Design, Spectral Characteristics, Photostability, and Possibilities for Practical Application of BODIPY FL-Labeled Thioterpenoid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Conjugate 6
2.3. NMR Spectroscopy
2.4. X-ray
2.5. Spectroscopic Measurements
2.6. Photobleaching
2.7. Biological Assay
3. Results
3.1. Synthesis
3.2. NMR
3.3. X-ray
3.4. Spectral Properties
3.5. Photostability
3.6. Biology
3.7. NMR on Model Membranes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kenry, Y.; Liu, B. Recent Advances of Optical Imaging in the Second Near-Infrared Window. Adv. Mater. 2018, 30, 1802394. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Du, W.; Hu, Z.; Uvdal, K.; Li, L.; Huang, W. Hybrid Rhodamine Fluorophores in the Visible/NIR Region for Biological Imaging. Chem. Int. Ed. 2019, 58, 14026–14043. [Google Scholar] [CrossRef] [PubMed]
- Kue, C.; Ng, S.; Voon, S.; Kamkaew, A.; Chung, L.; Kiew, L.; Lee, H. Recent strategies to improve boron dipyrromethene (BODIPY) for photodynamic cancer therapy: An updated review. Photochem. Photobiol. Sci. 2018, 17, 1691–1708. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Khalid, A.; Verma, R.; Abraham, A.; Qazi, F.; Dong, X.; Liang, G.; Tomljenovic-Hanic, S. Silk Fibroin Coated Magnesium Oxide Nanospheres: A Biocompatible, biodegradable and photostable silk-MgO nanospheres for multifunctional bioimaging. Nanomaterials 2021, 11, 695. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.; Pathak, S.; Srivastava, A.K.; Prawer, S.; Tomljenovic-Hanic, S. ZnO Nanomaterials: Green synthesis, toxicity evaluation and new insights in biomedical applications. J. Alloys Compd. 2021, 876, 160175. [Google Scholar] [CrossRef]
- Khalid, A.; Norello, R.; Abraham, N.A.; Tetienne, J.P.; Karle, J.T.; Lui, W.C.E.; Xia, K.; Tran, A.P.; O’Connor, J.A.; Mann, G.B.; et al. Biocompatible and Biodegradable Magnesium Oxide Nanoparticles with In Vitro Photostable Near-Infrared Emission: Short-Term Fluorescent Markers. Nanomaterials 2019, 9, 1360. [Google Scholar] [CrossRef] [Green Version]
- Morfa, A.J.; Gibson, B.C.; Karg, M.; Karle, T.J.; Greentree, A.D.; Mulvaney, P.; Tomljenovic-Hanic, S. Single-photon emission and quantum characterization of zinc oxide defects. Nano Lett. 2012, 12, 949–954. [Google Scholar] [CrossRef]
- Kaur, P.; Singh, K. Recent advances in the application of BODIPY in bioimaging and chemosensing. J. Mater. Chem. C 2019, 7, 11361–11405. [Google Scholar] [CrossRef]
- Lakshmi, V.; Sharma, R.; Ravikanth, M. Functionalized boron-dipyrromethenes and their applications. Rep. Organ. Chem. 2016, 6, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, S.; Moscatelli, J.; Puchner, E. Live cell super-resolution imaging with red-shifted states of conventional bodipy fluorophores. Biophys. J. 2019, 116, 439a–440a. [Google Scholar] [CrossRef] [Green Version]
- Kowada, T.; Maeda, H.; Kikuchi, K. BODIPY-based probes for fluorescence imaging of biomolecules in living cells. Chem. Soc. Rev. 2015, 44, 4953. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Caldwell, R.; Liu-Bujalski, L.; Goutopoulos, A.; Jones, R.; Potnick, J.; Sherer, B.; Bender, A.; Grenningloh, R.; Xu, D.; et al. Discovery of affinity-based probes for btk occupancy assays. Chem. Med. Chem. 2019, 14, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Velmurugan, N.; Sung, M.; Yim, S.; Park, M.; Yang, J.; Jeong, K. Evaluation of bodies in chlamydomonas reinhardtii strains by flow cytometry. Bioresour. Technol. 2013, 138, 30–37. [Google Scholar] [CrossRef]
