Automated Analysis of Acetaminophen Toxicity on 3D HepaRG Cell Culture in Microbioreactor
Abstract
:1. Introduction
2. Materials and Methods
2.1. 3D Cell Carrier MatriGrid®
2.2. 3D-ACAD—Culture Unit
2.3. Chemicals and Reagents
2.4. Cell Culture
2.5. HepaRG 2D and 3D Culture
2.6. Cell Number and Viability
2.7. 6-Carboxyfluorescein Diacetate Excretion (MRP-2 Transporter Activity)
2.8. Live/Dead Staining
2.9. Immunofluorescence Staining
2.10. SEM Imaging
2.11. Albumin ELISA
2.12. Concentration-Dependent Effect of APAP on Albumin Secretion
2.13. 3D-ACAD—Analysis Unit
2.14. Albumin ELISA with 3D-ACAD
2.15. Effect of APAP on Albumin Secretion of HepaRG Monolayer Cultures
2.16. Statistical Analysis
3. Results
3.1. Characterization of the 3D-Scaffold HepaRG Culture
3.2. Automated Drug Treatment and Measurement of Biomarker Albumin
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scanarotti, C.; Rovida, C.; Penco, S.; Vernazza, S.; Tirendi, S.; Ciliberti, R.; Bassi, A.M. Alternative approach to animal testing and cell cultures, according to European laws. Altex 2017, 34, 441–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caloni, F.; Meloni, M.; Sambuy, Y.; Alloisio, S.; Mazzoleni, G. New alternative models for in vitro toxicology. Altex 2016, 33, 470–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scanarotti, C.; Rovida, C.; Penco, S.; Vernazza, S.; Tirendi, S.; Baldelli, I.; Ciliberti, R.; Bassi, A.M. Giving meaning to alternative methods to animal testing. Altex 2018, 35, 256–257. [Google Scholar] [CrossRef] [Green Version]
- Gherman, C.D.; Catoi, C.; Socaciu, C.; Pintea, A.; Oros, N.A.; Tabaran, F.; Nagy, A.L.; Sambuy, Y.; De Angelis, I.; Coccini, T.; et al. IN vitro toxicology: From INtestine to braIN. Altex 2017, 34, 439–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwab, A.; Meeuwsen, A.; Ehlicke, F.; Hansmann, J.; Mulder, L.; Smits, A.; Walles, H.; Kock, L. Ex vivo culture platform for assessment of cartilage repair treatment strategies. Altex 2017, 34, 267–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Junaid, A.; Mashaghi, A.; Hankemeier, T.; Vulto, P. An end-user perspective on Organ-on-a-Chip: Assays and usability aspects. Curr. Opin. Biomed. Eng. 2017, 1, 15–22. [Google Scholar] [CrossRef]
- Proctor, W.R.; Foster, A.J.; Vogt, J.; Summers, C.; Middleton, B.; Pilling, M.A.; Shienson, D.; Kijanska, M.; Strobel, S.; Kelm, J.M.; et al. Utility of spherical human liver microtissues for prediction of clinical drug-induced liver injury. Arch. Toxicol. 2017, 91, 2849–2863. [Google Scholar] [CrossRef] [PubMed]
- Groeber, F.; Engelhardt, L.; Lange, J.; Kurdyn, S.; Schmid, F.F.; Rucker, C.; Mielke, S.; Walles, H.; Hansmann, J. A first vascularized skin equivalent as an alternative to animal experimentation. Altex 2016, 33, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Daniel, C.R.; Labens, R.; Argyle, D.; Licka, T.F. Extracorporeal perfusion of isolated organs of large animals—Bridging the gap between in vitro and in vivo studies. Altex 2018, 35, 77–98. [Google Scholar] [CrossRef] [Green Version]
- Nirde, P.; Richaud, M.; Dabboue, H.; Reynier, J.P.; Galas, S.; Vincent, L.A.; Moles, J.P.; Marti-Mestres, G.; Chambon, P. 1st INEXO Symposium: Alternative models in vitro, ex ovo and organisms: From research to applications in pathologies and aging. Altex 2018, 35, 123–125. [Google Scholar] [CrossRef] [Green Version]
