How Does the Use of an Intraoral Scanner Affect Muscle Fatigue? A Preliminary In Vivo Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Collection: Ag/AgCl Electrode Placement on Sampled Muscles
2.3. Data Collection: Maximal Voluntary Contraction (MVC) Measurement
2.4. Data Collection: Muscle Activation Measurement
2.5. Data Collection: Muscle Activation Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haddad, O.; Sanjari, M.A.; Amirfazli, A.; Narimani, R.; Parnianpour, M. Trapezius muscle activity in using ordinary and ergonomically designed dentistry chairs. Int. J. Occup. Environ. Med. 2012, 3, 76–83. [Google Scholar] [PubMed]
- Lakshmi, K.; Madankumar, P.D. Development of modified dental chair to accomodate both wheelchair bound patients and general population. Disabil. Rehabil. Assist. Technol. 2020, 15, 467–470. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.O.; Lee, Y.H.; Nam, S.H. Factors affecting surface management of dental unit chair. Biomed. Res. 2018, 29, 15. [Google Scholar]
- Tiwari, A.; Shyagali, T.; Kohli, S.; Joshi, R.; Gupta, A.; Tiwari, R. Effect of dental chair light on enamel bonding of orthodontic brackets using light cure based adhesive system: An in-vitro study. Acta Inform. Med. 2016, 24, 317. [Google Scholar] [CrossRef] [Green Version]
- Rafeemanesh, E.; Jafari, Z.; Kashani, F.O.; Rahimpour, F. A study on job postures and musculoskeletal illnesses in dentists. Int. J. Occup. Med. Environ. Health 2013, 26, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Loomer, P.; Barr, A.; LaRoche, C.; Young, E.; Rempel, D. The effect of tool handle shape on hand muscle load and pinch force in a simulated dental scaling task. Appl. Ergon. 2007, 38, 525–531. [Google Scholar] [CrossRef] [Green Version]
- Gandavadi, A.; Ramsay, J.R.E.; Burke, F.J.T. Assessment of dental student posture in two seating conditions using RULA methodology–a pilot study. Br. Dent. J. 2007, 203, 601–605. [Google Scholar] [CrossRef] [Green Version]
- García-Vidal, J.A.; López-Nicolás, M.; Sánchez-Sobrado, A.C.; Escolar-Reina, M.P.; Medina-Mirapeix, F.; Bernabeu-Mora, R. The combination of different ergonomic supports during dental procedures reduces the muscle activity of the neck and shoulder. J. Clin. Med. 2019, 8, 1230. [Google Scholar] [CrossRef] [Green Version]
- Petrović, V.; Pejčić, N.; Bulat, P.; Djurić-Jovičić, M.; Miljković, N.; Marković, D. Evaluation of ergonomic risks during dental work. Balk J. Dent. Med. 2016, 20, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Ng, A.; Hayes, M.J.; Polster, A. Musculoskeletal disorders and working posture among dental and oral health students. Healthcare 2016, 4, 13. [Google Scholar]
- Pejčić, N.; Petrović, V.; Đurić-Jovičić, M.; Medojević, N.; Nikodijević-Latinović, A. Analysis and prevention of ergonomic risk factors among dental students. Eur. J. Dent. Educ. 2021, 25, 460–479. [Google Scholar] [CrossRef] [PubMed]
