19 ± 2 μM) | ||||
breast cancer | MCF-7 (2.6 ± 0.2 μM) | ||||
Preussomerin G (34) | lung cancer | A549 (6.2 ± 0.1 μM) | |||
liver cancer | HepG2 (8.5 ± 0.8 μM) | ||||
cervical cancer | HeLa (14 ± 1 μM) | ||||
breast cancer | MCF-7 (4.2 ± 0.6 μM) | ||||
Preussomerin F (35) | lung cancer | A549 (7.7 ± 0.50 μM) | |||
liver cancer | HepG2 (3.6 ± 0.6 μM) | ||||
cervical cancer | HeLa (18 ± 1 μM) | ||||
breast cancer | MCF-7 (3.1 ± 0.2 μM) | ||||
Preussomerin D (36) | lung cancer | A549 (6.6 ± 0.4 μM) | |||
liver cancer | HepG2 (38 ± 2 μM) | ||||
cervical cancer | HeLa (21 ± 1 μM) | ||||
breast cancer | MCF-7 (9.8 ± 0.4 μM) | ||||
Ymf 1029 E (37) | lung cancer | A549 (76.2 ± 1.7 μM) | |||
Preussomerin A (38) | lung cancer | A549 (40.2 ± 1.8 μM) | |||
breast cancer | MCF-7 (71 ± 2 μM) | ||||
Aspergillus sydowii #2B | (+)-3,3′-7,7′-8,8′ -hexahydroxy-5,5′-dimethyl-bianthra-quinone (39) | prostate cancer | VCaP (33.36 ± 1.42 μM) | [26] | |
Phenols, phenyl aldehydes, and phenolic acids | Cladosporium sp. HNWSW-1 | Cladoslide A (40) | renal cancer | K562 (13.10 ± 0.08 μM) | [35] |
Aspergillus candidus (HS-Y-23) | Terphenyllin (41) | cervical cancer | HeLa (19.0 μM) | [23] | |
Aspergillus candidus LDJ-5 | Asperterphenyllin G (42) | lung cancer | A549 (0.4 μM) | [36] | |
liver cancer | BEL-7402 (6.0 μM) | ||||
cervical cancer | HeLa (1.7 μM) | ||||
neuroblastoma | SH-SY5Y (0.6 μM) | ||||
glioma | U87 (0.9 μM) | ||||
colon cancer | HCT-116 (0.8 μM) | ||||
stomach cancer | MGC-803 (1.0 μM) | ||||
ovarian cancer | HO-8910 (1.3 μM) | ||||
Aspergillus sp. SCSIO41407 | Flavoglaucin (43) | lung cancer | A549 (22.2 μM) | [37] | |
Cytospora sp. | Integracin A (44) | liver cancer | HepG2 (5.98 ± 0.12 μM) | [38] | |
Integracin B (45) | liver cancer | HepG2 (9.97 ± 0.06 μM) | |||
Phoma sp. SYSU-SK-7 | Colletotric A (46) | lung cancer | A549 (37.73 μM) | [39] | |
breast cancer | MAD-MB-435 (37.01 μM) | ||||
Colletotric B (47) | lung cancer | A549 (20.75 μM) | |||
breast cancer | MAD-MB-435 (16.82 μM) | ||||
Aspergillus candidus LDJ-5 | Prenylterphenyllin F (48) | lung cancer | A549 (10.2 μM) | [40] | |
liver cancer | BEL-7402 (12.4 μM) | ||||
cervical cancer | HeLa (8.3 μM) | ||||
neuroblastoma | SH-SY5Y (10.4 μM) | ||||
colon cancer | HCT-116 (9.3 μM), HL-60 (7.1 μM) | ||||
stomach cancer | MGC-803 (11.0 μM) | ||||
Prenylterphenyllin G (49) | lung cancer | A549 (16.3 μM) | |||
liver cancer | BEL-7402 (12.6 μM) | ||||
cervical cancer | HeLa (11.5 μM) | ||||
neuroblastoma | SH-SY5Y (12.4 μM) | ||||
colon cancer | HCT-116 (16.9 μM) | ||||
stomach cancer | MGC-803 (12.5 μM) | ||||
Prenylterphenyllin H (50) | lung cancer | A549 (0.4 μM) | |||
cervical cancer | HeLa (2.0 μM) | ||||
neuroblastoma | SH-SY5Y (0.6 μM) | ||||
glioma | U87 (13.8 μM) | ||||
colon cancer | HCT-116 (0.5 μM) | ||||
stomach cancer | MGC-803 (0.7 μM) | ||||
Prenylterphenyllin I (51) | lung cancer | A549 (14.8 μM) | |||
liver cancer | BEL-7402 (11.1 μM) | ||||
