Impact of Different Wood Types on the Chemical Composition and Sensory Profile of Aged Tsipouro: A Comparative Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tsipouro Production
2.2. Distillation
2.3. Woods
2.4. Toasting
2.5. Aged Tsipouro
2.5.1. Colour Measurements and Total Polyphenolic Index
2.5.2. Extraction of Volatile Compounds
2.5.3. Gas Chromatography–Olfactometry–Mass Spectrometry (GC–O–MS) Analysis
2.5.4. Sensory Analysis
3. Results and Discussion
3.1. Identification of Volatile Compounds by GC–O–MS of Aged Tsipouro
3.2. Colour Measurements and Total Polyphenolic Index of Aged Tsipouro
3.3. Sensory Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. Regulation (EC) 2019/787 of 17 April 2019. Off. J. Eur. Union 2019, L130, 1–54. [Google Scholar]
- European Commission. Regulation (EC) 2008/110 of 15 January 2008. Off. J. Eur. Union 2008, L39, 16–54. [Google Scholar]
- European Commission. Regulation (EC) 1989/1576 of 15 June 1989. Off. J. Eur. Union 1989, L160, 1–17. [Google Scholar]
- eAmbrosia. The EU Geographical Indications Register. Available online: https://ec.europa.eu/agriculture/eambrosia/geographical-indications-register/ (accessed on 10 April 2024).
- Data General Chemical State Laboratory (G.C.S.L.), Edit Greek Federation of Spirits Producers (SEAOP). 2023. Available online: https://www.seaop.gr/press-office/press-releases?pageNo=2 (accessed on 10 April 2024).
- e-nomothesia.gr. Y.A.30/077/2131/2011—ΦΕΚ 1946/Β/31-8-2011. Available online: https://www.e-nomothesia.gr/kat-epikheireseis/alkooloukha-pota-oinopneuma-potopoieia/ya-30-077-2131-2011.html (accessed on 10 April 2024).
- Martínez-Gil, A.; Del Alamo-Sanza, M.; Sánchez-Gómez, R.; Nevares, I. Different Woods in Cooperage for Oenology: A Review. Beverages 2018, 4, 94. [Google Scholar] [CrossRef]
- González, J.C.; Pino, J.A. Analysis of Volatile Compounds in Different Types of Oak Barrel Used in the Aging of Rum. Rev. CENIC Cienc. Quím. 2020, 51, 238–251. [Google Scholar]
- Fernández de Simón, B.; Esteruelas, E.; Muñoz, Á.M.; Cadahía, E.; Sanz, M. Volatile Compounds in Acacia, Chestnut, Cherry, Ash, and Oak Woods, with a View to Their Use in Cooperage. J. Agric. Food Chem. 2009, 57, 3217–3227. [Google Scholar] [CrossRef]
- Mayr Marangon, C.; De Rosso, M.; Carraro, R.; Flamini, R. Changes in Volatile Compounds of Grape Pomace Distillate (Italian Grappa) during One-Year Ageing in Oak and Cherry Barrels. Food Chem. 2021, 344, 128658. [Google Scholar] [CrossRef] [PubMed]
- Canas, S.; Caldeira, I.; Anjos, O.; Lino, J.; Soares, A.; Pedro Belchior, A. Physicochemical and Sensory Evaluation of Wine Brandies Aged Using Oak and Chestnut Wood Simultaneously in Wooden Barrels and in Stainless Steel Tanks with Staves. Int. J. Food Sci. Technol. 2016, 51, 2537–2545. [Google Scholar] [CrossRef]
- Jordão, A.M.; Lozano, V.; Correia, A.C.; Ortega-Heras, M.; González-SanJosé, M.L. Comparative Analysis of Volatile and Phenolic Composition of Alternative Wood Chips from Cherry, Acacia and Oak for Potential Use in Enology. EDP Sci. 2016, 7, 02012. [Google Scholar] [CrossRef]
- Carpena, M.; Pereira, A.G.; Prieto, M.A.; Simal-Gandara, J. Wine Aging Technology: Fundamental Role of Wood Barrels. Foods 2020, 9, 1160. [Google Scholar] [CrossRef]
