Aroma Potential of German Riesling Winegrapes during Late-Stage Ripening
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grape Samples
2.2. Extraction and Hydrolysis
2.3. Sensory Evaluation by Flash Profiling
2.4. Analysis of Aroma Compounds
2.4.1. Riesling Wine Volatiles by HS-SPME-GC-MS
2.4.2. Terpenoids by SPE-CSR-LV-GC-MS
2.5. Data Analysis
3. Results
3.1. Flash Profiling
3.2. Aroma Compounds
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Analyte | Concentration Range (μg/L) | Quantifier(s) (m/z) | tR (min) | LRI (ZB-5 MS) | Deuterated Standard |
---|---|---|---|---|---|
hexanol | 41–4100 | 56, 69 | 10.24 | 863 | hexanol-d13 |
trans-2-hexen-1-ol | 43–4250 | 57, 82 | 10.08 | 866 | hexanol-d13 |
3-methylbutanol | 1012–101,250 | 55, 70 | 5.41 | 728 | hexanol-d13 |
2-phenylethanol | 303–30,294 | 91, 122 | 21.00 | 1108 | 2-phenylethanol-d5 |
2-phenylethyl acetate | 20–2043 | 104 | 26.96 | 1256 | 2-phenylethanol-d5 |
4-ethylguaiacol | 5–530 | 152 | 27.73 | 1283 | 4-ethylguaiacol-d5 |
ethyl acetate | 988–98,802 | 88 | 2.86 | 612 | ethyl acetate-d5 |
ethyl butanoate | 7–653 | 71, 88 | 7.55 | 803 | ethyl hexanoate-d5 |
ethyl hexanoate | 15–1507 | 88, 115 | 15.95 | 1001 | ethyl hexanoate-d5 |
ethyl octanoate | 15–1492 | 88, 127 | 24.50 | 1199 | ethyl hexanoate-d5 |
ethyl decanoate | 11–1054 | 88, 101 | 32.41 | 1388 | ethyl hexanoate-d5 |
3-methylbutyl acetate | 20–1951 | 70, 87 | 10.58 | 877 | hexyl acetate-d3 |
hexyl acetate | 11–1076 | 43, 61 | 16.54 | 1009 | hexyl acetate-d3 |
β-damascenone | 0.2–21.4 | 190 | 31.90 | 1385 | β-damascenone-d4 |
vitispirane | 0.1–10.5 | 177, 192 | 28.15 | 1288 | TDN-d6 |
TDN | 0.1–10.5 | 157, 172 | 31.03 | 1362 | TDN-d6 |
Deuterated Standard | Concentration (μg/L) | Quantifier(s) (m/z) | tR (min) | LRI (ZB-5 MS) |
---|---|---|---|---|
hexanol-d13 | 400 | 64, 78 | 9.89 | 860 |
2-phenylethanol-d5 | 1500 | 96, 127 | 20.90 | 1111 |
4-ethylguaiacol-d5 | 50 | 157 | 27.60 | 1272 |
ethyl acetate-d5 | 8000 | 93 | 2.82 | - |
ethyl hexanoate-d5 | 150 | 93, 120 | 15.79 | 996 |
hexyl acetate-d3 | 100 | 46, 64 | 16.43 | 1010 |
β-damascenone-d4 | 10.0 | 194 | 31.80 | 1380 |
TDN-d6 | 1.0 | 163, 178 | 30.88 | 1356 |
Appendix B
Analyte | Concentration Range (μg/L) | Quantifier, Qualifier (m/z) | tR (min) | Monitoring Window (min) | Dwell Time (ms) |
---|---|---|---|---|---|
α-terpineol | 1.4–548 | 121, 136 | 27.61 | 26.0–28.5 | 70 |
linalool | 0.9–348 | 121, 136 | 23.75 | 23.0–26.0 | 70 |
cis-linalool oxide | 0.6–231 | 155, 111 | 21.70 | 20.0–23.0 | 70 |
trans-linalool oxide | 0.4–145 | 155, 111 | 20.88 | 20.0–23.0 | 70 |
nerol | 0.1–352 | 121, 139 | 30.29 | 28.5–30.3 | 80 |
nerol oxide | 1.0–378 | 152, 123 | 21.67 | 20.0–23.0 | 70 |
geraniol | 0.9–135 | 123, 139 | 31.40 | 30.3–32.8 | 80 |
citronellol | 0.8–312 | 123, 138 | 29.38 | 28.5–30.3 | 80 |
cis-rose oxide | 0.2–126 | 139, 154 | 18.25 | 15.0–20.0 | 200 |
trans-rose oxide | 0.1–9.9 | 139, 154 | 18.69 | 15.0–20.0 | 200 |
References
- Poni, S.; Gatti, M.; Pallioti, A.; Dai, Z.; Duchêne, E.; Truong, T.-T.; Ferrara, G.; Stella Matarrese, A.M.; Gallotta, A.; Bellincontro, A.; et al. Grapevine quality: A multiple choice issue. Sci. Hortic. 2018, 234, 445–462. [Google Scholar] [CrossRef]