- Cooper, M.S.; Hardin, W.R.; Petersen, T.W.; Cattolico, R.A. Visualizing “green oil” in live algal cells. J. Biosci. Bioeng. 2010, 109, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Guo, X.; Li, L.; Qiu, H.; Zhang, Z.; Wang, Y.; Sun, G. Application of the fluorescent dye BODIPY in the study of lipid dynamics of the rice blast fungus magnaporthe oryzae. Molecules 2018, 23, 1594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durantini, A.; Heredia, D.; Durantini, J.; Durantini, E. BODIPYs to the rescue: Potential applications in photodynamic inactivation. Eur. J. Med. Chem. 2018, 144, 651–661. [Google Scholar] [CrossRef] [PubMed]
- Adarsh, N.; Babu, P.; Avirah, R.; Viji, M.; Nair, S.; Ramaiah, D. Aza-BODIPY nanomicelles as versatile agents for the in vitro and in vivo singlet oxygen-triggered apoptosis of human breast cancer cells. J. Mater. Chem. B 2019, 7, 2372–2377. [Google Scholar] [CrossRef]
- Guseva, G.; Antina, E.; Berezin, M.; Lisovskaya, S.; Pavelyev, R.; Kayumov, A.; Lodochnikova, O.; Islamov, D.; Usachev, K.; Boichuk, S.; et al. Spectroscopic and in vitro investigations of boron(III) complex with meso-4-methoxycarbonylpropylsubstituted dipyrromethene for fluorescence bioimaging applications. Molecules 2020, 25, 4541. [Google Scholar] [CrossRef]
- Guseva, G.; Antina, E.; Berezin, M.; Pavelyev, R.; Kayumov, A.; Sharafutdinov, I.; Lisovskaya, S.; Lodochnikova, O.; Islamov, D.; Usachev, K.; et al. Meso-substituted-BODIPY based fluorescent biomarker: Spectral characteristics, photostability and possibilities for practical application. J. Photochem. Photobiol. A Chem. 2020, 401, 112783. [Google Scholar] [CrossRef]
- Guseva, G.; Antina, E.; Berezin, M.; Lisovskaya, S.; Pavelyev, R.; Kayumov, A.; Ostolopovskaya, O.; Gilfanov, I.; Frolova, L.; Kutchin, A.; et al. Design, Spectral Characteristics, and Possibilities for Practical Application of BODIPY FL-Labeled Monoterpenoid. ACS Appl. Bio Mater. 2021, 4, 6227–6235. [Google Scholar] [CrossRef]
- Guseva, G.; Antina, E.; Berezin, M.; Ksenofontov, A.; Bocharov, P.; Smirnova, A.; Pavelyev, R.; Gilfanov, I.; Pestova, S.; Izmest’ev, E.; et al. Conjugate of meso-carboxysubstituted-BODIPY with thioterpenoid as an effective fluorescent probe: Synthesis, structure, spectral characteristics, and molecular docking. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 268, 120638. [Google Scholar] [CrossRef] [PubMed]
- Battye, T.; Kontogiannis, L.; Johnson, O.; Powell, H.; Leslie, A. iMOSFLM: A new graphical interface for diffraction-image processing with MOSFLM. Acta Crystalogr. 2011, 67, 271–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, P. Scaling and assessment of data quality. Acta Crystalogr. 2006, 62, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.; Bourhis, L.; Gildea, R.; Howard, J.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystalogr. 2009, 42, 339. [Google Scholar] [CrossRef]
- Sheldrick, G. SHELXT: Integrating space group determination and structure solution. Acta Crystalogr. Sect. A Found. Adv. 2014, 70, 1437. [Google Scholar] [CrossRef]
- Sheldrick, G. A short history of SHELX. Acta Crystalogr. Sect. A Found. Crystalogr. 2008, 64, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macrae, C.; Edgington, P.; McCabe, P.; Pidcock, E.; Shields, G.; Taylor, R.; Towler, M.; Streek, J. Mercury: Visualization and analysis of crystal structures. J. Appl. Crystalogr. 2006, 39, 453. [Google Scholar] [CrossRef] [Green Version]
- Lakowicz, J. Principles of Fluorescence Spectroscopy; Springer Science & Business Media: New York, NY, USA, 2013; p. 954. Available online: nathan.instras.com/MyDocsDB/doc-800.pdf (accessed on 6 March 2022).