- Guerrero-Chanivet, M.; Valcárcel-Muñoz, M.J.; García-Moreno, M.V.; Guillén-Sánchez, D.A. Characterization of the Aromatic and Phenolic Profile of Five Different Wood Chips Used for Ageing Spirits and Wines. Foods 2020, 9, 1613. [Google Scholar] [CrossRef] [PubMed]
- Setzer, W.N. Volatile Components of Oak and Cherry Wood Chips Used in Aging of Beer, Wine, and Sprits. Am. J. Essent. Oils Nat. Prod. 2016, 4, 37–40. [Google Scholar]
- Cadahía, E.; Fernández de Simón, B.; Jalocha, J. Volatile Compounds in Spanish, French, and American Oak Woods after Natural Seasoning and Toasting. J. Agric. Food Chem. 2003, 51, 5923–5932. [Google Scholar] [CrossRef]
- Rodríguez-Solana, R.; Rodríguez, N.; Dominguez, J.M.; Cortés, S. Characterization by Chemical and Sensory Analysis of Commercial Grape Marc Distillate (Orujo) Aged in Oak Wood. J. Inst. Brew. 2012, 118, 205–212. [Google Scholar] [CrossRef]
- Canas, S. Phenolic Composition and Related Properties of Aged Wine Spirits: Influence of Barrel Characteristics. A Review. Beverages 2017, 3, 55. [Google Scholar] [CrossRef]
- García-Moreno, M.V.; Sánchez-Guillén, M.M.; Ruiz de Mier, M.; Delgado-González, M.J.; Rodríguez-Dodero, M.C.; García-Barroso, C.; Guillén-Sánchez, D.A. Use of Alternative Wood for the Ageing of Brandy de Jerez. Foods 2020, 9, 250. [Google Scholar] [CrossRef]
- Caldeira, I.; Belchior, A.P.; Clímaco, M.C.; Bruno de Sousa, R. Aroma Profile of Portuguese Brandies Aged in Chestnut and Oak Woods. Anal. Chim. Acta 2002, 458, 55–62. [Google Scholar] [CrossRef]
- Caldeira, I.; Anjos, O.; Portal, V.; Belchior, A.P.; Canas, S. Sensory and Chemical Modifications of Wine-Brandy Aged with Chestnut and Oak Wood Fragments in Comparison to Wooden Barrels. Anal. Chim. Acta 2010, 660, 43–52. [Google Scholar] [CrossRef]
- Tsakiris, A.; Kallithraka, S.; Kourkoutas, Y. Grape Brandy Production, Composition and Sensory Evaluation. J. Sci. Food Agric. 2014, 94, 404–414. [Google Scholar] [CrossRef]
- Gadrat, M.; Lavergne, J.; Emo, C.; Teissedre, P.L.; Chira, K. Sensory Characterisation of Cognac Eaux-De-Vie Aged in Barrels Subjected to Different Toasting Processes. OENO One 2022, 56, 17–28. [Google Scholar] [CrossRef]
- Blumenthal, P.; Steger, M.C.; Einfalt, D.; Rieke-Zapp, J.; Quintanilla Bellucci, A.; Sommerfeld, K.; Schwarz, S.; Lachenmeier, D.W. Methanol Mitigation during Manufacturing of Fruit Spirits with Special Consideration of Novel Coffee Cherry Spirits. Molecules 2021, 26, 2585. [Google Scholar] [CrossRef]
- Andraous, J.I.; Claus, M.J.; Lindemann, D.J.; Berglund, K.A. Effect of Liquefaction Enzymes on Methanol Concentration of Distilled Fruit Spirits. Am. J. Enol. Vitic. 2004, 55, 199–201. [Google Scholar] [CrossRef]
- Christensen, K.I. Flora Hellenica. In Fagaceae; Strid, A., Tan, K., Eds.; Koeltz Scientific: Königstein, Germany, 1997; pp. 40–50. [Google Scholar]
- Dimopoulos, P.; Raus, T.; Bergmeier, E.; Constantinidis, T.; Iatrou, G.; Kokkini, S.; Strid, A.; Tzanoudakis, D. Vascular Plants of Greece: An Annotated Checklist. Supplement. Willdenowia 2016, 46, 301–347. [Google Scholar] [CrossRef]
- Sourpi, D.; Soufleros, E.; Maitis, N. The future of Greek barrel making: Possibilities of manufacturing wine barrels from Greek oak. Oenology 2020, 58, 10–25. [Google Scholar]
- Dasarxeio.gr. Declaring a Century-Old Oak as a “Preservable Monument of Nature”. Available online: https://dasarxeio.com/2018/03/12/53971/ (accessed on 12 April 2024).
