Aromatic and Sensory Characterization of Maturana Blanca Wines Made with Different Technologies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grapes and Winemaking
2.2. Standard Enological Parameters
2.3. Analysis of Volatile Compounds
2.4. Odour Activity
2.5. Sensory Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Oenological Parameters of Maturana Blanca Wines
3.2. Wine Volatile Composition of Maturana Blanca Wines
3.3. Odour Activity Values of Maturana Blanca Wines
3.4. Sensory Properties of Maturana Blanca Wines
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kotseridis, Y.; Baumes, R. Identification of impact odorants in Bordeaux red grape juice, in the commercial yeast used for its fermentation, and in the produced wine. J. Agric. Food Chem. 2000, 48, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Spranger, M.I.; Clímaco, M.C.; Sun, B.; Eiriz, N.; Fortunato, C.; Nunes., A.; Leandro, M.C.; Avelar, M.L.; Belchior, A.P. Differentiation of red winemaking technologies by phenolic and volatile composition. Anal. Chim. Acta 2004, 513, 151–161. [Google Scholar] [CrossRef]
- Prida, A.; Puech, J.L. Influence of geographical origin and botanical species on the content of extractives in American, French, and East European oak woods. J. Agric. Food Chem. 2006, 54, 8115–8126. [Google Scholar] [CrossRef] [PubMed]
- Prida, A.; Chatonnet, P. Impact of Oak-Derived Compounds on the Olfactory Perception of Barrel-Aged Wines. Am. J. Enol. Vitic. 2010, 61, 408–413. [Google Scholar]
- Aleixandre-Tudo, J.L.; Weightman, C.; Panzeri, V.; Nieuwoudt, H.H.; du Toit, W.J. Effect of skin contact before and during alcoholic fermentation on the chemical and sensory profile of South African Chenin Blanc White Wines. S. Afr. J. Enol. Vitic. 2015, 3, 366–377. [Google Scholar]
- Tomašević, M.; Gracin, L.; Ćurko, N.; Ganić, K. Impact of pre-fermentative maceration and yeast strain along with glutathione and SO2 additions on the aroma of Vitis vinifera L. Pošip wine and its evaluation during bottle aging. LWT Food Sci. Technol. 2017, 81, 67–76. [Google Scholar]
- Korenika, A.M.J.; Maslov, S.; Jakobović, L.; Palčić, I.; Jeromel, A. Comparative Study of Aromatic and Polyphenolic Profiles of Croatian White Wines Produced by Cold Maceration. Czech J. Food Sci. 2018, 36, 459–469. [Google Scholar] [CrossRef]
- Carpena, M.; Pereira, A.G.; Prieto, M.A.; Simal-Gandara, J. Review: Wine Aging Technology: Fundamental Role of Wood Barrels. Foods 2020, 9, 1160. [Google Scholar] [CrossRef]
- De Toda, F.M.; Balda, P.; Sancha, J.C. Preservation of intravarietal diversity in clonal and sanitary pre-selection for a minority variety in danger of extinction: Maturana Blanca. J. Int. Sci. Vigne Vin 2012, 46, 123–130. [Google Scholar]
- Balda, P.; de Toda, F.M. Variedades Minoritarias de vid en La Rioja, 1st ed.; Consejería de Agricultura; Ganadería y Medio Ambiente: Logroño, Spain, 2017. [Google Scholar]