- Petrik, D.; Myoga, M.H.; Grade, S.; Gerkau, N.J.; Pusch, M.; Rose, C.R.; Grothe, B.; Gotz, M. Epithelial Sodium Channel Regulates Adult Neural Stem Cell Proliferation in a Flow-Dependent Manner. Cell Stem Cell 2018, 22, 865–878.e868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaegh, S.A.M.; Ferrari, F.D.; Zhang, Y.S.; Nabavinia, M.; Mohammad, N.B.; Ryan, J.; Pourmand, A.; Laukaitis, E.; Sadeghian, R.B.; Nadhman, A.; et al. A microfluidic optical platform for real-time monitoring of pH and oxygen in microfluidic bioreactors and organ-on-chip devices. Biomicrofluidics 2016, 10, 044111. [Google Scholar] [CrossRef] [PubMed]
- Weltin, A.; Slotwinski, K.; Kieninger, J.; Moser, I.; Jobst, G.; Wego, M.; Ehret, R.; Urban, G.A. Cell culture monitoring for drug screening and cancer research: A transparent, microfluidic, multi-sensor microsystem. Lab Chip 2014, 14, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Bavli, D.; Prill, S.; Ezra, E.; Levy, G.; Cohen, M.; Vinken, M.; Vanfleteren, J.; Jaeger, M.; Nahmias, Y. Real-time monitoring of metabolic function in liver-on-chip microdevices tracks the dynamics of mitochondrial dysfunction. Proc. Natl. Acad. Sci. USA 2016, 113, E2231–E2240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, F.; Zhuo, S.; Qu, Y.; Choudhury, D.; Wang, Z.; Iliescu, C.; Yu, H. On chip two-photon metabolic imaging for drug toxicity testing. Biomicrofluidics 2017, 11, 034108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.S.; Aleman, J.; Shin, S.R.; Kilic, T.; Kim, D.; Mousavi Shaegh, S.A.; Massa, S.; Riahi, R.; Chae, S.; Hu, N.; et al. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc. Natl. Acad. Sci. USA 2017, 114, E2293–E2302. [Google Scholar] [CrossRef] [Green Version]
- Riahi, R.; Shaegh, S.A.; Ghaderi, M.; Zhang, Y.S.; Shin, S.R.; Aleman, J.; Massa, S.; Kim, D.; Dokmeci, M.R.; Khademhosseini, A. Automated microfluidic platform of bead-based electrochemical immunosensor integrated with bioreactor for continual monitoring of cell secreted biomarkers. Sci. Rep. 2016, 6, 24598. [Google Scholar] [CrossRef]
- Shin, S.R.; Kilic, T.; Zhang, Y.S.; Avci, H.; Hu, N.; Kim, D.; Branco, C.; Aleman, J.; Massa, S.; Silvestri, A.; et al. Label-Free and Regenerative Electrochemical Microfluidic Biosensors for Continual Monitoring of Cell Secretomes. Adv. Sci. 2017, 4, 1600522. [Google Scholar] [CrossRef]
- Berthier, E.; Young, E.W.; Beebe, D. Engineers are from PDMS-land, Biologists are from Polystyrenia. Lab Chip 2012, 12, 1224–1237. [Google Scholar] [CrossRef]
- Fennema, E.; Rivron, N.; Rouwkema, J.; van Blitterswijk, C.; de Boer, J. Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol. 2013, 31, 108–115. [Google Scholar] [CrossRef]
- Ramaiahgari, S.C.; Waidyanatha, S.; Dixon, D.; DeVito, M.J.; Paules, R.S.; Ferguson, S.S. From the Cover: Three-Dimensional (3D) HepaRG Spheroid Model With Physiologically Relevant Xenobiotic Metabolism Competence and Hepatocyte Functionality for Liver Toxicity Screening. Toxicol. Sci. Off. J. Soc. Toxicol. 2017, 159, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Borowiec, J.; Hampl, J.; Gebinoga, M.; Elsarnagawy, T.; Elnakady, Y.A.; Fouad, H.; Almajhadi, F.; Fernekorn, U.; Weise, F.; Singh, S.; et al. Thermoforming techniques for manufacturing porous scaffolds for application in 3D cell cultivation. Mater. Sci. Eng. C 2015, 49, 509–516. [Google Scholar] [CrossRef] [PubMed]
- LeCluyse, E.L.; Witek, R.P.; Andersen, M.E.; Powers, M.J. Organotypic liver culture models: Meeting current challenges in toxicity testing. Crit. Rev. Toxicol. 2012, 42, 501–548. [Google Scholar] [CrossRef] [PubMed]
- Schober, A.; Hampl, J.; Weise, F.; Schlingloff, G.; Fernekorn, U. Method for Manufacturing a Microstructured Device. Patent EP2650256A2, 2013. Available online: https://patents.google.com/patent/EP2650256A2/en (accessed on 25 March 2022).