- ΥA30084/26.02.2018 (Β’ 836). Available online: https://dasarxeio.com/wp-content/uploads/2018/03/b_836_2018.pdf (accessed on 10 April 2024).
- Diamandis, S. Sweet Chestnut: From the “Kastania” of the Ancient Greeks to Modern Days. In Acta Horticulturae; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2010; pp. 527–530. [Google Scholar] [CrossRef]
- Conedera, M.; Krebs, P.; Tinner, W.; Pradella, M.; Torriani, D. The Cultivation of Castanea Sativa (Mill.) in Europe, from Its Origin to Its Diffusion on a Continental Scale. Veg. Hist. Archaeobotany 2004, 13, 161–179. [Google Scholar] [CrossRef]
- Soufleros, E.H.; Bertrand, A. Etude Sur Le «Tsipouro», Eau-de-Vie de Marc Traditionnelle de Grèce, Précurseur de l’ouzo. OENO One 1987, 21, 93–111. [Google Scholar] [CrossRef]
- Soufleros, E.H.; Natskoulis, P.; Mygdalia, A.S. Discrimination and Risk Assessment Due to the Volatile Compounds and the Inorganic Elements Present in the Greek Marc Distillates Tsipouro and Tsikoudia. OENO One 2005, 39, 31–45. [Google Scholar] [CrossRef]
- Soufleros, E.H.; Rodovitis, B.A. Tsipouro and Tsikoudia: The Greek Grape Mark Distillate; Soufleros Evangelos: Thessaloniki, Greece, 2004. [Google Scholar]
- Geroyiannaki, M.; Komaitis, M.E.; Stavrakas, D.E.; Polysiou, M.; Athanasopoulos, P.E.; Spanos, M. Evaluation of Acetaldehyde and Methanol in Greek Traditional Alcoholic Beverages from Varietal Fermented Grape Pomaces (Vitis vinifera L.). Food Control 2007, 18, 988–995. [Google Scholar] [CrossRef]
- Taloumi, T.; Makris, D.P. Accelerated Aging of the Traditional Greek Distillate Tsipouro Using Wooden Chips. Part I: Effect of Static Maceration vs. Ultrasonication on the Polyphenol Extraction and Antioxidant Activity. Beverages 2017, 3, 5. [Google Scholar] [CrossRef]
- Giannakourou, M.; Stratati, I.F.; Maria Manika, E.; Resiti, V.; Tataridis, P.; Zoumpoulakis, P.; Sinanoglou, V.J. Assessment of Phenolic Content, Antioxidant Activity, Colour and Sensory Attributes of Wood Aged “Tsipouro”. Curr. Res. Nutr. Food Sci. J. 2018, 6, 318–328. [Google Scholar] [CrossRef]
- Sánchez-Gómez, R.; del Alamo-Sanza, M.; Martínez-Gil, A.M.; Nevares, I. Red Wine Aging by Different Micro-Oxygenation Systems and Oak Wood—Effects on Anthocyanins, Copigmentation and Color Evolution. Processes 2020, 8, 1250. [Google Scholar] [CrossRef]
- Ayala, F.; Echávarri, J.F.; Negueruela, A.I. A New Simplified Method for Measuring the Color of Wines. II. White Wines and Brandies. Am. J. Enol. Vitic. 1997, 48, 364. [Google Scholar] [CrossRef]
- MSCVes.zip. Available online: http://www.unirioja.es/color/descargas.shtml (accessed on 12 April 2024).
- Waterhouse, A.L.; Sacks, G.L.; Jeffery, D.W. Understanding Wine Chemistry; John Wiley & Sons: Chichester, UK, 2016; p. 102. [Google Scholar]
- Ivanova, V.; Stefova, M.; Stafilov, T.; Vojnoski, B.; Bíró, I.; Bufa, A.; Kilár, F. Validation of a Method for Analysis of Aroma Compounds in Red Wine Using Liquid–Liquid Extraction and GC–MS. Food Anal. Methods 2012, 5, 1427–1434. [Google Scholar] [CrossRef]
- Goulioti, E.; Jeffery, D.W.; Kanapitsas, A.; Lola, D.; Papadopoulos, G.; Bauer, A.; Kotseridis, Y. Chemical and Sensory Characterization of Xinomavro Red Wine Using Grapes from Protected Designations of Northern Greece. Molecules 2023, 28, 5016. [Google Scholar] [CrossRef] [PubMed]
- Flavornet and Human Odor Space. Available online: https://www.flavornet.org/ (accessed on 10 January 2024).
