Statistical Significant Differences between Aroma Profiles of Beer Brewed from Sorghum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Brewing
2.3. Volatile Analysis
2.4. GC Parameters
2.5. Identification of Volatile Compounds
2.6. Compound Response
2.7. Characterization
2.8. Statistics
3. Results
3.1. Color
3.2. Free Amino Nitrogen (FAN)
3.3. Volatile Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ye, C.-W.; Gao, J.; Yang, C.; Liu, X.-J.; Pan, S.-Y. Develpment and application of an SPME/GC method for the determination of trace phthalates in beer using a calix [6] arene fiber. Anal. Chim. Acta 2009, 1, 64–74. [Google Scholar] [CrossRef]
- Hager, A.-S.; Taylor, J.P.; Waters, D.M.; Arendt, E.K. Gluten free beer—A review. Trends Food Sci. Technol. 2014, 36, 44–54. [Google Scholar] [CrossRef]
- U.S. Gluten-Free Foods Market–Statistics & Facts. Available online: https://www.statista.com/topics/2067/gluten-free-foods-market/ (accessed on 23 October 2019).
- Fera, T.; Cascio, B.; Angelini, G.; Martini, S.; Guidetti, C.S. Affective disordeers and quality of life in adult coeliac disease patients on gluten-free diet. Eur. J. Gastroenterol. Hepatol. 2003, 15, 1287–1292. [Google Scholar] [CrossRef]
- Ford, S.; Howard, R.; Oyebode, J. Psychosocial aspects of coeliac disease: A cross-sectional survey of a UK population. Br. J. Health Psychol. 2012, 17, 743–757. [Google Scholar] [CrossRef] [Green Version]
- Hauser, W.; Gold, J.; Stein, J.; Caspary, W.F.; Stein, J. Health-related quality of life in adult coeliac disease in Germany: Results of national survey. Eur. J. Gastroenterol. Hepatol. 2007, 18, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Embashu, W.; Nantanga, K.K.M. Malts: Quality and phenolic content of pearl millet and sorghum varieties for brewing nonalcoholic beverages and opaque beers. Cereal Chem. 2019, 96, 765–774. [Google Scholar] [CrossRef]
- Kutyauripo, J.; Parawira, W.; Tinofa, S.; Kudita, I.; Ndengu, C. Investigation of shelf-life extension of sorghum beer (Chibuku) by removing the second conversion of malt. Int. J. Food Microbiol. 2009, 129, 271–276. [Google Scholar] [CrossRef]
- Ilori, M.O.; Makinwa, E.O.; Irefin, I.A. Indigenous technological capability development in the brewing industry in Nigeria: An engineering economic assessment and policy implications. Food Rev. Int. 1996, 12, 511–523. [Google Scholar] [CrossRef]
- Group, B.-H. Leading 10 Countries in Beer Production in Africa in 2018 (in Million Hectoliters). Available online: https://www.statista.com/statistics/202411/beer-production-in-different-african-countries-in-2010/ (accessed on 5 October 2020).
- Guido, L.F.; Rodrigues, P.G.; Rodrigues, J.A.; Gonçalves, C.R.; Barros, A.A. The impact of the physiological condition of the pitching yeast on beer flavour stability: An industrial approach. Food Chem. 2004, 87, 187–193. [Google Scholar] [CrossRef]
- Liu, M.; Zeng, Z.; Xiong, B. Preparation of novel solid-phase microextraction fibers by sol–gel technology for headspace solidphase microextraction–gas chromatographic analysis of aroma compounds in beer. J. Chromatogr. 2005, 2, 287–299. [Google Scholar] [CrossRef] [PubMed]
- Cortacero-Ramírez, S.; Hernáinz-Bermúdez De Castro, M.; Segura-Carretero, A.; Cruces-Blanco, C.; Fernandez-Gutierrez, A. Analysis of beer components by capillary electrophoretic methods. Trends Anal. Chem. 2003, 7, 440–455. [Google Scholar]