- Carbonneau, A.; Champagnol, F.; Deloire, A.; Sévila, F. Récolte et qualité du raisin. In Oenologie: Fondemonts Scientifiques et Technologiques; Flancy, C., Ed.; Lavoisier Tec & Doc: Paris, France, 1998; pp. 647–668. [Google Scholar]
- du Plessis, C.S. Optimum maturity and quality parameters in grapes: A review. S. Afr. J. Enol. Vitic. 1984, 5, 34–42. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Barbe, J.-C.; Darriet, P.; Destrac-Irvine, A.; Gowdy, M.; Lytra, G.; Marchal, A.; Marchand, S.; Plantevin, M.; Poitou, X.; et al. Aromatic maturity is a cornerstone of terroir expression in red wine. OENO One 2022, 56, 335–351. [Google Scholar] [CrossRef]
- Coombe, B.G.; McCarthy, M.G. Identification and naming of the inception of aroma development in ripening grape berries. Aust. J. Grape Wine Res. 1997, 3, 18–20. [Google Scholar] [CrossRef]
- Alem, H.; Rigou, P.; Schneider, R.; Ojeda, H.; Torregrosa, L. Impact of agronomic practices on grape aroma composition: A review. J. Sci. Food Agric. 2018, 99, 975–985. [Google Scholar] [CrossRef]
- Hjelmeland, A.K.; Ebeler, S.E. Glycosidically bound volatile aroma compounds in grapes and wine: A review. Am. J. Enol. Vitic. 2015, 66, 1–11. [Google Scholar] [CrossRef]
- Ferreira, V.; Lopez, R. The actual and potential aroma of winemaking grapes. Biomolecules 2019, 9, 818. [Google Scholar] [CrossRef]
- Williams, P.J.; Strauss, C.R.; Wilson, B. Hydroxylated linalool derivatives as precursors of volatile monoterpenes of Muscat grapes. J. Agric. Food Chem. 1980, 28, 766–771. [Google Scholar] [CrossRef]
- Strauss, C.R.; Dimitriadis, E.; Wilson, B.; Williams, P.J. Studies on the hydrolysis of two megastigma-3,6,9-triols rationalizing the origins of some volatile C13 norisoprenoids of Vitis vinifera grapes. J. Agric. Food Chem. 1986, 34, 145–149. [Google Scholar] [CrossRef]
- Strauss, C.R.; Wilson, B.; Anderson, R.; Williams, P.J. Development of precursors of C13 norisoprenoid flavorants in Riesling Grapes. Am. J. Enol. Vitic. 1987, 38, 23–27. [Google Scholar] [CrossRef]
- Alegre, Y.; Arias-Pérez, I.; Hernández-Orte, P.; Ferreira, V. Development of a new strategy for studying the aroma potential of winemaking grapes through the accelerated hydrolysis of phenolic and aromatic fractions (PAFs). Food Res. Int. 2020, 127, 108728. [Google Scholar] [CrossRef] [PubMed]
- Alegre, Y.; Sáenz-Navajas, M.-P.; Hernández-Orte, P.; Ferreira, V. Sensory, olfactometric and chemical characterization of the aroma potential of Garnacha and Tempranillo winemaking grapes. Food Chem. 2020, 331, 127207. [Google Scholar] [CrossRef] [PubMed]
- Guth, H. Identification of character impact odorants of different white wine varieties. J. Agric. Food Chem. 1997, 45, 3022–3026. [Google Scholar] [CrossRef]
- Mateo, J.J.; Jimenez, M. Monoterpenes in grape juice and wines. J. Chromatogr. A 2000, 881, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Mendes-Pinto, M.M. Carotenoid breakdown products—The norisoprenoids—In wine aroma. Arch. Biochem. Biophys. 2009, 483, 236–245. [Google Scholar] [CrossRef]
- Sefton, M.A.; Skouroumounis, G.K.; Elsey, G.M.; Taylor, D.K. Occurrence, sensory impact, formation, and fate of damascenone in grapes, wines, and other foods and beverages. J. Agric. Food Chem. 2011, 59, 9717–9746. [Google Scholar] [CrossRef]