- OIV. Compendium of International Methods of Analysis of Wine and Musts; Organization Internationale de la Vigne et du Vin: Paris, France, 1990. [Google Scholar]
- Oliveira, J.M.; Faria, M.; Sá, F.; Barros, F.; Araújo, I.M. C6-alcohols as varietal markers for assessment of wine origin. Anal. Chim. Acta 2006, 563, 300–309. [Google Scholar] [CrossRef] [Green Version]
- Moreno, D.; Valdés, E.; Uriarte, D.; Gamero, E.; Talaverano, I.; Vilanova, M. Early leaf removal applied in warm climatic conditions: Impact on Tempranillo wine volatiles. Food Res. Int. 2017, 98, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Etiévant, P.X. Wine. In Volatile Compounds in Food and Beverages; Maarse, H., Ed.; Marcel Dekker Inc.: New York, NY, USA, 1991; pp. 483–546. [Google Scholar]
- Ferreira, V.; López, R.; Cacho, J.F. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Francis, I.L.; Newton, L. Determining wine aroma from compositional data. Aust. J. Grape Wine Res. 2005, 11, 114–126. [Google Scholar] [CrossRef]
- Vilanova, M.; Genisheva, Z.; Bescansa, L.; Masa, A.; Oliveira, J.M. Volatile composition of wines from Vitis vinífera Agudelo, Serradelo and Blanco lexítimo from Betanzos (NW Spain). J. Inst. Brew 2009, 115, 35–40. [Google Scholar]
- Sánchez-Palomo, E.; Gómez García-Carpintero, E.; Gómez Gallego, M.A.; González Viñas, M.A. The aroma of Rojal red wines from La Mancha region-determination of key odorants. In Gas Chromatography in Plant Science, Wine Technology, Toxicology and Some Specific Application; Salih, B., Çelikbıçak, Ö., Eds.; Intech: Rijeka, Croatia, 2012; pp. 147–170. [Google Scholar]
- Vilanova, M.; Campo, E.; Escudero, A.; Graña, M.; Masa, A.; Cacho, J. Volatile composition and sensory properties of Vitis vinífera red cultivars from North West Spain: Correlation between sensory and instrumental analysis. Anal. Chim. Acta 2012, 720, 104–111. [Google Scholar] [CrossRef]
- Pérez-Olivero, S.J.; Pérez-Pont, M.L.; Conde, J.E.; Pérez-Trujillo, J.P. Determination of Lactones in Wines by Headspace Solid-Phase Microextraction and Gas Chromatography Coupled with Mass Spectrometry. J. Anal. Methods Chem. 2014, 863019, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.C.; Li, A.H.; Dizy, M.; Ullah, N.; Sun, W.X.; Tao, Y.S. Evaluation of aroma enhancement for “Ecolly” dry white wines by mixed inoculation of selected Rhodotorula mucilaginosa and Saccharomyces cerevisiae. Food Chem. 2017, 228, 550–559. [Google Scholar] [CrossRef]
- Pérez-Navarro, J.; Izquierdo-Cañas, P.M.; Mena-Morales, A.; Chacón-Vozmediano, J.L.; Martínez-Gascueña, J.; García-Romero, E.; Hermosín-Gutierrez, I.; Gómez-Alonso, S. Comprehensive chemical and sensory assessment of wines made from white grapes of Vitis vinífera cultivars Albillo Dorado and Montonera del Casar: A comparative study with Airén. Foods 2020, 9, 1282. [Google Scholar] [CrossRef]