cervical cancer | HeLa (11.4 μM) | ||||
neuroblastoma | SH-SY5Y (16.7 μM) | ||||
colon cancer | HCT-116 (14.7 μM) | ||||
stomach cancer | MGC-803 (14.5 μM) | ||||
Prenylterphenyllin J (52) | lung cancer | A549 (7.6 μM) | |||
renal cancer | K562 (15.9 μM) | ||||
cervical cancer | HeLa (8.5 μM) | ||||
neuroblastoma | SH-SY5Y (15.6 μM) | ||||
colon cancer | HCT-116 (6.2 μM) | ||||
stomach cancer | MGC-803 (8.1 μM) | ||||
Prenylcandidusin E (53) | lung cancer | A549 (19.1 μM) | |||
liver cancer | BEL-7402 (14.9 μM) | ||||
renal cancer | K562 (5.0 μM) | ||||
cervical cancer | HeLa (14.0 μM) | ||||
neuroblastoma | SH-SY5Y (17.9 μM) | ||||
glioma | U87 (10.3 μM) | ||||
colon cancer | HCT-116 (19.8 μM) | ||||
stomach cancer | MGC-803 (16.3 μM) | ||||
Prenylcandidusin G (54) | lung cancer | A549 (2.8 μM) | |||
liver cancer | BEL-7402 (16.0 μM) | ||||
cervical cancer | HeLa (10.1 μM) | ||||
neuroblastoma | SH-SY5Y (2.2 μM) | ||||
colon cancer | HCT-116 (0.9 μM), HL-60 (3.4 μM) | ||||
stomach cancer | MGC-803 (1.4 μM) | ||||
Depsidones | Trichoderma sp. 307 (co-culture with Acinetobacter johnsonii B2) | Botryorhodine H (55) | pituitary adenoma | MMQ (3.09 μM), GH3 (3.64 μM) | [41] |
Botryorhodine C (56) | pituitary adenoma | MMQ (19.72 μM), GH3 (31.62 μM) | |||
Terpenoids | |||||
Sesquiterpenoids | Eutypella sp. 1–15 | 13-Hydroxy-3,8,7(11)-eudesmatrien-12,8-olide (57) | mantle cell lymphoma | JEKO-1 (8.4 μM) | [42] |
liver cancer | HepG2 (28.5 μM) | ||||
13-Hydroxy-3,7(11)-eudesmadien-12,8-olide (58) | liver cancer | HepG2 (48.4 μM) | |||
Penicillium sp. J-54 | Penicieudesmol B (59) | renal cancer | K562 (90.1 μM) | [43] | |
Aspergillus ustus 094102 | Ustusolate I (60) | thyroid cancer | CAL-62 (16.3 μM) | [44] | |
osteosarcoma | MG-63 (10.1 μM) | ||||
Diterpenes | Mucor irregularis QEN-189 | Rhizovarin A (61) | lung cancer | A549 (11.5 μM) | [45] |
colon cancer | HL60 (9.6 μM) | ||||
Rhizovarin B (62) | lung cancer | A549 (6.3 μM) | |||
colon cancer | HL60 (5.0 μM) | ||||
Rhizovarin E (63) | lung cancer | A549 (9.2 μM) | |||
Penitrem A (64) | lung cancer | A549 (8.4 μM) | |||
colon cancer | HL60 (7.0 μM) | ||||
Penitrem C (65) | lung cancer | A549 (8.0 μM) | |||
colon cancer | HL60 (4.7 μM) | ||||
Penitrem F (66) | lung cancer | A549 (8.2 μM) | |||
colon cancer | HL60 (3.3 μM) | ||||
3b-hydroxy-4b- desoxypaxilline (67) | lung cancer | A549 (4.6 μM) | |||
colon cancer | HL60 (2.6 μM) | ||||
Eupenicillium sp. HJ002 | Penicilindole A (68) | lung cancer | A549 (5.5 μM) | [46] | |
liver cancer | HepG2 (1.5 μM) | ||||
cervical cancer | HeLa (23.3 μM) | ||||
Penicilindole B (69) | lung cancer | A549 (18.6 μM) | |||
liver cancer | HepG2 (47.2 μM) | ||||
cervical cancer | HeLa (20.0 μM) | ||||
Steroids | Pseudofusicoccum sp. J003 | Ergosterol (70) | colon cancer | HL-60, SW480 | [47] |
Alkaloids | |||||
Amines and amides | Didymella sp. CYSK-4 | Ascomylactam A (71) | breast cancer | MDA-MB-435 (4.9 μM), MDA-MB-231 (5.9 μM) | [48,49] |
glioma | SNB19 (6.8 μM) | ||||