- Ribereau-Gayon, P.; Boidron, J.N.; Terrier, A. Aroma of Muscat Grape Varieties. J. Agric. Food Chem. 1975, 23, 1042–1047. [Google Scholar] [CrossRef]
- Fenoll, J.; Manso, A.; Hellín, P.; Ruiz, L.; Flores, P. Changes in the Aromatic Composition of the Vitis Vinifera Grape Muscat Hamburg during Ripening. Food Chem. 2009, 114, 420–428. [Google Scholar] [CrossRef]
- Lanaridis, P.; Salaha, M.-J.; Tzourou, I.; Tsoutsouras, E.; Karagiannis, S. Volatile Compounds in Grapes and Wines from Two Muscat Varieties Cultivated on Greek Islands. J. Int. Sci. la Vigne Vin 2002, 36, 39–47. [Google Scholar] [CrossRef]
- Cortés, S.; Rodríguez, R.; Salgado, J.M.; Domínguez, J.M. Comparative Study between Italian and Spanish Grape Marc Spirits in Terms of Major Volatile Compounds. Food Control 2011, 22, 673–680. [Google Scholar] [CrossRef]
- Bovo, B.; Andrighetto, C.; Carlot, M.; Corich, V.; Lombardi, A.; Giacomini, A. Yeast Population Dynamics during Pilot-Scale Storage of Grape Marcs for the Production of Grappa, a Traditional Italian Alcoholic Beverage. Int. J. Food Microbiol. 2009, 129, 221–228. [Google Scholar] [CrossRef]
- Da Porto, C.; Decorti, D. Supercritical CO2 Extraction of Grappa Volatile Compounds. Int. J. Food Sci. Technol. 2009, 44, 1927–1932. [Google Scholar] [CrossRef]
- Da Porto, C. Volatile Composition of Grappa Low Wines’ Using Different Methods and Conditions of Storage on an Industrial Scale. Int. J. Food Sci. Technol. 2002, 37, 395–402. [Google Scholar] [CrossRef]
- Da Porto, C. Grappa and Grape-Spirit Production. Crit. Rev. Biotechnol. 1998, 18, 13–24. [Google Scholar] [CrossRef]
- Cortés, S.; Gil, M.L.; Fernández, E. Volatile Composition of Traditional and Industrial Orujo Spirits. Food Control 2005, 16, 383–388. [Google Scholar] [CrossRef]
- Silva, M.L.; Malcata, F.X.; De Revel, G. Volatile Contents of Grape Marcs in Portugal. J. Food Compos. Anal. 1996, 9, 72–80. [Google Scholar] [CrossRef]
- Petrakis, P.; Touris, I.; Liouni, M.; Zervou, M.; Kyrikou, I.; Kokkinofta, R.; Theocharis, C.R.; Mavromoustakos, T.M. Authenticity of the Traditional Cypriot Spirit “Zivania” on the Basis of 1H NMR Spectroscopy Diagnostic Parameters and Statistical Analysis. J. Agric. Food Chem. 2005, 53, 5293–5303. [Google Scholar] [CrossRef] [PubMed]
- Luna, R.; Matias-Guiu, P.; López, F.; Pérez-Correa, J.R. Quality Aroma Improvement of Muscat Wine Spirits: A New Approach Using First-Principles Model-Based Design and Multi-Objective Dynamic Optimisation through Multi-Variable Analysis Techniques. Food Bioprod. Process. 2019, 115, 208–222. [Google Scholar] [CrossRef]
- Malfondet, N.; Gourrat, K.; Brunerie, P.; Le Quéré, J.-L. Aroma Characterization of Freshly-Distilled French Brandies; Their Specificity and Variability within a Limited Geographic Area. Flavour Fragr. J. 2016, 31, 361–376. [Google Scholar] [CrossRef]
- Uselmann, V.; Schieberle, P. Decoding the Combinatorial Aroma Code of a Commercial Cognac by Application of the Sensomics Concept and First Insights into Differences from a German Brandy. J. Agric. Food Chem. 2015, 63, 1948–1956. [Google Scholar] [CrossRef]