- Moreno, J.A.; Zea, L.; Moyano, L.; Medina, M. Aroma compounds as markers of the changes in sherry wines subjected to biological ageing. Food Control 2005, 16, 333–338. [Google Scholar] [CrossRef]
- San Juan, F.; Cacho, J.; Ferreira, V.; Escudero, A. Aroma Chemical Composition of Red Wines from Different Price Categories and Its Relationship to Quality. J. Agric. Food Chem. 2012, 60, 5045–5056. [Google Scholar] [CrossRef]
- De Lerma, N.L.; Bellicontro, A.; Mencarelli, F.; Moreno, J.; Peinado, R.A. Use of electronic nose, validated by GC–MS, to establish the optimum off-vine dehydration time of wine grapes. Food Chem. 2012, 130, 447–452. [Google Scholar] [CrossRef]
- Martínez, J.; Gonzalo-Diago, A.; Baroja, E.; García-Escudero, E. Características agronómicas y potencial enológico de variedades de vid blancas autorizada en la D.O.CA. Rioja. Zubía Monogr. 2017, 29, 67–82. [Google Scholar]
- Ayestarán, B.; Martínez-Lapuente, L.; Guadalupe, Z.; Canals, C.; Adell, E.; Vilanova, M. Effect of the winemaking process on the volatile composition and aromatic profile of Tempranillo Blanco wines. Food Chem. 2019, 276, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Garde-Cerdán, T.; Rodriguez, S.; Ancín-Azpilicueta, C. Volatile composition of aged wine in used barrels of French oak and American oak. Food Res. Int. 2002, 35, 603–610. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; Ancín-Azpilicueta, C. Effect of oak barrel type on the volatile composition of wine: Storage time optimization. Food Sci. Technol. 2006, 39, 199–205. [Google Scholar]
- Spillman, P.J.; Sefton, M.A.; Gawel, R. The effect of oak wood source, location of seasoning and coopering on the composition of volatile compounds in oak-matured wines. Aust. J. Grape Wine Res. 2004, 10, 216–226. [Google Scholar] [CrossRef]
- Cai, J.; Zhu, B.Q.; Wang, Y.H.; Lu, L.; Lan, Y.B.; Reeves, M.J.; Duan, C.Q. Influence of pre-fermentation cold maceration treatment on aroma compounds of Cabernet Sauvignon wines fermented in different industrial scale fermenters. Food Chem. 2014, 154, 217–229. [Google Scholar] [CrossRef]
- Chira, K.; Teissedre, P.L. Relation between volatile composition, ellagitannin content and sensory perception of oak wood chips representing different toasting processes. Eur. Food Res. Technol. 2013, 236, 735–746. [Google Scholar] [CrossRef]
- Swiegers, J.H.; Pretorius, I.S. Yeast modulation of wineflavour. Adv. Appl. Micro. 2005, 57, 131–175. [Google Scholar]
- Perestrelo, R.; Fernandes, A.; Albuquerque, F.F.; Marques, J.C.; Câmara, J.S. Analytical characterization of the aroma of Tinta Negra Mole red wine: Identification of the main odorants compounds. Anal. Chim. Acta 2006, 563, 154–164. [Google Scholar] [CrossRef] [Green Version]
- Guth, H. Quantification and sensory studies of character impact odorants of different white wine varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Pérez-Magariño, S.; Bueno-Herrera, M.; de la Cuesta, P.L.; González-Lázaro, M.; Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B. Volatile composition, foam characteristics and sensory properties of Tempranillo red sparkling wines elaborated using different techniques to obtain the base wines. Eur. Food Res. Technol. 2019, 245, 1047–1059. [Google Scholar] [CrossRef]