- Fischer, M.; Georges, J. Fluorescence quantum yield of rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry. Chem. Phys. Lett. 2006, 260, 115–118. [Google Scholar] [CrossRef]
- Ping, C.; Shuqing, S.; Yunfeng, H.; Zhiguo, Q.; Deshui, Z. Structure and solvent effect on the photostability of indolenine cyanine dyes. Dyes Pigm. 1999, 41, 227–231. [Google Scholar] [CrossRef]
- Lodochnikova, O.; Islamov, D.; Gerasimov, D.; Zakharychev, D.; Saifina, A.; Pestova, S.; Izmest’ev, E.; Rubtsova, S.; Pavelyev, R.; Rakhmatullin, I.; et al. Isobornanyl sulfoxides and isobornanyl sulfone: Physicochemical characteristics and the features of crystal structure. J. Mol. Struct. 2021, 1239, 130491. [Google Scholar] [CrossRef]
- Lodochnikova, O.; Dobrynin, A.; Andreeva, O.; Strobykina, I.; Kataev, V.; Litvinov, I. Z′ = 2 crystallization of the three isomeric piridinoylhydrazone derivatives of isosteviol. CrystEngComm 2014, 16, 6234–6243. [Google Scholar] [CrossRef]
- Lodochnikova, O.; Startseva, V.; Nikitina, L.; Bodrov, A.; Klimovitskii, A.; Klimovitskii, E.; Litvinov, I. When two symmetrically independent molecules must be different: “Crystallization-induced diastereomerization” of chiral pinanyl sulfone. CrystEngComm 2014, 16, 4314–4321. [Google Scholar] [CrossRef]
- Kritskaya, A.; Berezin, M.; Antina, E.; Vyugin, A. Effect of aryl-, halogen-, and ms-aza-substitution on the luminescent properties and photostability of difluoroborates of 2,2′-dipyrrometenes. J. Fluoresc. 2019, 29, 911–920. [Google Scholar] [CrossRef] [PubMed]
- Irokawa, Y.; Morikawa, T.; Aoki, K.; Kosaka, S.; Ohwaki, T.; Taga, Y. Photodegradation of toluene over TiO2-xNx under visible light irradiation. Phys. Chem. Chem. Phys. 2006, 8, 1116–1121. [Google Scholar] [CrossRef]
- Gollnick, K.; Stracke, H.-U. Direct and sensitized photolysis of dimethyl sulphoxide in solution. Pure Appl. Chem. 1973, 33, 217–246. [Google Scholar] [CrossRef] [Green Version]
- Nizomov, N.; Jamalova, A.; Yarmuxamedov, A. Photo stability of solutions of some rodamine dyes with carboxyl group. Sci. J. Samarkand Univ. 2018, 2, 26–31. [Google Scholar]
- Galiullina, L.; Blokhin, D.; Aganov, A.; Klochkov, V. Investigation of «cholesterol+model of biological membrane» complex by NMR spectroscopy. Magn. Reson. Solids 2012, 14, 12204–12210. [Google Scholar]
- Lubecka, E.; Kwiatowska, A.; Ciarkowski, J.; Sikorska, E. NMR studies of new arginine vasopressin analogs modified with α-2-indanylglycine enantiomers at position 2 bound to sodium dodecyl sulfate micelles. Biophys. Chem. 2010, 151, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Usachev, K.; Filippov, A.; Filippova, E.; Antzutkin, O.; Klochkov, V. Solution structures of Altzheimers amyloid Aβ13-23 peptide: NMR studies in solution and in SDS. J. Mol. Struct. 2013, 1049, 436–440. [Google Scholar] [CrossRef]
- Galiullina, L.; Rakhmatullin, I.; Klochkova, E.; Aganov, A.; Klochkov, V. Structure of pravastatin and its complex with sodium dodecyl sulfate micelles studied by NMR spectroscopy. Magn. Reson. Chem. 2015, 53, 110–114. [Google Scholar] [CrossRef]
- Henry, G.; Sykes, B. Methods to study membrane protein structure in solution. Methods Enzymol. 1994, 239, 515–535. [Google Scholar] [CrossRef] [PubMed]
- Shevchenko, O.; Shishkina, L. Comparative Analysis of Phospholipid Composition in Blood Erythrocytes of Various Species of Mouse-Like Rodents. J. Evol. Biochem. Phys. 2011, 47, 179–186. [Google Scholar] [CrossRef]
- Schwartz, R.; Chiu, D.; Lubin, B. Plasma membrane phospholipid organization in human erythrocytes. Curr. Top. Hematol. 1985, 5, 63–112. [Google Scholar] [PubMed]
Atom Label | δ, ppm | δC, ppm | Atom Label | δ, ppm | δC, ppm |