- Lubberstedt, M.; Muller-Vieira, U.; Mayer, M.; Biemel, K.M.; Knospel, F.; Knobeloch, D.; Nussler, A.K.; Gerlach, J.C.; Zeilinger, K. HepaRG human hepatic cell line utility as a surrogate for primary human hepatocytes in drug metabolism assessment in vitro. J. Pharmacol. Toxicol. Methods 2011, 63, 59–68. [Google Scholar] [CrossRef]
- Szabo, M.; Veres, Z.; Baranyai, Z.; Jakab, F.; Jemnitz, K. Comparison of Human Hepatoma HepaRG Cells with Human and Rat Hepatocytes in Uptake Transport Assays in Order to Predict a Risk of Drug Induced Hepatotoxicity. PLoS ONE 2013, 8, e59432. [Google Scholar] [CrossRef] [Green Version]
- Akbarsha, M.A.; Majumder, A.; Misra, N.; Pellevoisin, C.; Cotovio, J. Futuristic approach to alternatives. Altex 2016, 33, 469–470. [Google Scholar] [CrossRef] [Green Version]
- Tascher, G.; Burban, A.; Camus, S.; Plumel, M.; Chanon, S.; Le Guevel, R.; Shevchenko, V.; Van Dorsselaer, A.; Lefai, E.; Guguen-Guillouzo, C.; et al. In-Depth Proteome Analysis Highlights HepaRG Cells as a Versatile Cell System Surrogate for Primary Human Hepatocytes. Cells 2019, 8, 192. [Google Scholar] [CrossRef] [Green Version]
- Sharanek, A.; Burban, A.; Burbank, M.; Le Guevel, R.; Li, R.; Guillouzo, A.; Guguen-Guillouzo, C. Rho-kinase/myosin light chain kinase pathway plays a key role in the impairment of bile canaliculi dynamics induced by cholestatic drugs. Sci. Rep. 2016, 6, 24709. [Google Scholar] [CrossRef] [Green Version]
- Kanebratt, K.P.; Andersson, T.B. Evaluation of HepaRG cells as an in vitro model for human drug metabolism studies. Drug Metab. Dispos. Biol. Fate Chem. 2008, 36, 1444–1452. [Google Scholar] [CrossRef] [Green Version]
- Aninat, C.; Piton, A.; Glaise, D.; Le Charpentier, T.; Langouet, S.; Morel, F.; Guguen-Guillouzo, C.; Guillouzo, A. Expression of cytochromes P450, conjugating enzymes and nuclear receptors in human hepatoma HepaRG cells. Drug Metab. Dispos. Biol. Fate Chem. 2006, 34, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Guillouzo, A.; Corlu, A.; Aninat, C.; Glaise, D.; Morel, F.; Guguen-Guillouzo, C. The human hepatoma HepaRG cells: A highly differentiated model for studies of liver metabolism and toxicity of xenobiotics. Chem.-Biol. Interact. 2007, 168, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Ullrich, A.; Berg, C.; Hengstler, J.G.; Runge, D. Use of a standardised and validated long-term human hepatocyte culture system for repetitive analyses of drugs: Repeated administrations of acetaminophen reduces albumin and urea secretion. Altex 2007, 24, 35–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernekorn, U.; Hampl, J.; Weise, F.; Augspurger, C.; Hildmann, C.; Klett, M.; Läffert, A.; Gebinoga, M.; Weibezahn, K.-F.; Schlingloff, G.; et al. Microbioreactor design for 3-D cell cultivation to create a pharmacological screening system. Eng. Life Sci. 2011, 11, 133–139. [Google Scholar] [CrossRef]
- Toh, Y.-C.; Lim, T.C.; Tai, D.; Xiao, G.; van Noort, D.; Yu, H. A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab Chip 2009, 9, 2026–2035. [Google Scholar] [CrossRef]
- Lübberstedt, M.; Müller-Vieira, U.; Biemel, K.M.; Darnell, M.; Hoffmann, S.A.; Knöspel, F.; Wönne, E.C.; Knobeloch, D.; Nüssler, A.K.; Gerlach, J.C.; et al. Serum-free culture of primary human hepatocytes in a miniaturized hollow-fibre membrane bioreactor for pharmacological in vitro studies. J. Tissue Eng. Regen. Med. 2015, 9, 1017–1026. [Google Scholar] [CrossRef] [PubMed]