- Tsakiris, A.; Kallithraka, S.; Kourkoutas, Y. Brandy and Cognac: Manufacture and Chemical Composition. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 462–468. [Google Scholar] [CrossRef]
- Raičević, D.; Popović, T.; Jančić, D.; Šuković, D.; Pajović-Šćepanović, R. The Impact of Type of Brandy on the Volatile Aroma Compounds and Sensory Properties of Grape Brandy in Montenegro. Molecules 2022, 27, 2974. [Google Scholar] [CrossRef] [PubMed]
- Awad, P.; Athès, V.; Decloux, M.E.; Ferrari, G.; Snakkers, G.; Raguenaud, P.; Giampaoli, P. Evolution of Volatile Compounds during the Distillation of Cognac Spirit. J. Agric. Food Chem. 2017, 65, 7736–7748. [Google Scholar] [CrossRef]
- Cacho, J.; Moncayo, L.; Palma, J.C.; Ferreira, V.; Culleré, L. The Impact of Grape Variety on the Aromatic Chemical Composition of Non-Aromatic Peruvian Pisco. Food Res. Int. 2013, 54, 373–381. [Google Scholar] [CrossRef]
- Peña y Lillo, M.; Latrille, E.; Casaubon, G.; Agosin, E.; Bordeu, E.; Martin, N. Comparison between Odour and Aroma Profiles of Chilean Pisco Spirit. Food Qual. Prefer. 2005, 16, 59–70. [Google Scholar] [CrossRef]
- Lukic, I.; Milicevic, B.; Banovic, M.; Tomas, S.; Radeka, S.; Persuric, D. Secondary Aroma Compounds in Fresh Grape Marc Distillates as a Result of Variety and Corresponding Production Technology. Food Technol. Biotechnol. 2011, 49, 214–228. [Google Scholar]
- Lu, C.; Zhang, Y.; Zhan, P.; Wang, P.; Tian, H. Characterization of the Key Aroma Compounds in Four Varieties of Pomegranate Juice by Gas Chromatography-Mass Spectrometry, Gas Chromatography-Olfactometry, Odor Activity Value, Aroma Recombination, and Omission Tests. Food Sci. Hum. Wellness 2023, 12, 151–160. [Google Scholar] [CrossRef]
- Matijašević, S.; Popović-Djordjević, J.; Ristić, R.; Ćirković, D.; Ćirković, B.; Popović, T. Volatile Aroma Compounds of Brandy ‘Lozovača′ Produced from Muscat Table Grapevine Cultivars (Vitis vinifera L.). Molecules 2019, 24, 2485. [Google Scholar] [CrossRef]
- Cordente, A.G.; Solomon, M.; Schulkin, A.; Leigh Francis, I.; Barker, A.; Borneman, A.R.; Curtin, C.D. Novel Wine Yeast with ARO4 and TYR1 Mutations That Overproduce ‘Floral’ Aroma Compounds 2-Phenylethanol and 2-Phenylethyl Acetate. Appl. Microbiol. Biotechnol. 2018, 102, 5977–5988. [Google Scholar] [CrossRef]
- Genovese, A.; Ugliano, M.; Pessina, R.; Gambuti, A.; Piombino, P.; Moio, L. Comparison of the Aroma Compounds in Apricot (Prunus armeniaca, L. Cv. Pellecchiella) and Apple (Malus pumila, L. Cv. Annurca) Raw Distillates. Ital. J. Food Sci. 2004, 16, 185–196. [Google Scholar]
- de-la-Fuente-Blanco, A.; Ferreira, V. Gas Chromatography Olfactometry (GC-O) for the (Semi)Quantitative Screening of Wine Aroma. Foods 2020, 9, 1892. [Google Scholar] [CrossRef]
- Tarko, T.; Krankowski, F.; Duda-Chodak, A. The Impact of Compounds Extracted from Wood on the Quality of Alcoholic Beverages. Molecules 2023, 28, 620. [Google Scholar] [CrossRef]