colon cancer | HCT116 (5.5 μM) | ||||
lung cancer | NCI-H460 (4.4 μM) | ||||
prostate cancer | PC-3 (5.7 μM) | ||||
Ascomylactam C (72) | breast cancer | MDA-MB-435 (7.8 μM), MDA-MB-231 (5.1 μM) | |||
glioma | SNB19 (7.8 μM) | ||||
colon cancer | HCT116 (4.2 μM) | ||||
lung cancer | NCI-H460 (4.4 μM) | ||||
prostate cancer | PC-3 (7.5 μM) | ||||
Fusarium sp. 2ST2 | Fusarisetin E (73) | lung cancer | A549 (8.7 μM) | [19] | |
Fusarisetin F (74) | lung cancer | A549 (4.3 μM) | |||
Cladosporium sp. HNWSW-1 | Cladosporitin B (75) | liver cancer | BEL-7042 (29.4 ± 0.35 μM) | [50] | |
renal cancer | K562 (25.6 ± 0.47 μM) | ||||
stomach cancer | SGC-7901 (41.7 ± 0.71 μM) | ||||
Talaroconvolutin A (76) | cervical cancer | HeLa (14.9 ± 0.21 μM) | |||
liver cancer | BEL-7042 (26.7 ± 1.1 μM) | ||||
Diketpiperazines | Penicillium janthinellum HDN13-309 | Penicisulfuranol A (77) | cervical cancer | HeLa (0.5 μM) | [51] |
colon cancer | HL-60 (0.1 μM) | ||||
Penicisulfuranol B (78) | cervical cancer | HeLa (3.9 μM) | |||
colon cancer | HL-60 (1.6 μM) | ||||
Penicisulfuranol C (79) | cervical cancer | HeLa (0.3 μM) | |||
colon cancer | HL-60 (1.2 μM) | ||||
Penicillium brocae MA-231 | Spirobrocazine C (80) | ovarian cancer | A2780 (59 μM) | [52] | |
Brocazine G (81) | ovarian cancer | A2780 (0.664 μM), A2780 CisR (0.661 μM) | |||
Sarocladium kiliense HDN11-84 | Saroclazine B (82) | cervical cancer | HeLa (4.2 μM) | [53] | |
Penicillium ludwigii SCSIO 41408 | Adametizine C (83) | prostate cancer | 22Rv1 (13.9 μM) | [54] | |
Compound (84) | prostate cancer | 22Rv1 (13.0 μM) | |||
Compound (85) | prostate cancer | 22Rv1 (13.6 μM), PC-3 (5.1 μM) | |||
Cytochalasans | Chaetomium globosum kz-19 | Phychaetoglobin C (86) | cervical cancer | HeLa (16.1 ± 0.3 μM) | [55] |
lung cancer | A549 (22.3 ± 0.4 μM) | ||||
Phychaetoglobin D (87) | cervical cancer | HeLa (9.2 ± 0.3 μM) | |||
lung cancer | A549 (13.7 ± 0.2 μM) | ||||
Chaetoglobosin C (88) | cervical cancer | HeLa (10.5 ± 0.1 μM) | |||
lung cancer | A549 (7.6 ± 0.2 μM) | ||||
Chaetoglobosin E (89) | cervical cancer | HeLa (7.5 ± 0.2 μM) | |||
lung cancer | A549 (12.3 ± 0.3 μM) | ||||
Chaetoglobosin G (90) | cervical cancer | HeLa (3.7 ± 0.3 μM) | |||
lung cancer | A549 (7.3 ± 0.5 μM) | ||||
Chaetoglobosin V (91) | cervical cancer | HeLa (3.8 ± 0.3 μM) | |||
lung cancer | A549 (11.0 ± 0.2 μM) | ||||
Chaetoglobosin J (92) | lung cancer | A549 (13.4 ± 0.1 μM) | |||
Penochalasin J (93) | lung cancer | A549 (14.9 ± 0.2 μM) | |||
Prochaetoglobosin IIIed (94) | cervical cancer | A549 (17.3 ± 0.3 μM) | |||
lung cancer | HeLa (12.2 ± 0.1 μM) | ||||
Phomopsis sp. QYM-13 | Phomopchalasin E (95) | breast cancer | MDA-MB-435 (7.4 ± 1.5 μM) | [56] | |
Cytochalasin U (96) | breast cancer | MDA-MB-435 (8.2 ± 0.9 μM) | |||
glioma | SNB19 (6.9 ± 1.4 μM) | ||||
Cytochalasin J (97) | breast cancer | MDA-MB-435 (4.9 ± 0.6 μM) | |||
Cytochalasin H (98) | breast cancer | MDA-MB-435 (0.2 ± 0.1 μM) | |||