- Pinho, O.; Ferreira, I.M.; Santos, L.H. Method optimization by solid-phase microextraction in combination with gas chromatography with mass spectrometry for analysis of beer volatile fraction. J. Chromatogr. A 2006, 2, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Saison, D.; De Schutter, D.P.; Delvaux, F.; Delvaux, F.R. Optimisation of a complete method for the analysis of volatiles involved in the flavour stability of beer by solid-phase microextraction in combination with gas chromatography and mass spectrometry. J. Chromatogr. A 2008, 1190, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, F.; Caldeira, M.; Camara, J.S. Development of a dynamic headspace solid-phase microextraction procedure coupled to GC-qMSD for evaluation the chemical profile in alcoholic beverages. Anal. Chim. Acta 2008, 609, 82–104. [Google Scholar] [CrossRef] [PubMed]
- Thompson-Witrick, K.A.; Rouseff, R.L.; Cadawallader, K.R.; Duncan, S.E.; Eigel, W.N.; Tanko, J.M.; O’Keefe, S.F. Comparison of Two Extraction Techniques, Solid-Phase Microextraction Versus Continuous Liquid–Liquid Extraction/Solvent-Assisted Flavor Evaporation, for the Analysis of Flavor Compounds in Gueuze Lambic Beer. J. Food Sci. 2015, 80, C571–C576. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Smit, B.A.; Engels, W.J.M.; Smit, G. Branched chain aldehydes: Production and breakdown pathways and relevance for flavour in foods. Appl. Microbiol. Biotechnol. 2009, 81, 987–999. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, M.; Klotzbücher, B.; Wurzbacher, M.; Hanke, S.; Kattein, U.; Back, W.; Becker, T.; Krottenthaler, M. A New Validation of Relevant Substances for the Evaluation of Beer Aging Depending on the Employed Boiling System. J. Inst. Brew. 2010, 116, 41–48. [Google Scholar] [CrossRef]
- Tokpohozin, S.E.; Fischer, S.; Becker, T. Selection of a new Saccharomyces yeast to enhance relevant sorghum beer aroma components, higher alcohols and esters. Food Microbiol. 2019, 83, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Dabija, A.; Ciocan, M.E.; Chetrariu, A.; Codină, G.G. Maize and Sorghum as Raw Materials for Brewing, a Review. Appl. Sci. 2021, 11, 3139. [Google Scholar] [CrossRef]
- Taylor, J.R.N.; Dlamini, B.C.; Kruger, J. 125th Anniversary Review: The science of the tropical cereals sorghum, maize and rice in relation to lager beer brewing. J. Inst. Brew. 2013, 119, 1–14. [Google Scholar] [CrossRef]
- Espinosa-Ramírez, J.; Pérez-Carrillo, E.; Serna-Saldívar, S.O. Production of Brewing Worts from Different Types of Sorghum Malts and Adjuncts Supplemented with β-Amylase or Amyloglucosidase. J. Am. Soc. Brew. Chem. 2013, 71, 49–56. [Google Scholar] [CrossRef]
- Deželak, M.; Gebremariam, M.M.; Zarnkow, M.; Becker, T.; Košir, I.J. Part III: The influence of serial repitching of Saccharomyces pastorianus on the production dynamics of some important aroma compounds during the fermentation of barley and gluten-free buckwheat and quinoa wort. J. Inst. Brew. 2015, 121, 387–399. [Google Scholar] [CrossRef] [Green Version]
- Pires, E.J.; Teixeira, J.A.; Brányik, T.; Vicente, A.A. Yeast: The soul of beer’s aroma—a review of flavour-active esters and higher alcohols produced by the brewing yeast. Appl. Microbiol. Biotechnol. 2014, 98, 1937–1949. [Google Scholar] [CrossRef] [Green Version]
- Pugh, T.A.; Maurer, J.M.; Pringle, A.T. The impact of wort nitrogen limitation on yeast fermentation and diacetyl. Master Brew. Assoc. Am. Tech. Q. 1997, 34, 185–189. [Google Scholar]
- Butzke, C.E. Survey of yeast assimilable nitrogen status in musts from California, Oregon, and Washington. Am. J. Enol. Vitic. 1998, 49, 220–224. [Google Scholar]
- Stewart, G.G.; Russell, I. A Handbook of Brewing, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Dufour, J.P.; Mélotte, L.; Srebrnik, S. Sorghum Malts for the Production of a Lager Beer. J. Am. Soc. Brew. Chem. 1992, 50, 110–119. [Google Scholar] [CrossRef]