- Culleré, L.; Fernández De Simón, B.; Cadahía, E.; Ferreira, V.; Hernández-Orte, P.; Cacho, J. Characterization by Gas Chromatography–Olfactometry of the Most Odor-Active Compounds in Extracts Prepared from Acacia, Chestnut, Cherry, Ash and Oak Woods. LWT—Food Sci. Technol. 2013, 53, 240–248. [Google Scholar] [CrossRef]
- Navarro, M.; Kontoudakis, N.; Giordanengo, T.; Gómez-Alonso, S.; García-Romero, E.; Fort, F.; Canals, J.M.; Hermosín-Gutíerrez, I.; Zamora, F. Oxygen Consumption by Oak Chips in a Model Wine Solution; Influence of the Botanical Origin, Toast Level and Ellagitannin Content. Food Chem. 2016, 199, 822–827. [Google Scholar] [CrossRef] [PubMed]
- Híc, P.; Horák, M.; Balík, J.; Martinák, K. Assessment of Spirit Aging on Different Kinds of Wooden Fragments. Wood Sci. Technol. 2021, 55, 257–270. [Google Scholar] [CrossRef]
- Canas, S.; Casanova, V.; Pedro Belchior, A. Antioxidant Activity and Phenolic Content of Portuguese Wine Aged Brandies. Wine Nutr. Bioact. Non-Nutr. More 2008, 21, 626–633. [Google Scholar] [CrossRef]
- Rodríguez-Solana, R.; Salgado, J.M.; Domínguez, J.M.; Cortés-Diéguez, S. First Approach to the Analytical Characterization of Barrel-Aged Grape Marc Distillates Using Phenolic Compounds and Colour Parameters. Food Technol. Biotechnol. 2014, 52, 391–402. [Google Scholar] [CrossRef]
- Belchior, A.P.; Caldeira, I.; Costa, S.; Lopes, C.; Tralhão, G.; Ferrão, A.F.; Mateus, A.M.; Carvalho, E. Evolução Das Características Fisico-Químicas e Organolépticas de Aguardentes Lourinhã Ao Longo de Cinco Anos de Envelhecimento Em Madeiras de Carvalho e de Castanheiro. Ciênc. Téc. Vitivinic. 2001, 16, 81–94. [Google Scholar]
- Canas, S.; Belchior, A.P.; Caldeira, I.; Spranger, M.I.; de Sousa, R.B. ‘Evolution de la Couleur des eaux-de-vie de Lourinhã au Cours des Trois Premieres Annees de Vieillissement a Cor e ua Evolução em Aguardentes Lourinhã nos Três Primeiros Anos de Envelhecimento. Ciênc. Téc. Vitivinic. 2000, 15, 1–14. [Google Scholar]
- Spirituous Beverages Experts Group. Chestnut Wooden Barrels for the Ageing of Wine Spirits. Paris, France. Available online: https://www.oiv.int/sites/default/files/2022-10/oiv-collective-expertise-chestnut-wooden-barrels-for-the-age2_EN.pdf (accessed on 14 April 2024).
- Hale, M.D.; Mccafferty, K.; Larmie, E.; Newton, J.; Swan, J.S. The Influence of Oak Seasoning and Toasting Parameters on the Composition and Quality of Wine. Am. J. Enol. Vitic. 1999, 50, 495–502. [Google Scholar] [CrossRef]
- Schwarz, M.; Rodríguez, M.; Guillén, D.; Barroso, C. Analytical Characterisation of a Brandy de Jerez during its Ageing. Eur. Food Res. Technol. 2011, 232, 813–819. [Google Scholar] [CrossRef]
- Canas, S.; Anjos, O.; Caldeira, I.; Fernandes, T.A.; Santos, N.; Lourenço, S.; Granja-Soares, J.; Fargeton, L.; Boissier, B.; Catarino, S. Micro-Oxygenation Level as a Key to Explain the Variation in the Colour and Chemical Composition of Wine Spirits Aged with Chestnut Wood Staves. LWT 2022, 154, 112658. [Google Scholar] [CrossRef]
- International Commission on Illumination. CIE Central Bureau, 2014. Available online: https://web.archive.org/web/20170410214923/http://eilv.cie.co.at/term/139 (accessed on 14 April 2024).