Xylaria arbuscula | 12-hydroxylcytochalasin Q (99) | colorectal adenocarcinoma | HCT15 (13.5 μM) | [57] | |
Zygosporin D (100) | colorectal adenocarcinoma | HCT15 (13.4 μM) | |||
Penicillium chrysogenum V11 | Penochalasin I (101) | breast cancer | MDA-MB-435 (7.55 ± 0.71 μM) | [58] | |
stomach cancer | SGC-7901 (7.32 ± 0.68 μM) | ||||
lung cancer | A549 (16.13 ± 0.82 μM) | ||||
Penochalasin J (102) | breast cancer | MDA-MB-435 (36.68 ± 0.90 μM) | |||
stomach cancer | SGC-7901 (37.70 ± 1.30 μM) | ||||
lung cancer | A549 (35.93 ± 0.66 μM) | ||||
Chaetoglobosin G (103) | breast cancer | MDA-MB-435 (38.77 ± 0.65 μM) | |||
stomach cancer | SGC-7901 (25.86 ± 0.84 μM) | ||||
lung cancer | A549 (27.63 ± 0.45 μM) | ||||
Chaetoglobosin F (104) | breast cancer | MDA-MB-435 (37.77 ± 0.41 μM) | |||
stomach cancer | SGC-7901 (26.53 ± 0.56 μM) | ||||
lung cancer | A549 (27.72 ± 0.81 μM) | ||||
Chaetoglobosin C (105) | breast cancer | MDA-MB-435 (19.97 ± 1.03 μM) | |||
stomach cancer | SGC-7901 (15.36 ± 0.89 μM) | ||||
lung cancer | A549 (17.82 ± 0.85 μM) | ||||
Chaetoglobosin A (106) | breast cancer | MDA-MB-435 (37.56 ± 0.95 μM) | |||
stomach cancer | SGC-7901 (7.48 ± 1.01 μM) | ||||
lung cancer | A549 (6.56 ± 0.67μM) | ||||
Chaetoglobosin E (107) | lung cancer | A549 (36.63 ± 0.45 μM) | |||
Cytoglobosin C (108) | breast cancer | MDA-MB-435 (12.58 ± 0.90 μM) | |||
stomach cancer | SGC-7901 (8.15 ± 0.64 μM) | ||||
lung cancer | A549 (3.35 ± 0.47 μM) | ||||
Penicillium chrysogenum V11 | Penochalasin K (109) | breast cancer | MDA-MB-435 (4.65 ± 0.45 μM) | [59] | |
stomach cancer | SGC-7901 (5.32 ± 0.58 μM) | ||||
lung cancer | A549 (8.73 ± 0.62 μM) | ||||
Peptides | |||||
Cyclic peptides | Pseudopithomyces sp. 1512101 | Fusaristatin C (110) | lung cancer | A549 (10.10 μM) | [60] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Luo, X.; Zhang, T.; Li, S.; Liu, S.; Ma, Y.; Wang, Z.; Jin, X.; Liu, J.; Wang, X. Anti-Tumor Secondary Metabolites Originating from Fungi in the South China Sea’s Mangrove Ecosystem. Bioengineering 2022, 9, 776. https://doi.org/10.3390/bioengineering9120776
Luo Y, Luo X, Zhang T, Li S, Liu S, Ma Y, Wang Z, Jin X, Liu J, Wang X. Anti-Tumor Secondary Metabolites Originating from Fungi in the South China Sea’s Mangrove Ecosystem. Bioengineering. 2022; 9(12):776. https://doi.org/10.3390/bioengineering9120776
Chicago/Turabian StyleLuo, Yuyou, Xiongming Luo, Tong Zhang, Siyuan Li, Shuping Liu, Yuxin Ma, Zongming Wang, Xiaobao Jin, Jing Liu, and Xin Wang. 2022. "Anti-Tumor Secondary Metabolites Originating from Fungi in the South China Sea’s Mangrove Ecosystem" Bioengineering 9, no. 12: 776. https://doi.org/10.3390/bioengineering9120776
APA StyleLuo, Y., Luo, X., Zhang, T., Li, S., Liu, S., Ma, Y., Wang, Z., Jin, X., Liu, J., & Wang, X. (2022). Anti-Tumor Secondary Metabolites Originating from Fungi in the South China Sea’s Mangrove Ecosystem. Bioengineering, 9(12), 776. https://doi.org/10.3390/bioengineering9120776