- Sacks, G.L.; Gates, M.J.; Ferry, F.X.; Lavin, E.H.; Kurtz, A.J.; Acree, T.E. Sensory threshold of 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) and concentrations in young Riesling and non-Riesling wines. J. Agric. Food Chem. 2012, 60, 2998–3004. [Google Scholar] [CrossRef]
- Waterhouse, A.L.; Sacks, G.L.; Jefferey, D.W. Understanding Wine Chemistry; John Wiley & Sons: West Sussex, UK, 2016. [Google Scholar]
- Jackson, D.I.; Cherry, N.J. Prediction of a district’s grape-ripening capacity using a latitude-temperature index (LTI). Am. J. Enol. Vitic. 1988, 39, 19–28. [Google Scholar] [CrossRef]
- Roessler, E.B.; Amerine, M.A. Further studies on field sampling of wine grapes. Am. J. Enol. Vitic. 1963, 14, 144–147. [Google Scholar] [CrossRef]
- Dairou, V.; Sieffermann, J.-M. A comparison of 14 jams characterized by conventional profile and a quick original method, the flash profile. J. Food Sci. 2002, 67, 826–834. [Google Scholar] [CrossRef]
- Schwinn, M.; Durner, D.; Wacker, M.; Delgado, A.; Fischer, U. Impact of fermentation temperature on required heat dissipation, growth and viability of yeast, on sensory characteristics and on the formation of volatiles in Riesling. Aust. J. Grape Wine Res. 2019, 25, 173–184. [Google Scholar] [CrossRef]
- Magni, P.; Porzano, T. Concurrent solvent recondensation large sample volume splitless injection. J. Sep. Sci. 2003, 26, 1491–1498. [Google Scholar] [CrossRef]
- Szmania, C.; Waber, J.; Bogs, J.; Fischer, U. Sensory and aroma impact of mitigation strategies against sunburn in Riesling. OENO One 2023, 57, 127–140. [Google Scholar] [CrossRef]
- Posit Team. RStudio: Integrated Development Environment for R. Posit Software; PBC: Boston, MA, USA, 2023; Available online: http://www.posit.co/ (accessed on 13 June 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 13 June 2024).
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; Available online: https://ggplot2.tidyverse.org (accessed on 13 June 2024).
- Kassambara, A.; Mundt, F. R Package, version 1.0.7.; factoextra: Extract and Visualize the Results of Multivariate Data Analyses. 2020. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 13 June 2024).
- Escofier, B.; Pagès, J. Multiple Factor Analysis (AFMULT Package). Comput. Stat. Data Anal. 1994, 18, 121–140. [Google Scholar] [CrossRef]
- Schüttler, A.; Friedel, M.; Jung, R.; Rauhut, D.; Darriet, P. Characterizing aromatic typicality of Riesling wines: Merging volatile composition and sensory aspects. Food Res. Int. 2015, 69, 26–37. [Google Scholar] [CrossRef]
- Loscos, N.; Hernández-Orte, P.; Cacho, J.; Ferreira, V. Comparison of the suitability of different hydrolytic strategies to predict aroma potential of different grape varieties. J. Agric. Food Chem. 2009, 57, 2468–2480. [Google Scholar] [CrossRef]
- Gunata, Y.Z.; Bayonove, C.L.; Baumes, R.L.; Cordonnier, R.E. The aroma of grapes. Localisation and evolution of free and bound fractions of some grape aroma components c.v. Muscat during development and maturation. J. Sci. Food Agric. 1985, 36, 857–862. [Google Scholar] [CrossRef]