- Pejčić, N.; Đurić-Jovičić, M.; Miljković, N.; Popović, D.B.; Petrović, V. Posture in dentists: Sitting vs. standing positions during dentistry work: An EMG study. Srp. Arh. Celok. Lek. 2016, 144, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Astrand, P.; Rodahl, K. Textbook of Work Physiology: Physiological Basis of Exercise; McGraw-Hill: New York, NY, USA, 1986; pp. 115–122. [Google Scholar]
- Alexopoulos, E.C.; Stathi, I.C.; Charizani, F. Prevalence of musculoskeletal disorders in dentists. BMC Musculoskelet. Disord. 2004, 5, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milerad, E.; Ekenvall, L. Symptoms of the neck and upper extremities in dentists. Scand. J. Work Environ. Health 1990, 16, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Son, K.; Son, Y.T.; Lee, J.M.; Lee, K.B. Marginal and internal fit and intaglio surface trueness of interim crowns fabricated from tooth preparation of four finish line locations. Sci. Rep. 2021, 11, 13947. [Google Scholar] [CrossRef] [PubMed]
- Róth, I.; Czigola, A.; Fehér, D.; Vitai, V.; Joós-Kovács, G.L.; Hermann, P.; Vecsei, B. Digital intraoral scanner devices: A validation study based on common evaluation criteria. BMC Oral Health 2022, 22, 140. [Google Scholar] [CrossRef]
- Park, H.R.; Park, J.M.; Chun, Y.S.; Lee, K.N.; Kim, M. Changes in views on digital intraoral scanners among dental hygienists after training in digital impression taking. BMC Oral Health 2015, 15, 151. [Google Scholar] [CrossRef] [Green Version]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Díez, J.A.; Catalán, J.M.; Lledo, L.D.; Badesa, F.J.; Garcia-Aracil, N. Multimodal robotic system for upper-limb rehabilitation in physical environment. Adv. Mech. Eng. 2016, 8, 1687814016670282. [Google Scholar] [CrossRef]
- Roman-Liu, D.; Bartuzi, P. The influence of wrist posture on the time and frequency EMG signal measures of forearm muscles. Gait Posture 2013, 37, 340–344. [Google Scholar] [CrossRef] [Green Version]
- Almosnino, S.; Pelland, L.; Pedlow, S.V.; Stevenson, J.M. Between-day reliability of electromechanical delay of selected neck muscles during performance of maximal isometric efforts. BMC Sports Sci. Med. Rehabil. 2009, 1, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balasubramanian, V.; Dutt, A.; Rai, S. Analysis of muscle fatigue in helicopter pilots. Appl. Ergon. 2011, 42, 913–918. [Google Scholar] [CrossRef]
- Balasubramanian, V.; Adalarasu, K.; Regulapati, R. Comparing dynamic and stationary standing postures in an assembly task. Int. J. Ind. Ergon. 2009, 39, 649–654. [Google Scholar] [CrossRef]
- Alhaag, M.H.; Ramadan, M.Z.; Al-harkan, I.M.; Alessa, F.M.; Alkhalefah, H.; Abidi, M.H.; Sayed, A.E. Determining the fatigue associated with different task complexity during maintenance operations in males using electromyography features. Int. J. Ind. Ergon. 2022, 88, 103273. [Google Scholar] [CrossRef]
- Al Hamad, K.Q. Learning curve of intraoral scanning by prosthodontic residents. J. Prosthet. Dent. 2020, 123, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Zarauz, C.; Sailer, I.; Pitta, J.; Robles-Medina, M.; Hussein, A.A.; Pradíes, G. Influence of age and scanning system on the learning curve of experienced and novel intraoral scanner operators: A multi-centric clinical trial. J. Dent. 2021, 115, 103860. [Google Scholar] [CrossRef]