- Agu, R.C.; Palmer, G.H. Enzymic breakdown of endosperm proteins of sorghum at different malting temperatures. J. Inst. Brew. 1996, 102, 415–418. [Google Scholar] [CrossRef]
- Thompson-Witrick, K.A.; Pitts, E. Nitrogen Content in Craft Malts: Effects on Total Ester Concentration in Beer. J. Am. Soc. Brew. Chem. 2020, 78, 308–313. [Google Scholar] [CrossRef]
- Hill, A.E.; Stewart, G.G. Free Amino Nitrogen in Brewing. Fermentation 2019, 5, 22. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Dong, J.; Yin, H.; Zhao, Y.; Chen, R.; Wan, X.; Chen, P.; Hou, X.; Liu, J.; Chen, L. Wort composition and its impact on the flavour-active higher alcohol and ester formation of beer—A review. J. Inst. Brew. 2014, 120, 157–163. [Google Scholar] [CrossRef]
- Owuama, C.I. Brewing Beer with Sorghum. J. Inst. Brew. 1999, 105, 23–34. [Google Scholar] [CrossRef]
- Ma, C.; He, Y.; Cao, Y.; Bai, X.; Li, H. Analysis of flavour compounds in beer with extruded sorghum as an adjunct using headspace solid-phase micro-extraction and gas chromatography–mass spectrometry. J. Inst. Brew. 2016, 122, 251–260. [Google Scholar] [CrossRef]
- Roberts, D.D.; Pollien, P.; Milo, C. Solid-Phase Microextraction Method Development for Headspace Analysis of Volatile Flavor Compounds. J. Agric. Food Chem. 2000, 48, 2430–2437. [Google Scholar] [CrossRef]
- Blomqvist, J.; Eberhard, T.; Schnurer, J.; Passouth, V. Fermentation Characteristics of Dekkera bruxellensis strains. Appl. Microbiol. Biotechnol. 2010, 87, 1487–1497. [Google Scholar] [CrossRef]
- Bamforth, C.; Barclay, A.H.P. Malting Technologies and the Uses of Malt. In Barley: Chemistry and Technology; MacGregor, A.W., Bhatty, R.S., Eds.; American Association of Cereal Chemists: St. Paul, MN, USA, 1993; pp. 197–254. [Google Scholar]
- Einfalt, D. Barley-sorghum craft beer production with Saccharomyces cerevisiae, Torulaspora delbrueckii and Metschnikowia pulcherrima yeast strains. Eur. Food Res. Technol. 2021, 247, 385–393. [Google Scholar] [CrossRef]
Compound | LRI | Initial | Final | p-Value | Flavor Descriptor |
---|---|---|---|---|---|
Acids | |||||
Acetic acid b | 669 | 0.0016 | 0.0311 | <0.001 | Vinegar |
Isovaleric acid | 861 | 0.0009 | 0.0112 | <0.001 | Sweat, acid, rancid |
2-Methylbutanoic acid | 866 | 0.0005 | 0.0097 | 0.002 | Cheese, sweat |
1,2-Dimethyl-cyclopent-2-enecarboxylic acid | 994 | 0.0019 | 0.0276 | 0.001 | N/A |
Octanoic (caprylic) acid b | 1203 | 0.0022 | 0.0769 | <0.001 | Sweat, cheese |
Alcohols | |||||
2-Methyl-1-propanol (iobutyl alcohol) b | 643 | 0.0295 | 0.5106 | <0.001 | Wine, solvent, bitter |
2-Methyl-1-butanol (active amyl alcohol) | 712 | 0.0657 | 2.0574 | 0.005 | Malt |
3-Methyl-1-butanol (isoamyl alcohol) | 786 | 0.0014 | 4.4535 | <0.001 | Whiskey, malt, burnt |
1-Pentanol b | 788 | 0.001 | 0.0665 | <0.001 | Balsamic |
Phenylethyl alcohol b | 1113 | 0.0049 | 0.5571 | <0.001 | Honey, spice, rose, lilac |
3-(1,3,3-Trimethylbutoxy)- 2-Butanol | 1339 | 0.0021 | 0.0083 | 0.005 | N/A |
2,2-Dimethyloct-4-en-3-ol | 1343 | 0.0005 | 0.0054 | 0.005 | N/A |
Aldehydes | |||||
Isovaleraldehyde a | 662 | 0.0198 | 0.0045 | 0.003 | Ethereal, aldehydic, fatty |
Diethyl acetal | 725 | 0.0009 | 0.0096 | <0.001 | Earthy, green |
Nonanal a | 1105 | 0.0018 | 0.0056 | <0.001 | Fat, citrus, green |
Decanal a | 1207 | 0.0011 | 0.0037 | 0.002 | Soap, orange, peel, tallow |
Alkanes | |||||
Cyclohexane, 1,1,3,5-tetramethyl-, cis- b | 1050 | 0.0008 | 0.0018 | 0.007 | N/A |
2,2,11,11-Tetramethyl-dodecane a | 1020 | 0.001 | 0.0047 | <0.001 | N/A |
2,2-Dimethyldecane a | 1025 | 0.0008 | 0.0041 | <0.001 | N/A |