---|---|---|---|---|---|
a | 6.036 | 122.01 | h2 | 1.940 | |
b | — | 154.40 | h3 | 2.484 | |
c | 2.493 | 14.68 (t) | i | — | 172.53 |
d | — | 131.65 | j1 | 4.194 | 64.05 |
e | — | 140.60 | j2 | 2.725 | |
f | 2.407 | 16.61 | k, m | 55.27; 46.05 | |
g | — | 145.14 | p, t | — | 49.70; 47.53 |
h1 | 2.985 | q, r, s | 0.964; 0.920; 0.796 | 20.60; 20.38; 14.16 |
Compound | , nm (S0→S1, S0→S2); ε, L/mol·cm) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Solvent | |||||||||
Cyclohexane | Toluene | Chloroform | 1-Octanol | 1-Butanol | 1-Propanol | Ethanol | DMF | DMSO | |
2 | 500(87724) 359–364 | 501(79432) 360–368 | 501(74131) 358–363 | 499(72443) 357–364 | 498(74136) 356–363 | 498(74948) 359–369 | 497(72444) 356–361 | 497(76709) 357–363 | 497(66069) 356–363 |
6 | 502(75390) 357–362 | 503(78830) 352–360 | 503(76900) 352–363 | 501(68275) 355–363 | 501(66887) 355–366 | 500(68931) 356–361 | 498(64235) 359–361 | 499(70218) 357–361 | 500(68188) 355–360 |
7 | 509(91201) 366–376 | 511(82444) 365–373 | 508(89125) 363–374 | 508(84427) 362–376 | 506(86745) 364–375 | 503(87096) 362–375 | 505(81283) 363–374 | 503(85857) 364–375 | 504(82190) 363–376 |
Solvent | Compound | ||||||||
---|---|---|---|---|---|---|---|---|---|
2 | 6 | 7 | |||||||
, nm | , nm | φ | , nm | , nm | φ | , nm | , nm | φ | |
Cyclohexane | 512 | 12 | 0.999 | 515 | 13 | 0.999 | 514 | 6 | 1.0 |
Toluene | 518 | 17 | 0.991 | 519 | 16 | 0.867 | 519 | 8 | 0.825 |
Chloroform | 516 | 15 | 0.908 | 517 | 14 | 0.878 | 516 | 8 | 0.903 |
1-Octanol | 515 | 16 | 0.989 | 514 | 13 | 0.941 | 516 | 8 | 0.941 |
1-Butanol | 513 | 15 | 0.966 | 516 | 15 | 0.884 | 516 | 10 | 0.932 |
1-Propanol | 514 | 16 | 0.956 | 514 | 14 | 0.861 | 513 | 10 | 0.920 |
Ethanol | 510 | 13 | 0.910 | 514 | 16 | 0.857 | 512 | 7 | 0.879 |
DMF | 512 | 15 | 0.836 | 515 | 16 | 0.833 | 513 | 10 | 0.990 |
DMSO | 512 | 15 | 0.769 | 515 | 15 | 0.763 | 516 | 12 | 0.963 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guseva, G.B.; Antina, E.V.; Berezin, M.B.; Smirnova, A.S.; Pavelyev, R.S.; Gilfanov, I.R.; Shevchenko, O.G.; Pestova, S.V.; Izmest’ev, E.S.; Rubtsova, S.A.; et al. Design, Spectral Characteristics, Photostability, and Possibilities for Practical Application of BODIPY FL-Labeled Thioterpenoid. Bioengineering 2022, 9, 210. https://doi.org/10.3390/bioengineering9050210
Guseva GB, Antina EV, Berezin MB, Smirnova AS, Pavelyev RS, Gilfanov IR, Shevchenko OG, Pestova SV, Izmest’ev ES, Rubtsova SA, et al. Design, Spectral Characteristics, Photostability, and Possibilities for Practical Application of BODIPY FL-Labeled Thioterpenoid. Bioengineering. 2022; 9(5):210. https://doi.org/10.3390/bioengineering9050210
Chicago/Turabian StyleGuseva, Galina B., Elena V. Antina, Mikhail B. Berezin, Anastassia S. Smirnova, Roman S. Pavelyev, Ilmir R. Gilfanov, Oksana G. Shevchenko, Svetlana V. Pestova, Evgeny S. Izmest’ev, Svetlana A. Rubtsova, and et al. 2022. "Design, Spectral Characteristics, Photostability, and Possibilities for Practical Application of BODIPY FL-Labeled Thioterpenoid" Bioengineering 9, no. 5: 210. https://doi.org/10.3390/bioengineering9050210
APA StyleGuseva, G. B., Antina, E. V., Berezin, M. B., Smirnova, A. S., Pavelyev, R. S., Gilfanov, I. R., Shevchenko, O. G., Pestova, S. V., Izmest’ev, E. S., Rubtsova, S. A., Ostolopovskaya, O. V., Efimov, S. V., Klochkov, V. V., Rakhmatullin, I. Z., Timerova, A. F., Khodov, I. A., Lodochnikova, O. A., Islamov, D. R., Dorovatovskii, P. V., ... Boichuk, S. V. (2022). Design, Spectral Characteristics, Photostability, and Possibilities for Practical Application of BODIPY FL-Labeled Thioterpenoid. Bioengineering, 9(5), 210. https://doi.org/10.3390/bioengineering9050210