- Park, S.K.; Morrison, J.C.; Adams, D.O.; Noble, A.C. Distribution of free and glycosidically bound monoterpenes in the skin and mesocarp of Muscat of Alexandria grapes during development. J. Agric. Food Chem. 1991, 39, 514–518. [Google Scholar] [CrossRef]
- Gomez, E.; Martinez, A.; Laencina, J. Localization of free and bound aromatic compounds among skin, juice and pulp fractions of some grape varieties. Vitis 1994, 33, 1–4. [Google Scholar] [CrossRef]
- Cabrita, M.J.; Costa Freitas, A.M.; Laureano, O.; di Stefano, R. Glycosidic aroma compounds of some Portuguese grape varieties. J. Sci. Food Agric. 2006, 86, 922–931. [Google Scholar] [CrossRef]
- Ubeda, C.; Gil i Cortiella, M.; del Barrio Galán, R.; Peña-Neira, A. Influence of maturity and vineyard location on free and bound aroma compounds of grapes from the País cultivar. S. Afr. J. Enol. Vitic. 2017, 38, 201–211. [Google Scholar] [CrossRef]
- Schmid, F.; Jiranek, V. Use of fresh versus frozen or blast-frozen grapes for small-scale fermentation. Int. J. Wine Res. 2011, 3, 25–30. [Google Scholar] [CrossRef]
- Ruiz-Rodríguez, A.; Durán-Guerrero, E.; Natera, R.; Palma, M.; Barroso, C.G. Influence of two different cryoextraction procedures on the quality of wine produced from Muscat grapes. Foods 2020, 9, 1529. [Google Scholar] [CrossRef]
- del Carmen Pedrosa-López, M.; Aragón-García, F.; Ruíz-Rodríguez, A.; Piñeiro, Z.; Durán-Guerrero, E.; Palma, M. Effects from the freezing of either whole or crushed grapes on the volatile compounds contents in Muscat wines. Foods 2022, 11, 1782. [Google Scholar] [CrossRef]
- Winterhalter, P.; Rouseff, R. (Eds.) Carotenoid-derived aroma compounds: An introduction. In Carotenoid-Derived Aroma Compounds; American Chemical Society: Washington, DC, USA, 2002; pp. 1–17. [Google Scholar] [CrossRef]
- Marais, J.; Van Wyk, C.J.; Rapp, A. Effect of sunlight and shade on norisoprenoid levels in maturing Weisser Riesling and Chenin blanc grapes and Weisser Riesling wines. S. Afr. J. Enol. Vitic. 1992, 13, 23–32. [Google Scholar] [CrossRef]
- Kwasniewski, M.T.; Vanden Heuvel, J.E.; Pan, B.S.; Sacks, G.L. Timing of cluster light environment manipulation during grape development affects C13 norisoprenoid and carotenoids concentrations in Riesling. J. Agric. Food Chem. 2010, 58, 6841–6849. [Google Scholar] [CrossRef]
- Vilanova, M.; Genisheva, Z.; Bescana, L.; Masa, A.; Oliveira, J.M. Changes in free and bound fractions of aroma compounds of four Vitis vinifera cultivars at the last ripening stages. Phytochemistry 2012, 74, 196–205. [Google Scholar] [CrossRef]
- Fenoll, J.; Manso, A.; Hellín, P.; Ruiz, L.; Flores, P. Changes in the aromatic composition of the Vitis vinifera grape Muscat Hamburg during ripening. Food Chem. 2009, 114, 420–428. [Google Scholar] [CrossRef]
- Yuan, F.; Qian, M.C. Aroma potential in early- and late-harvest Pinot noir grapes evaluated by aroma extract dilution analysis. J. Agric. Food Chem. 2015, 64, 443–450. [Google Scholar] [CrossRef]
- Yue, X.; Ren, R.; Ma, X.; Fang, Y.; Zhang, Z.; Ju, Y. Dynamic changes in monoterpene accumulation and biosynthesis during grape ripening in three Vitis vinifera L. cultivars. Food Res. Int. 2020, 137, 109736. [Google Scholar] [CrossRef] [PubMed]
- Hardy, P.J. Changes in volatiles of Muscat grapes during ripening. Phytochemistry 1970, 9, 709–715. [Google Scholar] [CrossRef]