- Kim, D.Y.; Son, K.; Lee, K.B. Evaluation of High-Speed Handpiece Cutting Efficiency According to Bur Eccentricity: An In Vitro Study. Appl. Sci. 2019, 9, 3395. [Google Scholar] [CrossRef] [Green Version]
- Patzelt, S.B.; Lamprinos, C.; Stampf, S.; Att, W. The time efficiency of intraoral scanners: An in vitro comparative study. J. Am. Dent. Assoc. 2014, 145, 542–551. [Google Scholar] [CrossRef] [Green Version]
- Mulimani, P.; Hoe, V.C.; Hayes, M.J.; Idiculla, J.J.; Abas, A.B.; Karanth, L. Ergonomic interventions for preventing musculoskeletal disorders in dental care practitioners. Cochrane Database Syst. Rev. 2018, 10, CD011261. [Google Scholar] [CrossRef] [PubMed]
- Plessas, A.; Bernardes Delgado, M. The role of ergonomic saddle seats and magnification loupes in the prevention of musculoskeletal disorders. A systematic review. Int. J. Dent. Hyg. 2018, 16, 430–440. [Google Scholar] [CrossRef]
- Ciavarella, D.; Palazzo, A.; De Lillo, A.; Russo, L.L.; Paduano, S.; Laino, L.; Muzio, L.L. Influence of vision on masticatory muscles function: Surface electromyographic evaluation. Ann. Stomatol. 2014, 5, 61. [Google Scholar] [CrossRef]
- Rickert, C.; Fels, U.; Gosheger, G.; Kalisch, T.; Liem, D.; Klingebiel, S.; Schorn, D. Prevalence of Musculoskeletal Diseases of the Upper Extremity Among Dental Professionals in Germany. Risk Manag. Healthc. Policy 2021, 14, 3755. [Google Scholar] [CrossRef] [PubMed]
Muscle Type | Intraoral Scanning Task | Tooth Preparation Task | ||||
---|---|---|---|---|---|---|
Dental Unit Chair System | p * | Dental Unit Chair System | p * | |||
Integrated | Conventional | Integrated | Conventional | |||
Extensor digitorum communis | 13.6 ± 4.0 ac | 11.7 ± 2.5 a | 0.368 | 16.4 ± 4.8 ab | 17.9 ± 6.9 ab | 0.668 |
Flexor digitorum superficialis | 10.5 ± 5.5 ab | 5.5 ± 3.2 a | 0.209 | 15.4 ± 8.0 ab | 12.7 ± 4.3 ab | 0.487 |
Left sternocleidomastoid muscle | 8.5 ± 6.2 ab | 6.0 ± 3.2 a | 0.409 | 9.4 ± 5.2 a | 9.3 ± 6.9 a | 0.967 |
Right sternocleidomastoid muscle | 4.6 ± 2.5 b | 5.3 ± 1.3 a | 0.551 | 5.5 ± 3.9 a | 7.7 ± 6.2 a | 0.490 |
Left splenius capitis | 9.4 ± 4.8 ab | 12.0 ± 4.9 a | 0.397 | 11.8 ± 4.6 ab | 12.8 ± 4.5 ab | 0.712 |
Right splenius capitis | 10.2 ± 4.0 ab | 7.1 ± 3.8 a | 0.207 | 8.8 ± 4.1 a | 7.7 ± 4.5 a | 0.675 |
Left trapezius descendens | 17.0 ± 4.4 ac | 11.1 ± 5.6 a | 0.077 | 14.2 ± 6.5 ab | 10.6 ± 4.3 ab | 0.298 |
Right trapezius descendens | 19.5 ± 5.7 c | 20.7 ± 7.7 b | 0.755 | 20.3 ± 8.8 b | 16.1 ± 9.4 ab | 0.451 |
Mean | 11.7 ± 6.3 | 10.1 ± 6.3 | 12.7 ± 7.1 | 11.8 ± 6.7 | ||
p ** | <0.001 | <0.001 | 0.003 | 0.042 | ||
p *** | 0.237 | 0.543 | ||||
p **** | 0.147 |
Muscle Type | Intraoral Scanning Task | Tooth Preparation Task | ||||
---|---|---|---|---|---|---|
Dental Unit Chair System | p * | Dental Unit Chair System | p * | |||
Integrated | Conventional | Integrated | Conventional | |||