- Bozalongo, R.; Carrillo, J.D.; Torroba, M.Á.F.; Tena, M.T. Analysis of French and American Oak Chips with Different Toasting Degrees by Headspace Solid-Phase Microextraction-Gas Chromatography–Mass Spectrometry. J. Chromatogr. A 2007, 1173, 10–17. [Google Scholar] [CrossRef]
- García-Moreno, M.V.; Sánchez-Guillén, M.M.; Delgado-González, M.J.; Durán-Guerrero, E.; Rodríguez-Dodero, M.C.; García-Barroso, C.; Guillén-Sánchez, D.A. Chemical Content and Sensory Changes of Oloroso Sherry Wine When Aged with Four Different Wood Types. LWT 2021, 140, 110706. [Google Scholar] [CrossRef]
- Towey, J.P.; Waterhouse, A.L. The Extraction of Volatile Compounds From French and American Oak Barrels in Chardonnay During Three Successive Vintages. Am. J. Enol. Vitic. 1996, 47, 163. [Google Scholar] [CrossRef]
- Pérez-Prieto, L.J.; López-Roca, J.M.; Martínez-Cutillas, A.; Pardo Mínguez, F.; Gómez-Plaza, E. Maturing Wines in Oak Barrels. Effects of Origin, Volume, and Age of the Barrel on the Wine Volatile Composition. J. Agric. Food Chem. 2002, 50, 3272–3276. [Google Scholar] [CrossRef] [PubMed]
- Navarro, M.; Kontoudakis, N.; Gómez-Alonso, S.; García-Romero, E.; Canals, J.M.; Hermosín-Gutíerrez, I.; Zamora, F. Influence of the Volatile Substances Released by Oak Barrels into a Cabernet Sauvignon Red Wine and a Discolored Macabeo White Wine on Sensory Appreciation by a Trained Panel. Eur. Food Res. Technol. 2018, 244, 245–258. [Google Scholar] [CrossRef]
Odour Category (Descriptor) | Substance/Flavouring | Quantity |
---|---|---|
Floral (rose) | Rose water (flavoured water by steeping rose petals) | 1 mL |
Citrus (bergamot) | Bergamot peel | 2.5 g |
Dry fruits (apricot, plum, raisins, fig) | Dried apricots | 2.5 g |
Dried plums | 15 g | |
Raisins | 12 g | |
Fig spoon sweet | 20 g | |
Vanilla | Vanilla extract, 1 g/L | 1 mg |
Honey | Honey | 15 g |
Caramel | Caramel extract | 15 μL |
Wood | Uncharred oak chips | 5 g |
Spicy (cinnamon, allspice, pepper, clove) | Ground cinnamon | 0.21 g |
Ground allspice | 0.25 g | |
Ground pepper | 0.3 g | |
Ground clove | 0.5 g | |
Smoke (tobacco) | Hand rolling tobacco | 0.8 g |
Roast (coffee, hazelnut) | Coffee | 2 g |
Hazelnut | 2 g | |
Chocolate | Black chocolate | 5.4 g |
Coconut | Ground coconut | 2 g |
Num a | RI GC-MS b Column | Aroma Description c | Compound d | Intensity e | |||||
---|---|---|---|---|---|---|---|---|---|
DB-WAX | DB-5 | CONTROL | FO | AO | GO | GC | |||
1 | 1104 | 655 | Solvent, fruity | 2-methyl- 1-propanol (isobutanol) | 3 | 3 | 3 | 3 | 3 |
2 | 1210 | 756 | Cheesy, green, solvent | 2-methyl-1-butanol | 3 | 3 | 3 | 3 | 3 |
3 | 1210 | 756 | 3-methyl-1-butanol (isoamyl alcohol) | n.d. 1 | n.d. | n.d. | n.d. | n.d. | |
4 | 1240 | 1007 | Fruity | ethyl hexanoate | 3 | 3 | 3 | 3 | 3 |
5 | 1251 | 1012 | Caramelised, heavy, sweet | unknown | 1 | 1 | 1 | 1 | 1 |
6 | 1356 | 865 | Cut-grass | 1-hexanol | 1 | 1 | 1 | 1 | 1 |
7 | 1391 | 858 | Cut-grass | (Z)-3-hexen-1-ol | |||||