- Wilson, B.; Strauss, C.R.; Williams, P.J. Changes in free and glycosidically bound monoterpenes in developing Muscat grapes. J. Agric. Food Chem. 1984, 32, 919–924. [Google Scholar] [CrossRef]
Location | Sample | Date (2022) | TSS (°Brix) | pH | TA (g/L) | TSS/TA |
---|---|---|---|---|---|---|
Essenheim | EH1 | 11 August | 10.6 ± 0.1 | 2.46 ± 0.02 | 29.9 ± 0.4 | 0.36 |
EH2 | 16 August | 14.9 ± 0.4 | 2.71 ± 0.04 | 18.0 ± 0.4 | 0.83 | |
EH3 | 25 August | 19.4 ± 0.1 | 2.91 ± 0.01 | 11.1 ± 0.1 | 1.76 | |
EH4 | 1 September | 19.9 ± 0.5 | 2.94 ± 0.02 | 9.8 ± 0.4 | 2.04 | |
EH5 | 8 September | 20.4 ± 0.2 | 2.99 ± 0.01 | 8.8 ± 0.6 | 2.33 | |
Durbach | DB1 | 11 August | 9.2 ± 0.3 | 2.53 ± 0.05 | 28.8 ± 1.3 | 0.32 |
DB2 | 16 August | 13.7 ± 0.1 | 2.81 ± 0.01 | 16.5 ± 0.7 | 0.8 | |
DB3 | 25 August | 17.2 ± 0.6 | 2.85 ± 0.07 | 12.5 ± 1.1 | 1.37 | |
DB4 | 1 September | 18.8 ± 0.2 | 2.90 ± 0.00 | 10.2 ± 0.6 | 1.85 | |
DB5 | 8 September | 19.7 ± 0.6 | 3.04 ± 0.00 | 7.9 ± 0.2 | 2.51 | |
DB6 | 13 September | 19.7 ± 1.1 | 3.08 ± 0.02 | 7.9 ± 0.5 | 2.51 | |
DB7 | 21 September | 21.0 ± 0.1 | 3.13 ± 0.01 | 7.1 ± 0.1 | 2.96 |
Hydrolysate | Hexanol | trans-2-Hexen-1-ol | β-Damascenone | Vitispirane | TDN |
---|---|---|---|---|---|
EH3 | 153.8 ± 3.2 | 223.4 ± 4.5 | 26.8 ± 1.2 | 37.0 ± 3.0 | 3.4 ± 0.3 |
EH4 | 145.6 ± 14.7 | 196.6 ± 10.6 | 23.9 ± 0.3 | 37.7 ± 0.2 | 2.4 ± 0.1 |
EH5 | 124.7 ± 1.5 | 168.3 ± 0.7 | 24.8 ± 0.1 | 47.5 ± 0.2 | 4.5 ± 0.0 |
DB3 | 135.4 ± 3.8 | 239.1 ± 2.0 | 16.9 ± 0.5 | 32.9 ± 1.5 | 2.1 ± 0.0 |
DB4 | 148.6 ± 8.0 | 196.7 ± 0.7 | 18.6 ± 0.1 | 32.2 ± 1.7 | 2.5 ± 0.1 |
DB5 | 113.5 ± 10.9 | 105.6 ± 4.2 | 21.8 ± 0.7 | 17.2 ± 2.4 | 1.0 ± 0.0 |
DB6 | 198.6 ± 7.2 | 198.7 ± 0.6 | 25.3 ± 0.4 | 31.2 ± 7.0 | 4.2 ± 1.0 |
DB7 | 167.6 ± 13.7 | 162.1 ± 5.4 | 26.1 ± 0.4 | 23.9 ± 0.5 | 1.2 ± 0.1 |
Hydrolysate | α-Terpineol | Linalool | cis-Linalool Oxide | trans-Linalool Oxide | Nerol | Nerol Oxide | Geraniol |
---|---|---|---|---|---|---|---|
EH3 | 168.3 | 73.9 | 7.8 | 14.4 | 7.5 | 11.2 | 27.8 |
EH4 | 284.0 | 133.7 | 8.0 | 15.9 | 13.6 | 15.2 | 46.8 |
EH5 | 315.5 | 173.6 | 9.3 | 19.7 | 16.4 | 17.3 | 58.0 |
DB3 | 279.3 | 40.3 | 8.4 | 15.4 | 5.7 | 11.5 | 18.1 |
DB4 | 168.3 | 59.3 | 7.1 | 13.4 | 8.4 | 10.3 | 27.2 |
DB5 | 205.2 | 69.8 | 8.9 | 18.3 | 8.4 | 13.6 | 27.6 |
DB6 | 154.1 | 90.6 | 6.7 | 15.0 | 11.0 | 12.8 | 37.9 |
DB7 | 227.7 | 130.8 | 8.3 | 17.9 | 14.2 | 16.2 | 49.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.H.; Zimmermann, D.; Durner, D. Aroma Potential of German Riesling Winegrapes during Late-Stage Ripening. Beverages 2024, 10, 77. https://doi.org/10.3390/beverages10030077
Nguyen TH, Zimmermann D, Durner D. Aroma Potential of German Riesling Winegrapes during Late-Stage Ripening. Beverages. 2024; 10(3):77. https://doi.org/10.3390/beverages10030077
Chicago/Turabian StyleNguyen, Thi H., Daniel Zimmermann, and Dominik Durner. 2024. "Aroma Potential of German Riesling Winegrapes during Late-Stage Ripening" Beverages 10, no. 3: 77. https://doi.org/10.3390/beverages10030077
APA StyleNguyen, T. H., Zimmermann, D., & Durner, D. (2024). Aroma Potential of German Riesling Winegrapes during Late-Stage Ripening. Beverages, 10(3), 77. https://doi.org/10.3390/beverages10030077