- Navarro, M.; Kontoudakis, N.; Gómez-Alonso, S.; García-Romero, E.; Canals, J.M.; Hermosín-Gutierrez, I.; Zamora, F. Influence of the volatile substances released by oak barrels into a Cabernet Sauvignon red wine and a discolored Macabeo white wine on sensory appreciation by a trained panel. Eur. Food Res. Technol. 2018, 244, 245–258. [Google Scholar] [CrossRef]
- Rubio-Bretón, P.; Garde-Cerdán, T.; Martínez, J. Use of Oak Fragments during the Aging of Red Wines. Effect on the Phenolic, Aromatic, and Sensory Composition of Wines as a Function of the Contact Time with the Wood. Beverages 2018, 4, 102. [Google Scholar]
Parameters 1 | CW | PM | BF | F-Value |
---|---|---|---|---|
% Ethanol | 13.16 ± 0.12 | 13.11 ± 0.10 | 13.19 ± 0.11 | 0.403 (ns) |
TA | 7.20 ± 0.10 b | 6.70 ± 0.20 a | 7.50 ± 0.20 b | 16.333 ** |
pH | 3.01 ± 0.05 | 3.03 ± 0.04 | 3.04 ± 0.02 | 0.467 (ns) |
VA | 0.20 ± 0.01 b | 0.16 ± 0.01 a | 0.31 ± 0.01 b | 181.000 *** |
G + F | 0.03 ± 0.00 | 0.03 ± 0.01 | 0.02 ± 0.06 | 0.079 (ns) |
MA | 1.30 ± 0.02 | 1.40 ± 0.10 | 1.28 ± 0.05 | 2.884 (ns) |
A 420 nm | 0.29 ± 0.60 | 0.35 ± 0.30 | 0.31 ± 0.20 | 0.017 (ns) |
Compounds | CW | PM | BF | F-Value | |||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | ||
C6 alcohols | |||||||
1-hexanol | 459.29 | 69.80 | 431.55 | 34.30 | 504.59 | 48.57 | 1.455 (ns) |
E-3-hexenol | 42.95 | 7.20 | 56.44 | 8.25 | 41.27 | 8.40 | 3.268 (ns) |
Higher alcohols | |||||||
2-methylpropanol | 990.51 | 13.63 | 809.63 | 79.22 | 978.53 | 118.14 | 4.510 (ns) |
1-octanol | 47.11 | 1.60 | 56.73 | 10.11 | 58.43 | 7.33 | 2.113 (ns) |
3-methyl-1-butanol | 30,856.85 a | 1723.36 | 32,589.73 b | 1642.59 | 26,179.37 a | 1167.04 | 14.077 ** |
4-methyl-1-pentanol | 31.08 b | 3.81 | 24.27 a | 1.70 | 25.83 ab | 1.48 | 5.842 * |
3-methyl-1-pentanol | 67.03 b | 7.73 | 45.88 a | 2.16 | 59.31 ab | 6.07 | 10.174 * |
2,3 butanediol | 169.85 ab | 0.27 | 209.13 b | 16.06 | 150.04 a | 22.34 | 10.754 * |
Furfural | nd | nd | 365.43 a | 77.32 | 2161.51 b | 107.27 | 688.968 *** |
Furfuryl alcohol | nd | nd | nd | nd | 885.61 | 11.36 | 18,218.515 *** |
3-methyltiopropanol | 52.86 ab | 0.23 | 47.82 a | 2.04 | 56.86 b | 5.58 | 5.228 * |
2-phenylethanol | 28,190.65 a | 907.21 | 32,725.55 b | 166.99 | 25,810.52 a | 2957.88 | 11.570 ** |
Benzyl alcohol | 17.00 a | 2.00 | 21.64 a | 4.17 | nd | nd | 54.604 *** |
Ethyl esters | |||||||
Ethyl hexanoate | 1153.15 a | 234.02 | 1913.04 b | 107.56 | 1077.51 a | 70.22 | 26.968 ** |
Ethyl lactate | 208.12 a | 9.73 | 443.28 b | 48.58 | 239.74 a | 17.63 | 53.004 *** |
Ethyl octanoate | 1446.31 a | 69.65 | 2335.61 b | 189.27 | 1365.44 a | 77.33 | 55.901 *** |