8 | 1433 | 1193 | Fruity | ethyl octanoate | 2.3 | 2 | 2 | 2 | 2 |
9 | 1457 | Floral, rose | unknown | 1 | 1 | 1 | 1 | 1 | |
10 | 1533 | 1104 | Citrus, bergamot | linalool | 3 | 2 | 2 | 2 | 1.7 |
11 | Sweet, tropical | unknown | 1.3 | 1 | 1 | 1 | 1 | ||
12 | 1640 | 1401 | Brandy, fruity | ethyl decanoate | 1 | 1 | 1 | 1 | 1 |
13 | Citrus, sweet orange | unknown | 1.3 | 1 | 1 | 1 | 1 | ||
14 | 1700 | 1192 | Floral, lilac | a-terpineol | 1 | 1 | 1 | 1 | 1 |
15 | 1768 | 1235 | Lemon, citronellal, lemongrass | citronellol | 1.3 | 1 | 1 | 1 | 1 |
16 | 1792 | 1230 | Honeysuckle, lavender | nerol | 1 | 1 | 1 | 1 | 1 |
17 | 1837 | 1250 | Rosy | 2-phenylethyl acetate | 2.3 | 2 | 2 | 2 | 1.7 |
18 | 1852 | 1088 | Smokey | guaiacol | n.d. | 2.3 | 2 | 2.3 | 1 |
19 | 1857 | 1103 | Coconut-like | (3S,4R)-trans-whiskylactone | n.d. | 2 | 2 | 2 | n.d. |
20 | 1862 | 1266 | Citrus | geraniol | 2.3 | 2 | 2 | 2 | 2 |
21 | 1914 | 1115 | Rose/honey | 2-phenylethanol | 1.3 | 1 | 1 | 1 | 1 |
22 | 1971 | 1310 | Coconut-like | (3S,4S)-cis-whiskylactone | n.d. | 1 | 3 | 1 | n.d. |
23 | 2033 | 1282 | Roasty, spicy | 4-ethyl-2-methoxyphenol (4-ethyl guaiacol) | n.d. | 1.3 | 2 | 1.3 | n.d. |
24 | 2038 | 1077 | Caramel-like | 4-hydroxy-2,5-dimethyl-3(2H)-furanone (furaneol) | n.d. | 1.7 | 2 | 1.7 | 1 |
25 | 2212 | 1314 | Clove-like | 2-methoxy-4-vinylphenol (4-vinylguaiacol) | n.d. | 1.7 | 2 | 1.7 | 1 |
26 | 2235 | 1117 | Seasoning-like | 3-hydroxy-4,5-dimethyl-2(5H)-furanone (sotolon) | n.d. | 2 | 2 | 2 | 2.3 |
27 | 2566 | 1405 | Vanilla | vanillin | n.d. | 3 | 1 | 2.7 | 1 |
28 | 2600 | 1525 | Vanilla | methyl vanillate | n.d. | 2 | 1.7 | 2 | 1 |
29 | 2665 | Vanilla, chocolate | ethyl vanillate | n.d. | 2.3 | 2 | 2.3 | 1 |
Types of Wood | ΔΕab* | ||
---|---|---|---|
FO | “vs” | AO | 14.4 |
AO | “vs” | GO | 17.4 |
GO | “vs” | GC | 27.1 |
FO | “vs” | GC | 30.2 |
FO | “vs” | GO | 3.1 |
AO | “vs” | GC | 43.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karathanos, A.; Soultani, G.; Kontoudakis, N.; Kotseridis, Y. Impact of Different Wood Types on the Chemical Composition and Sensory Profile of Aged Tsipouro: A Comparative Study. Beverages 2024, 10, 76. https://doi.org/10.3390/beverages10030076
Karathanos A, Soultani G, Kontoudakis N, Kotseridis Y. Impact of Different Wood Types on the Chemical Composition and Sensory Profile of Aged Tsipouro: A Comparative Study. Beverages. 2024; 10(3):76. https://doi.org/10.3390/beverages10030076
Chicago/Turabian StyleKarathanos, Athanassios, Georgia Soultani, Nikolaos Kontoudakis, and Yorgos Kotseridis. 2024. "Impact of Different Wood Types on the Chemical Composition and Sensory Profile of Aged Tsipouro: A Comparative Study" Beverages 10, no. 3: 76. https://doi.org/10.3390/beverages10030076
APA StyleKarathanos, A., Soultani, G., Kontoudakis, N., & Kotseridis, Y. (2024). Impact of Different Wood Types on the Chemical Composition and Sensory Profile of Aged Tsipouro: A Comparative Study. Beverages, 10(3), 76. https://doi.org/10.3390/beverages10030076