3-Methyl-5-propylnonane | 1032 | 0.0025 | 0.0064 | 0.005 | N/A |
5-Ethyl-2,2,3-trimethyl-heptane | 1052 | 0.001 | 0.0064 | 0.003 | N/A |
5-(2-Methylpropyl)-nonane | 1091 | 0.0003 | 0.0046 | <0.001 | N/A |
Tridecane | 1300 | 0.0009 | 0.0525 | 0.002 | N/A/ |
Esters | |||||
Ethyl acetate | 631 | 0.0005 | 0.4686 | <0.001 | Fruity |
Ammonium acetate a | 689 | 0.0042 | 0.1486 | <0.001 | N/A |
Ethyl propionate b | 709 | 0.0006 | 0.0076 | <0.001 | Fruity |
Butyl acetate b | 771 | 0.0009 | 0.0726 | 0.008 | Ethereal |
Isoamyl acetate b | 873 | 0.0011 | 1.0757 | <0.001 | Sweet, banana |
Ethyl hexanoate (caproate) b | 1000 | 0.28922 | 0.9731 | <0.001 | Fruity, sweet |
Ethyl octanoate (caprylate) b | 1197 | 0.0105 | 2.6329 | <0.001 | Fruit, fat |
Phenethyl acetate b | 1254 | 0.0008 | 0.0631 | <0.001 | Rose, honey |
Ethyl decanoate (caprate) a | 1395 | 0.0064 | 0.5295 | <0.001 | Grape |
Isoamyl octanoate | 1450 | 0.0006 | 0.0466 | <0.001 | Fruity |
Ethyl dodecanoate (laurate) | 1587 | 0.0043 | 0.1026 | <0.001 | Leaf |
Ethyl hexadecanoate (palmitate) | 1950 | 0.0007 | 0.0183 | 0.008 | Waxy |
Furans | |||||
2,5-Dimethyl-furan a | 701 | 0.0002 | 0.0056 | <0.001 | Meaty |
Ketones | |||||
β-Damascenone | 1380 | 0.0018 | 0.0112 | <0.001 | Floral, woody |
Benzophenone | 1624 | 0.0012 | 0.0353 | 0.007 | Balsamic |
Phenols | |||||
4-Vinylguaiacol | 1310 | 0.002 | 0.0112 | 0.004 | Spicy, clove |
Compound | Barley | Sorghum |
---|---|---|
2,6-Di-tert-butyl-P-benzoquinone | X | |
2-Methyltetrahydrofuran-3-one | X | |
Decyl acetate | X | |
Heptyl acetate | X | |
Propyl decanoate | X | |
Propyl hexanoate | X | |
Isobutyl decanoate | X | |
Ethyl 4-methylpentanoate | X | |
2-Methyltetrahydrothiophen-3-one | X |
Compounds | LRI | p-Value |
---|---|---|
Acids | ||
Isovaleric acid | 861 | 1.33 × 10−4 |
Alcohol | ||
Isohexanol | 835 | 5.16 × 10−4 |
1-Octanol | 1054 | 1.48 × 10−5 |
Aldehydes | ||
Nonanal | 1105 | 7.4 × 10−7 |
Benzene | ||
Vinyl benzene | 889 | 1.51 × 10−6 |
Esters | ||
Ethyl butyrate | 778 | 2.62 × 10−10 |
Isoamyl acetate | 873 | 4.33 × 10−3 |
Hexyl acetate | 990 | 1.62 × 10−4 |
Ethyl hexanoate (caproate) | 1000 | 1.72 × 10−10 |
Ethyl octanoate (caprylate) | 1197 | 2.2 × 10−10 |
Ethyl decanoate (caprate) | 1395 | 4.3 × 10−9 |
Phenethyl acetate | 1254 | 1.17 × 10−8 |
Ethyl nonanoate | 1288 | 1.08 × 10−5 |
Isobutyl octanoate | 1348 | 3.06 × 10−4 |
Ethyl 9-decenoate | 1360 | 8.83 × 10−4 |
Furans | ||
5-Methyl-2-furanmethanethiol | 701 | 9.99 × 10−4 |
Ketones | ||
6-Tetradecanone | 1500 | 9.34 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Budner, D.; Carr, J.; Serafini, B.; Tucker, S.; Dieckman-Meyer, E.; Bell, L.; Thompson-Witrick, K.A. Statistical Significant Differences between Aroma Profiles of Beer Brewed from Sorghum. Beverages 2021, 7, 56. https://doi.org/10.3390/beverages7030056
Budner D, Carr J, Serafini B, Tucker S, Dieckman-Meyer E, Bell L, Thompson-Witrick KA. Statistical Significant Differences between Aroma Profiles of Beer Brewed from Sorghum. Beverages. 2021; 7(3):56. https://doi.org/10.3390/beverages7030056
Chicago/Turabian StyleBudner, Drew, Joseph Carr, Brett Serafini, Samantha Tucker, Elisabeth Dieckman-Meyer, Lindsey Bell, and Katherine A. Thompson-Witrick. 2021. "Statistical Significant Differences between Aroma Profiles of Beer Brewed from Sorghum" Beverages 7, no. 3: 56. https://doi.org/10.3390/beverages7030056
APA StyleBudner, D., Carr, J., Serafini, B., Tucker, S., Dieckman-Meyer, E., Bell, L., & Thompson-Witrick, K. A. (2021). Statistical Significant Differences between Aroma Profiles of Beer Brewed from Sorghum. Beverages, 7(3), 56. https://doi.org/10.3390/beverages7030056