Ethyl decanoate | 285.27 a | 35.40 | 361.25 b | 27.20 | 290.42 a | 11.70 | 7.618 * |
Ethyl butyrate | 325.12 a | 22.70 | 425.42 b | 33.70 | 285.89 a | 15.40 | 24.681 ** |
Diethyl succinate | 302.07 a | 59.24 | 1166.60 b | 46.75 | 308.57 a | 12.95 | 379.650 *** |
Diethyl malate | 107.44 a | 24.19 | 284.84 b | 1.10 | 110.85 a | 8.27 | 141.462 *** |
Acetates | |||||||
Isoamyl acetate | 3716.43 ab | 273.39 | 4373.29 b | 136.78 | 3021.53 a | 485.73 | 12.485 ** |
2-Phenylacetate | 878.77 a | 58.26 | 1130.88 b | 85.07 | 733.10 a | 25.57 | 32.300 ** |
Volatile acids | |||||||
Isobutyric acid | nd | nd | 185.94 a | 32.41 | 442.55 b | 11.52 | 375.648 *** |
Propanoic acid | 211.36 b | 18.05 | 145.67 a | 1.80 | 125.71 a | 1.25 | 54.686 *** |
Hexanoic acid | 1634.83 a | 195.31 | 1635.80 a | 70.91 | 2320.43 b | 52.75 | 30.641 ** |
Octanoic acid | 5934.08 | 10.39 | 5978.48 | 334.44 | 5938.19 | 687.10 | 0.009 (ns) |
Decanoic acid | 199.34 a | 20.54 | 120.40 a | 11.22 | 1046.43 b | 79.17 | 348.058 *** |
Lactones | |||||||
γ-Butirolactone | 195.90 a | 23.88 | 185.94 a | 32.41 | nd | nd | 67.625 *** |
Whiskey lactone | nd | nd | nd | nd | 442.03 | 40.48 | 357.773 *** |
γ-Decalactone | 176.84 a | 22.79 | 187.40 a | 14.50 | 372.19 b | 8.74 | 134.756 *** |
Carbonyl compounds | |||||||
Acetoine | 70.08 | 6.65 | 72.27 | 4.41 | 76.68 | 2.18 | 1.486 (ns) |
Volatile phenols | |||||||
4-Vinylphenol | 505.35 | 228.46 | 229.01 | 55.25 | 416.50 | 162.08 | 2.197 (ns) |
Eugenol | nd | nd | nd | nd | 75.22 | 9.53 | 186.997 *** |
Compound | Odor Descriptor | Odor Threshold (µg/L) | Ref. | OAV | F-Value | ||
---|---|---|---|---|---|---|---|
CW | PM | BF | |||||
C6 alcohols | |||||||
1-hexanol | Green, cut grass | 8000 | [16] | 0.06 | 0.05 | 0.06 | 1.455 (ns) |
E-3-hexenol | Green, floral | 400 | [21] | 0.11 | 0.14 | 0.10 | 3.268 (ns) |
Higher alcohols | |||||||
2-methylpropanol | Fusel | 40,000 | [16] | 0.02 | 0.02 | 0.02 | 4.510 (ns) |
1-octanol | Rose, citrus | 10,000 | [23] | 0.00 | 0.00 | 0.00 | 2.113 (ns) |
3-methyl-1-butanol | Alcohol, banana | 7000 | [14] | 4.41 b | 4.65 b | 3.73 a | 14.077 ** |
4-methyl-1-pentanol | Almond, toasted | 5000 | [21] | 0.01 b | 0.00 a | 0.01 ab | 5.842 * |
3-methyl-1-pentanol | Herbaceous, cocoa | 50,000 | [21] | 0.00 b | 0.00 a | 0.00 ab | 10.174 * |
2,3 butanediol | Fruity | 150,000 | [18] | 0.00 ab | 0.00 b | 0.00 a | 10.754 * |
Furfural | Cocoa, smoky, nut | 760 | [25] | 0.00 a | 0.47 b | 2.81 c | 664.970 *** |
Furfuryl alcohol | Cocoa, smoky, nut | 2000 | [24] | 0.00 a | 0.00 a | 0.43 b | 18,218.512 *** |
3-methyltiopropanol | Cooked vegetable | 1000 | [18] | 0.05 ab | 0.05 a | 0.06 b | 5.228 * |
2-phenylethanol | Floral, roses, lilac | 10,000 | [21] | 2.82 a | 3.27 b | 2.58 a | 11.570 ** |
Benzyl alcohol | Caramel, fruity | 200,000 | [18] | 0.00 b | 0.00 b | 0.00 a | 54.604 *** |
Ethyl esters | |||||||
Ethyl hexanoate | Apple, fruity | 14 | [17] | 82.37 a | 136.65 b | 76.97 a | 26.968 ** |