- Miranda, J.P.; Rodrigues, A.; Tostoes, R.M.; Leite, S.; Zimmerman, H.; Carrondo, M.J.; Alves, P.M. Extending hepatocyte functionality for drug-testing applications using high-viscosity alginate-encapsulated three-dimensional cultures in bioreactors. Tissue Eng. Part C Methods 2010, 16, 1223–1232. [Google Scholar] [CrossRef] [PubMed]
- Vivares, A.; Salle-Lefort, S.; Arabeyre-Fabre, C.; Ngo, R.; Penarier, G.; Bremond, M.; Moliner, P.; Gallas, J.F.; Fabre, G.; Klieber, S. Morphological behaviour and metabolic capacity of cryopreserved human primary hepatocytes cultivated in a perfused multiwell device. Xenobiotica 2015, 45, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Altmann, B.; Giselbrecht, S.; Weibezahn, K.F.; Welle, A.; Gottwald, E. The three-dimensional cultivation of the carcinoma cell line HepG2 in a perfused chip system leads to a more differentiated phenotype of the cells compared to monolayer culture. Biomed. Mater. 2008, 3, 034120. [Google Scholar] [CrossRef] [PubMed]
- Gottwald, E.; Giselbrecht, S.; Augspurger, C.; Lahni, B.; Dambrowsky, N.; Truckenmuller, R.; Piotter, V.; Gietzelt, T.; Wendt, O.; Pfleging, W.; et al. A chip-based platform for the in vitro generation of tissues in three-dimensional organization. Lab Chip 2007, 7, 777–785. [Google Scholar] [CrossRef]
- Halldorsson, S.; Lucumi, E.; Gomez-Sjoberg, R.; Fleming, R.M. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens. Bioelectron. 2015, 63, 218–231. [Google Scholar] [CrossRef] [Green Version]
- Geckil, H.; Xu, F.; Zhang, X.; Moon, S.; Demirci, U. Engineering hydrogels as extracellular matrix mimics. Nanomedicine 2010, 5, 469–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, C.; Zhao, L.; Zhou, E.-M.; Xu, J.; Shen, S.; Wang, J. On-Chip Construction of Liver Lobule-like Microtissue and Its Application for Adverse Drug Reaction Assay. Anal. Chem. 2016, 88, 1719–1727. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y.; Stevens, K.R.; Schwartz, R.E.; Alejandro, B.S.; Huang, J.H.; Bhatia, S.N. Micropatterned cell-cell interactions enable functional encapsulation of primary hepatocytes in hydrogel microtissues. Tissue Eng. Part A 2014, 20, 2200–2212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feaser OpenBLT GNU GPL Bootloader. 2017. Available online: https://www.feaser.com/en/openblt.php (accessed on 29 March 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baca, M.; Brauer, D.; Klett, M.; Fernekorn, U.; Singh, S.; Hampl, J.; Groß, G.A.; Mai, P.; Friedel, K.; Schober, A. Automated Analysis of Acetaminophen Toxicity on 3D HepaRG Cell Culture in Microbioreactor. Bioengineering 2022, 9, 196. https://doi.org/10.3390/bioengineering9050196
Baca M, Brauer D, Klett M, Fernekorn U, Singh S, Hampl J, Groß GA, Mai P, Friedel K, Schober A. Automated Analysis of Acetaminophen Toxicity on 3D HepaRG Cell Culture in Microbioreactor. Bioengineering. 2022; 9(5):196. https://doi.org/10.3390/bioengineering9050196
Chicago/Turabian StyleBaca, Martin, Dana Brauer, Maren Klett, Uta Fernekorn, Sukhdeep Singh, Jörg Hampl, G. Alexander Groß, Patrick Mai, Karin Friedel, and Andreas Schober. 2022. "Automated Analysis of Acetaminophen Toxicity on 3D HepaRG Cell Culture in Microbioreactor" Bioengineering 9, no. 5: 196. https://doi.org/10.3390/bioengineering9050196
APA StyleBaca, M., Brauer, D., Klett, M., Fernekorn, U., Singh, S., Hampl, J., Groß, G. A., Mai, P., Friedel, K., & Schober, A. (2022). Automated Analysis of Acetaminophen Toxicity on 3D HepaRG Cell Culture in Microbioreactor. Bioengineering, 9(5), 196. https://doi.org/10.3390/bioengineering9050196