Extensor digitorum communis | −6.7 ± 3.4 | −9.6 ± 9.0 | 0.488 | −2.8 ± 5.1 | −7.2 ± 14.8 | 0.513 |
Flexor digitorum superficialis | −4.4 ±6.6 | −1.2 ± 10.7 | 0.554 | −4.2 ± 9.4 | −9.4 ± 13.3 | 0.455 |
Left sternocleidomastoid muscle | −17.8 ± 7.2 | −0.9 ± 18.0 | 0.058 | −17.0 ± 19.0 | −3.9 ± 6.2 | 0.142 |
Right sternocleidomastoid muscle | −8.0 ± 11.9 | 3.4 ± 12.1 | 0.126 | 15.3 ± 42.4 | 5.7 ± 16.3 | 0.623 |
Left splenius capitis | 8.7 ± 9.9 | −2.9 ± 4.2 | 0.033 | 2.9 ± 11.1 | −11.2 ± 10.4 | 0.047 |
Right splenius capitis | −7.2 ± 9.7 | 0.6 ± 5.8 | 0.127 | 3.2 ± 8.4 | 3.5 ± 11.7 | 0.960 |
Left trapezius descendens | 3.2 ± 11.1 | −3.4 ± 3.4 | 0.190 | 3.2 ± 16.7 | 1.7 ± 5.7 | 0.847 |
Right trapezius descendens | −0.3 ± 5.0 | 1.9 ± 4.3 | 0.407 | 3.4 ± 7.8 | −3.4 ± 10.8 | 0.240 |
Mean | −4.0 ± 11.0 | −1.5 ± 9.7 | 0.5 ± 19.3 | −3.0 ± 12.3 | ||
p ** | 0.148 | 0.417 | 0.219 | 0.141 | ||
p *** | 0.228 | 0.287 | ||||
p **** | 0.435 |
Muscle Type | Trial No. | p ** | p *** | ||
---|---|---|---|---|---|
1 | 2 | 3 | |||
Extensor digitorumcommunis | 11.9 ± 2.4 a | 11.7 ± 3.1 ab | 13.2 ± 3.3 ab | 0.656 | 0.639 |
Flexor digitorumsuperficialis | 5.6 ± 2.7 b | 6.5 ± 3.0 b | 6.9 ± 3.2 b | 0.765 | |
sternocleidomastoid muscle | 5.9 ± 1.0 b | 5.7 ± 2.8 b | 7.7 ± 3.8 b | 0.434 | |
splenius capitis | 10.8 ± 4.7 ab | 8.9 ± 3.2 b | 8.9 ± 4.0 b | 0.661 | |
trapezius descendens | 15.5 ± 4.7 a | 15.9 ± 5.5 a | 18.1 ± 5.4 a | 0.653 | |
p * | <0.001 | <0.001 | <0.001 |
Muscle Type | Trial No. | p ** | p *** | ||
---|---|---|---|---|---|
1 | 2 | 3 | |||
Extensor digitorumcommunis | −5.3 ± 8.8 | −10.4 ± 10.7 a | −11 ± 7.1 | 0.509 | <0.001 |
Flexor digitorumsuperficialis | 1.9 ± 17.2 A | 0.9 ± 8.1 abA | −16.8 ± 12.2 B | 0.043 | |
sternocleidomastoid muscle | −2.3 ± 9.3 A | 2.1 ± 6.7 bA | −10.5 ± 5.2 B | 0.027 | |
splenius capitis | −1.7 ± 6.9 | 0.1 ± 3.5 ab | −3.8 ± 3.5 | 0.406 | |
trapezius descendens | −0.4 ± 6.5 | −0.5 ± 4.6 ab | −4.6 ± 5.4 | 0.351 | |
p * | 0.814 | 0.041 | 0.066 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, K.; Lee, J.-M.; Son, Y.-T.; Kim, J.-W.; Jin, M.-U.; Lee, K.-B. How Does the Use of an Intraoral Scanner Affect Muscle Fatigue? A Preliminary In Vivo Study. Bioengineering 2022, 9, 358. https://doi.org/10.3390/bioengineering9080358
Son K, Lee J-M, Son Y-T, Kim J-W, Jin M-U, Lee K-B. How Does the Use of an Intraoral Scanner Affect Muscle Fatigue? A Preliminary In Vivo Study. Bioengineering. 2022; 9(8):358. https://doi.org/10.3390/bioengineering9080358
Chicago/Turabian StyleSon, KeunBaDa, Ji-Min Lee, Young-Tak Son, Jin-Wook Kim, Myoung-Uk Jin, and Kyu-Bok Lee. 2022. "How Does the Use of an Intraoral Scanner Affect Muscle Fatigue? A Preliminary In Vivo Study" Bioengineering 9, no. 8: 358. https://doi.org/10.3390/bioengineering9080358
APA StyleSon, K., Lee, J. -M., Son, Y. -T., Kim, J. -W., Jin, M. -U., & Lee, K. -B. (2022). How Does the Use of an Intraoral Scanner Affect Muscle Fatigue? A Preliminary In Vivo Study. Bioengineering, 9(8), 358. https://doi.org/10.3390/bioengineering9080358