Ethyl lactate | Strawberry, raspberry | 154,000 | [21] | 0.00 a | 0.00 b | 0.00 a | 53.004 *** |
Ethyl octanoate | Apple, fruity | 5 | [17] | 289.26 a | 467.12 b | 273.09 a | 55.901 *** |
Ethyl decanoate | Grape | 200 | [21] | 1.42 a | 1.80 b | 1.45 a | 7.618 * |
Ethyl butyrate | Papaya, apple | 20 | [17] | 16.25 a | 21.25 b | 14.3 a | 24.681 ** |
Diethyl succinate | Light fruity, wine | 6000 | [21] | 0.05 a | 0.19 b | 0.05 a | 379.650 *** |
Diethyl malate | Over-ripe, peach, cut grass | 760,000 | [18] | 0.00 a | 0.00 b | 0.00 a | 141.461 *** |
Acetates | |||||||
Isoamyl acetate | Banana, apple | 30 | [16] | 123.88 ab | 145.78 b | 100.72 a | 12.485 ** |
2-Phenylacetate | Banana | 250 | [16] | 3.52 a | 4.52 b | 2.93 a | 32.300 ** |
Volatile acids | |||||||
Isobutyric acid | Butter, cheese, rancid | 2300 | [15] | 0.00 a | 0.08 b | 0.19 c | 375.648 *** |
Propanoic acid | Butter, rancid | 8100 | [18] | 0.02 b | 0.02 a | 0.01 a | 54.686 *** |
Hexanoic acid | Cheese, fatty | 3000 | [21] | 0.54 a | 0.55 a | 0.77 b | 30.641 ** |
Octanoic acid | Cheese, fatty, rancid | 1000 | [21] | 5.93 | 5.98 | 5.94 | 0.009 (ns) |
Decanoic acid | Fatty, unpleasant, fat | 10,000 | [21] | 0.02 a | 0.01 a | 0.10 b | 348.058 *** |
Lactones | |||||||
γ-Butirolactone | Toasty, wood, caramel | 35,000 | [22] | 0.01 b | 0.00 b | 0.00 a | 67.625 *** |
Wisky lactone | Coconut, toast, wood | 67 | [14] | 0.00 a | 0.00 a | 6.60 b | 357.773 *** |
γ-Decalactone | Spicy | 88 | [14] | 2.01 a | 2.13 a | 4.23 b | 134.756 *** |
Carbonyl compounds | |||||||
Acetoine | Lactic | 10,000 | [19] | 0.01 | 0.01 | 0.01 | 1.486 (ns) |
Volatile phenols | |||||||
4-Vinylphenol | Smoky, almond | 180 | [15] | 2.25 | 1.27 | 2.73 | 2.197 (ns) |
Eugenol | Spices, clove, honey | 6 | [15] | 0.00 a | 0.00 a | 12.54 b | 186.997 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naranjo, A.; Martínez-Lapuente, L.; Ayestarán, B.; Guadalupe, Z.; Pérez, I.; Canals, C.; Adell, E. Aromatic and Sensory Characterization of Maturana Blanca Wines Made with Different Technologies. Beverages 2021, 7, 10. https://doi.org/10.3390/beverages7010010
Naranjo A, Martínez-Lapuente L, Ayestarán B, Guadalupe Z, Pérez I, Canals C, Adell E. Aromatic and Sensory Characterization of Maturana Blanca Wines Made with Different Technologies. Beverages. 2021; 7(1):10. https://doi.org/10.3390/beverages7010010
Chicago/Turabian StyleNaranjo, Ana, Leticia Martínez-Lapuente, Belén Ayestarán, Zenaida Guadalupe, Irene Pérez, Clara Canals, and Elena Adell. 2021. "Aromatic and Sensory Characterization of Maturana Blanca Wines Made with Different Technologies" Beverages 7, no. 1: 10. https://doi.org/10.3390/beverages7010010
APA StyleNaranjo, A., Martínez-Lapuente, L., Ayestarán, B., Guadalupe, Z., Pérez, I., Canals, C., & Adell, E. (2021). Aromatic and Sensory Characterization of Maturana Blanca Wines Made with Different Technologies. Beverages, 7(1), 10. https://doi.org/10.3390/beverages7010010